diff --git a/SComplexity/competition.py b/SComplexity/competition.py
new file mode 100644
index 0000000000000000000000000000000000000000..98a4a330f79187565318c6d4ea329215b280017a
--- /dev/null
+++ b/SComplexity/competition.py
@@ -0,0 +1,152 @@
+
+# coding: utf-8
+
+# # Markdown Cell Example 
+# markdown can be readibly interleaved and dispersed between code in notebooks 
+# ## Explanation of code below
+# The histogram (x-axis) binned readability score, (y-axis) counts of papers that occupy that readability score. 
+# 
+# The histogram is initially populated exclusively by the ART corpus, but the idea was every time a new author got scraped from scholar, it would be added in, such that with each persons new search our big picture of science readability would be better informed.
+# 
+# So the histogram changes a little modestly perceptible amount with the author scrape, but three dots pertaining to the authors easiest read, hardest read, and mean read where added.
+# 
+# Think of it as a bit like snapping something to a grid in photoshop.
+
+# It should be easy to hack this code to run off a local machine, using sudo.
+# Set up the Environment. This is now done in requirements, and the postBuild script.
+# ```python
+# !pip install matplotlib
+# !pip install pandas
+# !pip install seaborn
+# 
+# if os.path.exists('traingDats.p?dl=0'):
+#     pass
+# 
+# else:
+#     !wget https://www.dropbox.com/s/3h12l5y2pn49c80/traingDats.p?dl=0
+#     !wget https://www.dropbox.com/s/crarli3772rf3lj/more_authors_results.p?dl=0
+#     !wget https://www.dropbox.com/s/x66zf52himmp5ox/benchmarks.p?dl=0
+# ```
+
+# In[4]:
+
+
+#!pip install tabulate
+import pickle
+
+import pickle
+import copy
+import matplotlib as mpl
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+import os
+#import plotly as py
+
+
+import matplotlib.pyplot as plt
+try:
+    [aaa,aab,_,_,all_authors] = pickle.load(open('competition_data.p','rb'))
+
+except:
+    [aaa,aab,_,_,all_authors] = pickle.load(open('competition_data.p?dl=0','rb'))
+
+#    !wget https://www.dropbox.com/s/04nd2ww4vg4jzt6/competition_data.p?dl=0
+#    !mv competition_data.p?dl=0 pickles
+#    [aaa,aab,_,_,all_authors] = pickle.load(open('pickles/competition_data.p?dl=0','rb'))
+    
+
+#import glob
+#files = glob.glob("*.p")
+discontents = pickle.load(open("_author_specificS S Phatak.p","rb"))
+df = discontents[0]
+ar = discontents[2]
+np.mean(df['standard'])
+
+
+# In[8]:
+
+
+fig = plt.figure(figsize=(9, 9), dpi=100)
+ax1 = fig.add_subplot(111)#)
+#g = sns.distplot(standard_sci, label="Readability Index")
+stdaaa = [r['standard'] for r in aaa]
+stdaab = [r['standard'] for r in aab]
+stdaac = list(df['standard'])
+
+
+g = sns.distplot(stdaaa, label="Readability Index")
+g = sns.distplot(stdaab, label="Readability Index")
+g = sns.distplot(stdaac, label="Readability Index")
+
+#g = sns.distplot(stdgn, label="Readability Index")
+len(aab)
+plt.axvline(np.mean(stdaaa), 0.004,0.95,c='r')
+plt.axvline(np.mean(stdaab), 0.004,0.95,c='r')
+plt.axvline(np.mean(stdaac), 0.004,0.95,c='r')
+
+ax2 = plt.twiny()
+xticks = list(range(0,40,10))
+
+
+xinterval = [np.mean(stdaaa),np.mean(stdaab),np.mean(stdaac)]
+
+ax1.set_xticks(xinterval)
+ax2.set_xticks(xticks)
+
+
+
+ax1.set_xticklabels(['mean: Anonymous author A','mean: Anonymous author B', 'mean: Anonymous author C'], minor=False, rotation=90)
+#ax1.set_xticklabels([], minor=True, rotation=0)
+plt.title('Readability Tournament')
+plt.xlabel('Readability: winner: Anonymous author C')
+plt.ylabel('Proportion of texts with this readability metric')
+plt.show()
+
+
+# In[ ]:
+
+
+
+def metricss(rg):
+    if isinstance(rg,list):
+        pub_count = len(rg)
+        standard = np.mean([ r['standard'] for r in rg ])
+        return standard
+    else:
+        return None
+def metricsp(rg):
+    if isinstance(rg,list):
+        pub_count = len(rg)
+        penalty = np.mean([ r['penalty'] for r in rg ])
+        stds = np.std([ r['penalty'] for r in rg ])
+
+        #penalty = np.mean([ r['perplexity'] for r in rg ])
+
+        return stds
+    else:
+        return None
+
+def filter_empty(the_list):
+    the_list = [ tl for tl in the_list if tl is not None ]
+    return [ tl for tl in the_list if 'standard' in tl.keys() ]
+
+
+anonymousA = metricss(aaA)
+anonymousB = metricss(aaB)
+anonymousC = metricss(aaC)
+
+rank = [(anonymousB,str('rick')),(anonymousA,str('anonymous')),(anonymousC,str('grayden'))]
+print('the winner of the science clarity competition is: ', sorted(rank)[0])
+
+ricks = metricsp(aaA)
+anonymous = metricsp(aaB)
+graydens = metricsp(aaC)
+
+data_m = [{"A. Anonymous":anonymousA},{"B. Anonymous":anonymousB},{"C. Anonymous":anonymousC}]#,{"S. Baer":smbaer}]
+
+df = pd.DataFrame(data_m)
+df.T
+df
+
diff --git a/SComplexity/scrape.py b/SComplexity/scrape.py
index 4d190389ca99caebb661a25befc238392185cb0b..4366f8cb9a822e6f0ee1197106b37e1a641293b4 100644
--- a/SComplexity/scrape.py
+++ b/SComplexity/scrape.py
@@ -27,7 +27,13 @@ from pdfminer.converter import  TextConverter
 from SComplexity.crawl import convert_pdf_to_txt
 from SComplexity.crawl import print_best_text
 from SComplexity.crawl import collect_pubs
-from SComplexity.scholar_scrape import scholar
+try:
+    from SComplexity.scholar_scrape import scholar
+except:
+    from SComplexity import scholar_scrape
+    scholar = scholar_scrape.scholar
+
+    #from .scholar_scrape import scholar
 
 from delver import Crawler
 C = Crawler()