diff --git a/BenchmarkCorpus/planning_document.txt b/BenchmarkCorpus/planning_document.txt deleted file mode 100644 index 25f30d48599487e391718931253b60cfd871be9e..0000000000000000000000000000000000000000 --- a/BenchmarkCorpus/planning_document.txt +++ /dev/null @@ -1,35 +0,0 @@ -Word Complexity Project: - -General hypothesis: The language that scientists and many science educators use online is more complex than language used by non-scientists and science deniers. - -Problem: This leads to the most readable and findable information being potentially less accurate (especially regarding controversial issues), while the most accurate information is likely more difficult to find in searches and will have less impact. - -1. Text complexity vs. site ranking within and between searches -Are simpler texts ranking higher in Google? -How do scientific texts fare within this ranking? -a. For various scientific searches vs. various non-scientific searches -i. Sci searches may be: Genetics, evolution, cancer, vaccine, GMO, climate change, photosynthesis -ii. Non-sci searches may be: Soccer, culture, reality television, ??? -b. Also perhaps targeted comparisons of ideal educational websites vs average? - -2. Text complexity vs. text sentiment -Are more neutral/factual websites more complex? -a. Rank pro, anti, and neutral websites for text complexity -i. Vaccines -ii. GMOs -iii. Climate change - -3. Case studies: Complexity of texts using scientific vs. non-scientific terms -Are scientists using overly complex (but more precise) language online? -a. GMO vs. transgenics -b. Global warming vs. climate change vs. anthropogenic climate change -c. (though non-scientific, perhaps) Intelligent design vs. evolution -d. Also perhaps targeted comparisons of scientist-led blogs vs. public-led blogs covering specific scientific subjects? *can’t be batch processed - -Additional questions: --In Russell’s general search graphs, two clusters of websites seemed to fall out in the graphs. How do we figure out what is causing this? - -Issues to consider: --Are the first few, super successful sites outliers? Should we run these with and without the first page of results to see the differences? - --If AAB sources come up in any of these, should they be automatically excluded? diff --git a/CodeComplexity/results.txt b/CodeComplexity/results.txt deleted file mode 100644 index 7493e88f825884d27c35c4c8368aea41e6786331..0000000000000000000000000000000000000000 --- a/CodeComplexity/results.txt +++ /dev/null @@ -1,44 +0,0 @@ -/opt/conda/lib/python3.6/site-packages/nltk/twitter/__init__.py:20: UserWarning: The twython library has not been installed. Some functionality from the twitter package will not be available. - warnings.warn("The twython library has not been installed. " -('\n' - ' 1 - 5 A (low risk - simple block)\n' - ' 6 - 10 B (low risk - well structured and stable block)\n' - ' 11 - 20 C (moderate risk - slightly complex block)\n' - ' 21 - 30 D (more than moderate risk - more complex block)\n' - ' 31 - 40 E (high risk - complex block, alarming)\n' - ' 41+ F (very high risk - error-prone, unstable block)\n' - ' ') -'cognitive complexity of function <function text_proc at 0x7f26d29a8400> is: 9' -'Good work keep writing modular, readable, and simple code.' -('\n' - ' 1 - 5 A (low risk - simple block)\n' - ' 6 - 10 B (low risk - well structured and stable block)\n' - ' 11 - 20 C (moderate risk - slightly complex block)\n' - ' 21 - 30 D (more than moderate risk - more complex block)\n' - ' 31 - 40 E (high risk - complex block, alarming)\n' - ' 41+ F (very high risk - error-prone, unstable block)\n' - ' ') -('cognitive complexity of function <function scrapelandtext at 0x7f26d29a8378> ' - 'is: 5') -'Good work keep writing modular, readable, and simple code.' -('\n' - ' 1 - 5 A (low risk - simple block)\n' - ' 6 - 10 B (low risk - well structured and stable block)\n' - ' 11 - 20 C (moderate risk - slightly complex block)\n' - ' 21 - 30 D (more than moderate risk - more complex block)\n' - ' 31 - 40 E (high risk - complex block, alarming)\n' - ' 41+ F (very high risk - error-prone, unstable block)\n' - ' ') -'cognitive complexity of function <function slat_ at 0x7f26d29a82f0> is: 7' -'Good work keep writing modular, readable, and simple code.' -('\n' - ' 1 - 5 A (low risk - simple block)\n' - ' 6 - 10 B (low risk - well structured and stable block)\n' - ' 11 - 20 C (moderate risk - slightly complex block)\n' - ' 21 - 30 D (more than moderate risk - more complex block)\n' - ' 31 - 40 E (high risk - complex block, alarming)\n' - ' 41+ F (very high risk - error-prone, unstable block)\n' - ' ') -'cognitive complexity of function <function text_proc at 0x7f26d29a8400> is: 9' -'Good work keep writing modular, readable, and simple code.' -jovyan@1c8cb2f0367f:~/CodeComplexity$ diff --git a/CodeComplexity/test_complexity.py b/CodeComplexity/test_complexity.py deleted file mode 100644 index f43ddb71a8ac43d18b710780c3a0babc2471f3cb..0000000000000000000000000000000000000000 --- a/CodeComplexity/test_complexity.py +++ /dev/null @@ -1,51 +0,0 @@ - -import inspect -import types -import pandas as pd -import inspect, radon, pprint -from radon.complexity import cc_rank, cc_visit - -def ccomplexity_rater(other_function): - ''' - This function calculates the radian cyclomatic complexity of other functions. - Radian complexity is used as a proxy for cognitive complexity, ie how hard is a code block to understand. - Inputs: Other Python functions. - Outputs: A positive integer value that is located in the interval 1-41. The scalar is used in conjunction - with a printed legend. - - The program first uses introspection to convert other_function to a string representation of the - source code that the function was originally expressed in. - Subsequently another module radon that calculates cognitive complexity is called. - Dependencies: If the radon module is not installed consider executing ```pip install radon``` - From: http://radon.readthedocs.io/en/latest/api.html - https://www.guru99.com/cyclomatic-complexity.html - - ''' - f_source_code = "".join(inspect.getsourcelines(other_function)[0]) - results = radon.complexity.cc_visit(f_source_code) - ranking = radon.complexity.sorted_results(results) - pp = pprint.PrettyPrinter(indent=4) - ranking_guide = ''' - 1 - 5 A (low risk - simple block) - ... - 41+ F (very high risk - error-prone, unstable block) - ''' - pp.pprint(ranking_guide) - actual_value = ranking[0][-1] - pp.pprint('cognitive complexity of function {0} is: {1}'.format(other_function,actual_value)) - #df = pd.DataFrame(['cognitive complexity of function: '+str(other_function),actual_value]) - - if actual_value > 10: - pp.pprint('Consider rewriting your code it might be hard for you and others to understand, and therefore maintain') - return actual_value - -def is_function(object): - return isinstance(object, types.FunctionType) - -def rank_all_sub_module_functions(provided_module): - sc_objects = [v for k,v in inspect.getmembers(provided_module) ] - ranks = [] - for sc in sc_objects: - if is_function(sc): - ranks.append(ccomplexity_rater(sc)) - return ranks diff --git a/Examples/author_vs_distr.png b/Examples/author_vs_distr.png new file mode 100644 index 0000000000000000000000000000000000000000..30df604ecf2b02d9fd62df83cdf3012dcf542cbc Binary files /dev/null and b/Examples/author_vs_distr.png differ diff --git a/Examples/figure_joss.png b/Examples/figure_joss.png new file mode 100644 index 0000000000000000000000000000000000000000..3201328ea53a18e0b45ca77d3ed3239f3a952c5e Binary files /dev/null and b/Examples/figure_joss.png differ diff --git a/Examples/for_joss.ipynb b/Examples/for_joss.ipynb index 816dd301634cb1f4defea48b6d224eea9f183867..411cd4e0f5b3efcd6b4331ae82bfa7398630445f 100644 --- a/Examples/for_joss.ipynb +++ b/Examples/for_joss.ipynb @@ -164,7 +164,7 @@ { "data": { "text/plain": [ - "[6.484375, 8.484375, 14.484375, 16.484375, 8.484375]" + "[6.484375, 8.484375, 14.484375, 16.484375, 8.484375, 16.484375]" ] }, "execution_count": 6, @@ -173,7 +173,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhcd33v8fd3No323Yu8yWtsJ46d2LETkhhCSHAITchtAgmlhFt6c2mbtrmltw1wgTZ9aCFcoO0tXdISCoWQjc1QQ2KSQAKO13jfZXmTbO27NFrnd//QmCqKlrE9ozMafV7Po8ejM2f56Fj6aHSW35hzDhERSV8+rwOIiEhyqehFRNKcil5EJM2p6EVE0pyKXkQkzQW8DjBcSUmJKy8v9zqGiMiksmvXrgbnXOlIz6Vc0ZeXl7Nz506vY4iITCpmdnq053ToRkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNpdydsSJj2fbcl8Z8ft19H5+gJCKTh17Ri4ikORW9iEiaU9GLiKQ5Fb2ISJpT0YuIpDkVvYhImlPRi4ikORW9iEiaU9GLiKQ5Fb2ISJqLq+jNbIOZHTWzCjN7dITn/8TMDpnZPjN7yczmDXnuQTM7Hvt4MJHhRURkfOMWvZn5ga8CdwDLgQfMbPmw2XYDa5xzVwPPA4/Hli0CPgusA9YCnzWzwsTFFxGR8cTzin4tUOGcq3TO9QJPA3cPncE594pzriv26VZgduzxu4HNzrkm51wzsBnYkJjoIiISj3iKfhZwdsjnVbFpo/ko8JNLXFZERBIsocMUm9mHgDXA2y9yuYeAhwDmzp2byEgiIlNePK/oq4E5Qz6fHZv2Jmb2LuBTwF3OuZ6LWdY594Rzbo1zbk1paWm82UVEJA7xFP0OYLGZzTezEHA/sHHoDGZ2DfAvDJZ83ZCnXgBuN7PC2EnY22PTRERkgox76MY5129mDzNY0H7gSefcQTN7DNjpnNsIfBHIAZ4zM4Azzrm7nHNNZvZXDP6yAHjMOdeUlK9ERERGFNcxeufcJmDTsGmfGfL4XWMs+yTw5KUGFBGRy6M7Y0VE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6EVE0pyKXkQkzanoRUTSnIpeRCTNqehFRNKcil5EJM2p6GVS6untxUWd1zFEJgUVvUw6DWePcsOxL+I7+iO6e3q8jiOS8lT0Mmm4aJTmyl3c2fYMp6yMawb2s/j412huqvc6mkhKi6vozWyDmR01swoze3SE59eb2Rtm1m9m9w57bsDM9sQ+NiYquEwtLhpl2z89xIbIf7LFv4b6pR/mZ2UPAXDruSdorDnrcUKR1DVu0ZuZH/gqcAewHHjAzJYPm+0M8BHgqRFWEXHOrYp93HWZeWWK2vfz57m+/jleDr0DW3IHfr+foqJSji/+KOcpYWHjyzpmLzKKeF7RrwUqnHOVzrle4Gng7qEzOOdOOef2AdEkZBSB7U9QRxHhhTfi89mvJ4czMjiQdzNXcJqmxloPA4qkrniKfhYw9O/iqti0eIXNbKeZbTWz911UOhGgquIAKyI7OTH3Xvw+/1uezytbQovLobhhuwfpRFLfRJyMneecWwN8EPhbM1s4fAYzeyj2y2Bnfb1OrMmbVW3+BwbwsXjDwyM+HwwE2BG+gesG9lJdeXiC04mkvniKvhqYM+Tz2bFpcXHOVcf+rQR+DlwzwjxPOOfWOOfWlJaWxrtqmQIine0sr93Ivrz1lJTNG3U+f9lK+vFx9qdfnsB0IpNDPEW/A1hsZvPNLATcD8R19YyZFZpZRuxxCXAjcOhSw8rUs/+nXyOPTjJv/NiY82VnZbE9sJoVtRtpa2mcoHQik8O4Re+c6wceBl4ADgPPOucOmtljZnYXgJldZ2ZVwH3Av5jZwdjiy4CdZrYXeAX4vHNORS9xcdEoxYe+wUlfOcvW3j7u/B3T15Bt3Rza9I8TkE5k8gjEM5NzbhOwadi0zwx5vIPBQzrDl9sCrLjMjDJFHd/zGksGKtl25aeZ7xv/j8/CwhJO1C4g/+RPgE8nP6DIJKE7YyVlNb3xQwacsfSdvx33MvUzb2FJ7yFaGmqSmExkclHRS8oqrnmV46Fl5BdPj3uZomvvwm+Oitd/mMRkIpOLil5SUmNtFYv7j9Nctv6illu08mYayYdjLyQpmcjko6KXlHRy248AKFl150Ut5/P7OVFwI0vat9Lf15uMaCKTjopeUlPFz2gkn4VX33jRiwaXbSCPTo7tfCkJwUQmn7iuuhGZSK8/80WWtm7lYOBKgt/724tefvENd9G75X/RtvdHcMMdSUgoMrnoFb2knNaWRgqtg9bct4yWEZecvEKOhlcys+7VBCcTmZxU9JJyrPkkUWdkF7/l1oy4dZa/i3nRs1RXHhx/ZpE0p6KXlDOn+xhHbT6Z4fClr2Pd4ECpZ7f9IFGxRCYtFb2klJaGGpa6k5wNL7ms9cxacCVnfLPIPPPzxAQTmcRU9JJSTmz/T3zmGCgov+x1nS+8joVd+3WZpUx5KnpJKf2Vv6LTZZBfWHLZ6wosXE+ORajcvyUByUQmLxW9pJSS5t0c9y3AH8cgZuMpX/1uABoP6Hp6mdpU9JIy2lubKO8/SV3G6G8wcjGKp8/mlG8O2edeT8j6RCYr3TAlKePUnp+zwhx9uRfzlsRvtu25L73p8y7/fNZGtrHlmcfx+/ysu+/jlxtTZNLRK3pJGZ3Hf0m/85FXMC1h6+zKmUe29dDarHedkqlLRS8pI7duJycDCwiFgglbZ3bRTACs9WzC1iky2ajoJSX09fawoOcwjcXXJnS9meEwJ5jNtO6TCV2vyGSiopeUcPLA62RaL6H5b0v4uk8HF7I0eoKBgYGEr1tkMlDRS0poOvwLAOaufGfC1x3JmUeW9dDS3JDwdYtMBip6SQkZ57ZTZTMoKUvMpZVD5RTPIOoMX1tVwtctMhmo6MVzLhplXuc+zuetSsr6wxlhTthspndXJmX9IqlO19HLhBt+rXtbWyu30cbWaO5bnkuUs6GFXN/zOn29PQRDGUnZhkiq0it68Vxvaw0AgfyZSdtGJHsOWdbDiX2/TNo2RFKVil48l91VTavLIjc3P3nbKBz8JdJ86OdJ24ZIqlLRi+fK+s9Q6SvH57OkbSMzM8xJysjSuDcyBanoxVN9/f0scFXUhy79bQPjdTqwgIWRAwz09yd9WyKpREUvnmpraSRgUfqyk3d8/oLOnHmD49Mf0Kt6mVpU9OIp6xg8EZtVUJr0bWXGjtM3Hnwl6dsSSSUqevFUfnc1510xWZlZSd9WdlYWVTaTjGq9opepRUUvnprbf5rT/sTfDTuac/nXML9rH1GNeyNTiIpePBOJdDPb6mkOJ/9E7AVWfhMFdHD6yM4J26aI11T04pmu1noAXM6MCdvmrFXvAqBu/8sTtk0Rr6noxTOBzvMMOCO3oHjCtllWfgU1lBKs2jJh2xTxmopePFPcU8Upm0UomLh3lIrH2fxrKe/Yo+P0MmVoUDPxhIs6FkRPsT94NRM5xNi2575EAwVcRxsvfP2zFOQXvul5vXm4pCO9ohdPtHd1UGgddGTOmvBthwsHtxlt1vvIytSgohdP9LbWAuDPnT7h287JzuGsm05JRO8jK1ODil48Ee46T8SFyM0v8GT7lcFFLB04xkA06sn2RSaSil48Ma23ikqbg9/nzbdgR045uRahtaXJk+2LTKS4fsrMbIOZHTWzCjN7dITn15vZG2bWb2b3DnvuQTM7Hvt4MFHBZfKKRqMscGeoDc3xLENWUdngg1Ydp5f0N27Rm5kf+CpwB7AceMDMlg+b7QzwEeCpYcsWAZ8F1gFrgc+aWSEypbW3t5FtPUQykz9i5WiyMjOpZBbTI3ofWUl/8byiXwtUOOcqnXO9wNPA3UNncM6dcs7tA4Yf8Hw3sNk51+ScawY2AxsSkFsmsb72OgCCuckfsXIsp4KLWBqtYEDX00uai6foZwFD/76tik2LR1zLmtlDZrbTzHbW19fHuWqZrDK7ztPpwuTm5nmaI5I7jyzrobW5wdMcIsmWEidjnXNPOOfWOOfWlJZ6+ypPkm96XxWVNhefRydiL8gpmknUGb7WM57mEEm2eH7SqoGhZ81mx6bF43KWlTTU39fLQneGugl468DxhDMyOG5zKes+4XUUkaSKp+h3AIvNbL6ZhYD7gY1xrv8F4HYzK4ydhL09Nk2mqNNH3iBsfXRnTdyIlWM5m7GYpe4EPb29XkcRSZpxi9451w88zGBBHwaedc4dNLPHzOwuADO7zsyqgPuAfzGzg7Flm4C/YvCXxQ7gsdg0maIaj20FIJQ7zeMkg3rzFxC0AdobznkdRSRp4hrUzDm3Cdg0bNpnhjzeweBhmZGWfRJ48jIyShpx53bT5rLIycn1OgoABcWltNdmktN+Aij3Oo5IUqTEyViZOopaD3LSNwefz7yOAoDf5+egfxlL+w7hos7rOCJJoaKXCdPT3cW8vkrqg96fiB2qKWcR062Z1rYWr6OIJIWKXibMmSO7CNkAPVne3RE7knDxXABcs0azlPSkopcJ03R8GwAZ+al1r0R2VhbHmcusrmNeRxFJChW9TBg7t5tWssnJyvE6ylucyljKMldBW0uj11FEEk5FLxOmuO0gp8NLsRQ5ETtUf8F8Ahal4vV4bxERmTxU9DIhurs6mNd/ms7iFV5HGVF+USmtLov+oy96HUUk4VT0MiFOHdpGwKKE513ndZQR+X0+DgWWsaBlC1GNZilpRkUvE6IldiK2bPkNHicZXVPuUkpo4ciOzV5HEUkoFb1MCH/NHhooYFrZfK+jjCpv2ly6XZD2Xc95HUUkoVT0MiGmtR+iKnMp5vHQxGMJBYMcyrmeBfUv6fCNpJXU/amTtNHR1sycgSoipSu9jjKu6PK7KaVZh28krajoJenOHNyKzxxZ5Wu8jjKuZevvGzx8s/NZr6OIJIyKXpKu7cTgidjZV77N4yTjy84tGDx80/AyA/39XscRSQgVvSRdsHYvNZRSPD21BjMbjVv+Pkpp5qgO30iaUNFL0k3vOMS57KVex4jb0vX36uobSSsqekmq1qZ6Zrsaeqal/onYCy4cvlnY8BL9fXqLQZn8VPSSVGcObAEgZ/5aj5NcpKs/QAktHHj1e14nEblsKnpJqo6Tgydi516V+idih1pxy/tpoAC36xteRxG5bCp6Sapw3V6qbCb5Rak1Bv14gqEMjs+8ixWdW6k/d8rrOCKXRUUvSeOiUeZ0HuB8XmqOWDme2bc+RMCinHjxCa+jiFwWFb0kTW3VCUpoIVqW+jdKjWTOohUcDF3N3NPPa0gEmdRU9JI01QdeBaB46Y0eJ7l0kRUfoszVcmjLj72OInLJVPSSNH2ntxNxIeYtS80x6ONx1bs+RCvZ9Gz/utdRRC6Zil6SpqBxL6dCiwmGMryOcsnCmdkcLn0PK9peo6HmrNdxRC5JwOsAkp56uruY31fB7pnv9zrKZSu77WEC336eih9/hRP5s8acd919H5+gVCLx0yt6SYrTh7aTYX2EyifZjVIjmLtkFXuzb2Bp1TP0aaAzmYRU9JIUTUd/BcDsFW/3OElihN/+CAV00FZ91OsoIhdNRS9JETi3i1qKmTYrdd868GIsve42jgauYEX7a0SjUa/jiFwUFb0kRVnHAapzrvQ6RsKYz0fn6t9jjtXRVHPa6zgiF0VFLwnXUHOWMldL74zVXkdJqJW3/TbVrpTy5i1eRxG5KCp6Sbiq/a8BULB4cg1kNh5/IMDe3Ju4khM01td4HUckbip6SbjIya30OT/lK9Kr6AHyZi2j0eUxs/6XXkcRiZuKXhIuv+ENTgUXEM7K8TpKwgUDAbZnv51r3CGamuq9jiMSF90wJQnVHelkYc8Rds+4l8Veh7kE25770rjz5My6ipZjr1Ba+0sGiu6ZgFQil0ev6CWhTrzxczKsj/Di9Lh+fiShUJCtWetZE91Pc3Oj13FExqWil4RqO/pzos6Yv/o2r6MkVdbsq2lzWRTW6AocSX0qekmovJqtVAYWkF9Y4nWUpMoIhdiaeTPrortpaW32Oo7ImHSMXhJm8Pj8YX6VcRONcRzrnuwyZq+k8/gvyD3/OuS/x+s4IqOK6xW9mW0ws6NmVmFmj47wfIaZPRN7fpuZlceml5tZxMz2xD7+ObHxJZVU7nmVsPXRnTPX6ygTIpwRZkv4Zq7v30Vra4vXcURGNW7Rm5kf+CpwB7AceMDMlg+b7aNAs3NuEfAV4AtDnjvhnFsV+/hYgnJLCmo9Mnh8PqdoutdRJkxw9jVECJF9fqvXUURGFc8r+rVAhXOu0jnXCzwN3D1snruBb8QePw/camaWuJgyGeTWbOVkoJxwRtjrKBMmMxzm9YybuL5/B21trV7HERlRPEU/Cxj61jpVsWkjzuOc6wdageLYc/PNbLeZ/cLMbh5pA2b2kJntNLOd9fW6CWUy6unuYlH3QeqLJ+/bBl4q/+xr6SVI+Pw2r6OIjCjZV92cB+Y6564B/gR4yszyhs/knHvCObfGObemtLQ0yZEkGSr3vkbY+ggtXO91lAmXlZnJlowbuaFvO9WVB72OI/IW8RR9NTBnyOezY9NGnMfMAkA+0Oic63HONQI453YBJ4AllxtaUk/LoZcBWJDm18+Pxjd7NQP4qf7x33gdReQt4in6HcBiM5tvZiHgfmDjsHk2Ag/GHt8LvOycc2ZWGjuZi5ktABYDlYmJLqkkt2YrJ33lFJTM8DqKJ7Iys9gSuoFVjZuoOVvhdRyRNxm36GPH3B8GXgAOA8865w6a2WNmdldstq8BxWZWweAhmguXYK4H9pnZHgZP0n7MOdeU6C9CvNXe2sSS7v3UTrvR6yieis5agwGnN+pVvaSWuG6Ycs5tAjYNm/aZIY+7gftGWO67wHcvM6OkuONbfsi1NkDeyt/wOoqncrJz2F20gZV1P6Sh5rOUzJga9xNI6tMQCHLZBo78hFayWbLmVq+jeK7szk8SpJ+KH3ze6ygiv6ail8sy0N/PotYtHM+7gUAw5HUcz81edBW782/l6vPP01x/3us4IoCKXi7TsV0vUUg7tlRjvVxQescnCdPLkR98YfyZRSaAil4uS8uejfQ5P4vf9j6vo6SMectWsyf3Zq6qeprW5gav44io6OXylNX+gqPhFeQVFI8/8xSS/+5PkWsRDn3/ca+jiKjo5dJVVx5kXvQsHfOm5k1SY1m44np2Z72N5We+RXurrigWb6no5ZKd3fo9AOZc/5seJ0lNObd9gnw6OfCD9B+bX1Kb3nhELlnO6Z9xyjeH8gXLvI6SMoa/ufguu5IrKr/Ba0/lEgoGWXffxz1KJlOZXtHLJak5W8Hy7r3UlN3udZSUVjftZoqsnY4qDXYm3lHRyyU5+bN/xWeOubc+5HWUlFZUMo03bDnrOl+ht7fP6zgyRano5aJFBwaYd+Z7HMhYRdn8pV7HSXl1M95OkbXTVbXX6ygyRano5aId2vJjylwd3St+y+sok0JhUSnbfSt5W9crtDbWeh1HpiAVvVy07u3foJVsrrpVRR+v5rL1ZNPNoe9+zusoMgWp6OWitDbVs6LtVY6UbCCcme11nEmjIL+QrYHVrKx+msbaKq/jyBSjopeLcmTz18iwPopv/qjXUSadzrIbCdFHxXOf9jqKTDEqeombi0YpOfYMFf6FLFo5td9k5FLk5eWzq/Qe1tR/n8oDeiNxmTgqeonb3leeZeFAJU3LP+x1lElr6QN/Q5vl0L3x47ho1Os4MkWo6CUuLholZ8vjVNt0rvmN3/M6zqSVXzydY1c+wvLe/bzxkye9jiNThIpe4rJn83+waOAE51b+McFQhtdxJrU19zxChX8hs3f8NV0drV7HkSlARS/jig4MULDtS5zxzeKaO/+H13EmPX8gQP/tn2c6jez99ie9jiNTgIpexrX7p19nfvQ0ddc+orcLTJCl625ne+F7WXfu2xx6/Sdex5E0p6KXMfX2dFO668uc8s3l2jt0SWUiXfk7X+WcbzpFL/whbS2NXseRNKailzG98R+fZG60mpYbP4XP7/c6TlrJzi2g485/pMQ1cuxJDQ4nyaOil1FV7P0la85+nR35t7Pq1vu9jpOWlq65lR3zfpc1bT9j58Z/9jqOpCkVvYyop7sL/w9/n2bLZ8mD/+h1nLR23W9/jsPB5azY9X84vO0Fr+NIGjLnnNcZ3mTNmjVu586dXseY0rY99yVaK7Zye8+L/GfRRyiZOdfrSGkv0t3NwspvkedaafnAj5i3bLXXkWSSMbNdzrk1Iz2nV/TyFg11Vbyz+2e8FrheJT9BMsNh/B/+Pn0EyXjm/dRVn/Q6kqQRFb28yenDu1hf9x1OWRnMv8XrOFNK2fyltNzzFLmug55/ew9nK/Z7HUnShIpefq2prprgsw/QQ4jT5e8nFAp6HWnKWbTyRs7e+S1yXAe539rAwS2bvI4kaUBFLwBEOtup+9d7KYo2sbPsg+Rk53gdacpauvY2uj78Iq2+Aha/8CG2P/9lDYAml0VFL3S2t1D5d+9hce9hDl3/RQqLSr2ONOXNWrCMgj/8BUfDV7P2wF+y//F3ce7kEa9jySSlop/i2lubOPP3d3BFzwF2X/c4197x372OJDH5hSVc+WcvsW3ZJ1gYOUjBv69n6zc/TXdXh9fRZJJR0U9hzfXnOf//3s2i3qPsu+ErrHmv7s5MNT6/n3UfeJT23/0Vx7Ku4frKv6f98avY+p2/pjvS6XU8mSR0Hb1Htj33pTGfX3ffx5O6/RP7t5L13Q9R5Fo4fNPfs+q2D8adTbzTWH+eOXW/YAXHqHcFvJH1NjJmXklmZmbSv2cktY11HX1gosOI93Zt+jrLtv05HZbN6bu/y6pr3+51JIlTcelMOos/wKaG88xoeJ13RzbRc2Iz24OrObrzGpZc+w7Mpz/U5c1U9FNIW0sjh7/5COuaNnIktJySjz7Dkhm6IWqyMZ9RPK2Mvmm/yYuttxKs3c3a3u1k//geTvxkPg1XfJClt/0O+YUlXkeVFKGinyL2vvw0M1/9BGtcM1tn/hbXfOT/khHO8jqWXKb8/ALIv4U3em8iFApQfOQp1h36HN0HH2dn/jsIr3uQ5de/RyOPTnEq+ks03nHs6/7bIzQ3nKetoZrujhZ6O1vp727HzIcvkEFDbRX+UCbhzGzCoQzMZ0nJeXjbC/S98gVWdu/ilG8uLe/9OnZiF3t+9E9J2Z5448LNbQ1LPkhFSyPh+n2sbv0luZs3U/NiEfvDq1n8vkcpXzbiIdyEGOtnItXPH3h9zizZVPSXIDowQFeki+5IJ9HuDny9bYT62sjubyU/2kKRa2bgwOcotgGKR1nHqiGPIy5ElU2n1l9Ge3gGLnsa7a1N5OYXXVK+jrZmjrz2PJl7v8mVvftoIo+tC/6Ia97/CTLCWWw7seuS1iupz3xGYVEJFL2Tvf3raa09xfTWfdzS/RKBZzZzxjeL6hm3Unjt+1i86u34A6qAqSCuq27MbAPwd4Af+Dfn3OeHPZ8BfBNYDTQCH3DOnYo99wngo8AA8EfOuTHHYU2Fq25cNEpjzVkaqo7RUVtJX+NJ/K1nyeqqoqC3hmnRBkLW/6ZlulwG9RTS5Cukw59PYNoVWO4MgvkzCeUUEMrKJyM7DxcdoL+vl+Ov/wjX24Wvt51QXxsFfbXMjVZTai2/XucZ3yzqsxbTW3QFGWXLyS9bQl5JGfnFMwhlhBno76e3J0Jz/TnqK3cTqTpI+Px2lnXtIsP6qKOIyiW/w8q7HyEzO/fX69VVNVNPJBIhMyNAVuVPWdq9j6AN0EYWJzNXECm7nux5q5m5aBXFM+Zc1MlcF43S1tpEW0M1+zd/C9ffAwO92EAPFu0HHIajoGwRlpGLPzOPYHYhWYUzyC+dTWFpmedvNu+iUV576vP09HTT19OF6+se/BqivbGvAQrLFoL58YXzCGQXEMouJLu4jMJpc8gvmpYSJ8DHuupm3KI3Mz9wDLgNqAJ2AA845w4Nmef3gaudcx8zs/uBe5xzHzCz5cB3gLVAGfAzYIlzbmC07SWq6F00ysBAP/19vfT19dIT6aQ30klvdwfd7c30dDTT19FEf0c9rr2OQFcdmd015PfWMS1aT4b1vWl9DRTQGJhOR2YZvTmzaG6P4EK5BMI5hLOyyAi++fDLeH/qjVa2kUiEzrZGinIyCNftZVrkBDOjdfjszf9Pfc5P0N66G8/ZNM6U3kL+6t9kyepbR3zFpqKfmi58T7Y21XN8y/cZqHyNmS27mBut/vU8rWTT5CulM1hAT6iIAX8YzHDmxzfQQ6Cvg+BAJ+H+dvIGmilwrYRG+D68GI3k0+IvpiNUSk+4hIGsUixnGoHsYoI5RWTkFpGRlUsoM4+MrGyCwQx8gSDBYOjXBeucIzrQT19fHwN9PfT2ROjp6qA30k5PZwu97Y30dzQx0NmAddQRjNST2dNAfn89xdEmwsN+3i9Gr/PTZEW0BEroyiilL7OEaPY0fDmlBHOKCWYXEc678DXkkBHOJpgRJhAMEQqFE3b+5HIvr1wLVDjnKmMrexq4Gzg0ZJ67gb+IPX4e+Aczs9j0p51zPcBJM6uIre/1S/lCxtJUV032V1diRPETxW+OAINfYBjIHWPZwf+oQloDxdRlL6E65xasYA7hafMpmLmYaXOXUJKdy9BrGJJVlpmZmWRmzn7TL4qujlaqK/bRXnuKvrZaoh310NcFgTAEwvgyC8ibexVli6+lrKiUsqQkk3SRX1Qauzlu8Aa5prpqzh3bRWfVQag/QihST2ZfMwUdhwm4PnxE8RGljyDdvix6fFl0hkpoyriCgcwSLLuYQN506s4exxfIIBAMEQiE8AcGC8zMWHXnQ0Q6Wn1Reg4AAAWASURBVOlqbyHS1kCkuYbe1hqi7bX4OmoIR2rJ6a2nLHKMwqZWApa8sX3aXSYtvkLag8Wcz7mKs1nTaO7oIhrIxkJZ+INh/MEQgUAAf6yEr/2Nj9Hf10dXexOR9hYibY10t5ynr+U8rr2WQFcNmd11lEROkN+5i/yG+G9mizojyuBHRWgZyz/1q4R/zfEU/Szg7JDPq4B1o83jnOs3s1agODZ967BlZw3fgJn913cddJjZ0bjSJ1QzUDl0QgnQcOnr+9PLixPf8peZMelSPR+kfsYE5rvc78lRxZHx0WRtOx7D8rUBtRe5ik8kMM6IYhm3wP+55Asz5o32REqciXHOPQE84XWOocxs52h/BqWKVM+Y6vkg9TOmej5I/Yypng+SnzGeMwjVwJwhn8+OTRtxHjMLAPkMnpSNZ1kREUmieIp+B7DYzOabWQi4H9g4bJ6NwIOxx/cCL7vBs7wbgfvNLMPM5gOLge2JiS4iIvEY99BN7Jj7w8ALDF5e+aRz7qCZPQbsdM5tBL4G/EfsZGsTg78MiM33LIMnbvuBPxjripsUk1KHkkaR6hlTPR+kfsZUzwepnzHV80GSM6bc6JUiIpJY3l/lLyIiSaWiFxFJcyr6EZjZKTPbb2Z7zMzzd0ExsyfNrM7MDgyZVmRmm83seOzfwhTM+BdmVh3bj3vM7D0e5ptjZq+Y2SEzO2hmfxybnjL7cYyMKbEfzSxsZtvNbG8s31/Gps83s21mVmFmz8Qu2vDEGBn/3cxODtmHq8ZbV5Jz+s1st5n9OPZ5Uvehin50tzjnVqXI9bf/DmwYNu1R4CXn3GLgJTy+I4WRMwJ8JbYfVznnNk1wpqH6gY8755YD1wN/EBuiI5X242gZITX2Yw/wTufcSgbH5dtgZtcDX4jlW8TgnYcf9SjfWBkB/veQfbjHu4gA/DFweMjnSd2HKvpJwDn3KoNXMw11N/CN2ONvAO+b0FDDjJIxZTjnzjvn3og9bmfwh2wWKbQfx8iYEtygC+9MHox9OOCdDA59At7vw9Eypgwzmw3cCfxb7HMjyftQRT8yB7xoZrtiwzOkounOufOxxzXAdC/DjOFhM9sXO7Tj6eGlC8ysHLgG2EaK7sdhGSFF9mPskMMeoA7YDJwAWpxzF4ZzHXGYk4k0PKNz7sI+/FxsH34lNuKuV/4W+DPgwoA+xSR5H6roR3aTc+5a4A4G/3xe73WgscRuTkupVy0x/wQsZPBP6POA58NmmlkO8F3gEedc29DnUmU/jpAxZfajc27AObeKwbvc1wJLvcoymuEZzewqBgerWQpcBxQBf+5FNjN7L1DnnJvQN4VQ0Y/AOVcd+7cO+D6D39CpptbMZgLE/q3zOM9bOOdqYz90UeBf8Xg/mlmQwQL9tnPue7HJKbUfR8qYavsxlqkFeAW4ASiIDX0CKTTMyZCMG2KHxVxsJN2v490+vBG4y8xOAU8zeMjm70jyPlTRD2Nm2WaWe+ExcDtwYOylPDF02IkHgR96mGVEFwo05h483I+x46BfAw4757485KmU2Y+jZUyV/WhmpWZWEHucyeB7VBxmsEzvjc3m9T4cKeORIb/MjcHj357sQ+fcJ5xzs51z5QyOIPCyc+63SPI+1J2xw5jZAgZfxcPgEBFPOec+52EkzOw7wDsYHMq0Fvgs8APgWWAucBp4v3POs5Oho2R8B4OHGxxwCvifQ46HT3S+m4DXgP3817HRTzJ4DDwl9uMYGR8gBfajmV3N4IlCP4MvEp91zj0W+5l5msFDIruBD8VeOU+4MTK+DJQCBuwBPjbkpK0nzOwdwJ86596b7H2oohcRSXM6dCMikuZU9CIiaU5FLyKS5lT0IiJpTkUvIpLmVPQiImlORS8ikub+P3EMmtrmhOWbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXSc9X3v8fd3Vo321au8L3gBL2BsEpYAIQSyQEhDAm0SepuW5t5ympzS20uSe5OW3qZJepI0vSE9WUpDm4UCWeokTggESABjYxnvNrblTZYsydr3fX73jxmnQpGskTWjZzT6vM7RYZZn+ehB+mj8LL/HnHOIiEjm8nkdQEREUktFLyKS4VT0IiIZTkUvIpLhVPQiIhku4HWAkUpLS93ixYu9jiEiMq3s3r270TlXNtp7aVf0ixcvpqKiwusYIiLTipmdGes97boREclwKnoRkQynohcRyXAqehGRDKeiFxHJcCp6EZEMp6IXEclwKnoRkQynohcRyXBpd2WsyMXsfPKLF31/y90PTlESkelDn+hFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkwyVU9GZ2m5kdNbNKM3tolPf/wswOm9l+M/uVmS0a9t59ZnY8/nVfMsOLiMj4xi16M/MDjwC3A2uAe81szYjJ9gCbnHPrgKeAL8TnLQY+A2wBNgOfMbOi5MUXEZHxJPKJfjNQ6Zw76ZzrBx4H7hw+gXPueedcd/zpDqA8/vjtwDPOuWbnXAvwDHBbcqKLiEgiEin6+cDZYc+r46+N5SPAzycyr5ndb2YVZlbR0NCQQCQREUlUUg/GmtkHgU3AP0xkPufcN5xzm5xzm8rKypIZSURkxkuk6GuABcOel8dfewMzuwX4FHCHc65vIvOKiEjqJFL0u4AVZrbEzELAPcDW4ROY2Ubg68RK/vywt54GbjWzovhB2Fvjr4mIyBQZ9w5TzrlBM3uAWEH7gUedc4fM7GGgwjm3ldiumlzgSTMDqHLO3eGcazazvyX2xwLgYedcc0q+ExERGVVCtxJ0zm0Dto147dPDHt9ykXkfBR691IAiIjI5ujJWRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpeRCTDqehFRDKcil5EJMOp6EVEMpyKXkQkw6noRUQynIpepp2BwUGaT++jvbPD6ygi00LA6wAiE9HV1cX8009xHWdo68zmpVn3UDqr3OtYImlNn+hl2nh917OsO/Utyl092/LupsGKue38v9J8ai8u6ryOJ5K2Eip6M7vNzI6aWaWZPTTK+zeY2WtmNmhm7xvx3pCZ7Y1/bU1WcJlZqo7tZclP76GHMC8v+BNKFq6mduWH2OXfyO3dW2mpOuh1RJG0NW7Rm5kfeAS4HVgD3Gtma0ZMVgX8IfC9URbR45zbEP+6Y5J5ZYaqffrLAFQu+zAFBUUAhIJBuOydHGAFGzp/w1A06mVEkbSVyCf6zUClc+6kc64feBy4c/gEzrnTzrn9gH7TJOnamupZ17iNfcW3kh3JfsN75jOqit7EXGuipe6MRwlF0lsiRT8fODvseXX8tURlmVmFme0ws/eMNoGZ3R+fpqKhoWECi5aZ4MjPvkrE+im75WOjvl88ZyE1rpSFLTumOJnI9DAVB2MXOec2Ab8P/KOZLRs5gXPuG865Tc65TWVlZVMQSaaLgf4+lpz8LgfDG1iydsuo0/h8PvbnXMsVHKdy38tTnFAk/SVS9DXAgmHPy+OvJcQ5VxP/70ngBWDjBPLJDLf/2e8wmyYGN//3i06XM28VXS5My3P/NEXJRKaPRIp+F7DCzJaYWQi4B0jo7BkzKzKzcPxxKXAtcPhSw8rMk/PaN6m2uay78e6LThcOh3k1tIX1rc/SWHf2otOKzDTjFr1zbhB4AHgaOAI84Zw7ZGYPm9kdAGZ2tZlVA3cDXzezQ/HZVwMVZrYPeB74nHNORS8Jqdz3EqsGj1C98sP4/P5xpx+cs5GQDXL8F49MQTqR6SOhK2Odc9uAbSNe+/Swx7uI7dIZOd924IpJZpQZqnHXD1nijFVv+6OEps/PL+BoYBUl1b9KcTKR6UVXxkraKq19gWOh1RSWzkl4nubym1g5eIzGuqoUJhOZXlT0kpYaz51h+dAJWstvmtB8s66MXZN38pUfpyKWyLSkope0dGpHrKhnX3XnOFO+0dLLr+E8xQQqf5mKWCLTkope0pL/xDPUU8KSNVdPaD7z+ThVfB0rOyvo7+tNUTqR6UVFL2mnv6+XlZ0VnC6+FvNN/Ec0vOYd5FoPx159OgXpRKYfjUcvaefZb32Kd1gPjRSx88kvTnj+lde8g74Xg3Qe+BlcP7FdPyKZSJ/oJe2E207Q54Lkl867pPmzcwt4PbKB+Q0vJjmZyPSkope0s7zvCId8K2PDEF+i3iW3sMCd4+zxfUlMJjI9qeglrVRXHmSR1VGXs3JSy1mw5S4Aal79z2TEEpnWVPSSVmpe+zkAwaJFk1rOvMWXcca3gOyzv0lGLJFpTUUvacV/9hUaXCF5uXmTXlZd8dUs6znAQH9fEpKJTF8qekkbLhplQcdeKgPLMJ9NennBZTeQY72c2P9SEtKJTF8qekkbtVXHmU0TLZGFSVne4qtuBaDl0HNJWZ7IdKWil7RRsy826qQ/fyJ3qhxb8az5nPItIqdWtxiUmU0XTEnacGe20042+QWFl7yMkRdYdfsXs7lnB9v/4wv4fX623P3gZGOKTDv6RC9pY3brHk5FLsd3CcMejKU7dyE51kdbS1PSliky3ajoJS00n69hUbSa7jmbk7rcnOK5AFibbi8oM5eKXtLC6T2xA6ZFq96S1OVGsrI4QTmze08ldbki04n20cuUG22gss7jL9LngjSd3EsgMP79YSfiTGg51/S9wt6hoaQuV2S60Cd6SQvz+09xzJYkveQBenIWkm19tLY0Jn3ZItOBil481z8wwHJXRW14cUqWn1syh6gzfO3VKVm+SLpT0YvnOlrOE7AoA3nlKVl+VjiLE1bO7N6TKVm+SLpT0Yvn/B01RJ2RVzQrZes4G1zKZdGTGvdGZiQVvXiupK+a0zaPcCiUsnX05Mb202vcG5mJVPTiKRd1LIuepjqQnPFtxpJTNAeA1sMvpHQ9IulIRS+e6uzupMg66YwkZ3ybsUQiEU4xj4jGvZEZSEUvnuprqwfAlzc75es6E1jK0u4DDA0OpnxdIulERS+eyuqupceFyC8oSvm6unIXkmc9nDqkT/Uys6joxVNz+qs4YYvwJ3Egs7FEiuYB0Hjo+ZSvSySdqOjFM0PRIZa7KupDC6ZkfTnZ2VTbHMLVr0zJ+kTShYpePNPe2kLYBujNnjdl6zxXcCWLu/cT1bg3MoOo6MUz0Y7YgdhwQeoulBrJFl9LER2cOfralK1TxGsqevFMXm8NTS6f3OycKVvn/PW3AHD+gO4jKzOHil48Uz5YxUn/YsxnU7bOuYtWUkcpgbPbp2ydIl5T0Ysn+vr7WeRqaQqnZiCzsZjPR3X+RhZ37sFFo1O6bhGv6MYj4onO1kZ85ojmzp3S9e588os0Uswm2vjlo5+mYMT5+7p5uGQifaIXT/g6awHILSid8nVnFcWGWxhs1fj0MjOo6MUTRX3nqHKzCYfDU77u3Nxcql0Zpd26j6zMDCp68cTCoSqqA1NzodRoTgRXctnQMaLaTy8zQEJFb2a3mdlRM6s0s4dGef8GM3vNzAbN7H0j3rvPzI7Hv+5LVnCZvnp6ephrTbSFUzti5cV05i6iwLppa232LIPIVBm36M3MDzwC3A6sAe41szUjJqsC/hD43oh5i4HPAFuAzcBnzCz1o1dJWutqi92k2+VO3YVSI2UXx67GdW3aTy+ZL5FP9JuBSufcSedcP/A4cOfwCZxzp51z+4GR/w5+O/CMc67ZOdcCPAPcloTcMo35u+uJOiO3oMSzDNmRbE4xj1k9uo+sZL5Ein4+cHbY8+r4a4lIaF4zu9/MKsysoqGhIcFFy3RV3FfDWWan9NaBiTgdXM6q6HGGohr3RjJbWhyMdc59wzm3yTm3qayszOs4kmKLhqpSfuvARHTnLiLH+mhrbvI6ikhKJVL0NcDw0yPK468lYjLzSgZqrKtitrXQnjV1I1aOJbdkLlFnWHuV11FEUiqRot8FrDCzJWYWAu4Btia4/KeBW82sKH4Q9tb4azJD1RyOjTHjcrw7EHtBVjiLSlvA3N4TXkcRSalxi945Nwg8QKygjwBPOOcOmdnDZnYHgJldbWbVwN3A183sUHzeZuBvif2x2AU8HH9NZqju07uJOiOv0LsDscNVhVawOlpJ/8CA11FEUiahsW6cc9uAbSNe+/Swx7uI7ZYZbd5HgUcnkVEySKRhP2dsLqFg0OsoAPQXLiV0/le0N56jdO4ir+OIpERaHIyVmaO853Vq/N5dETtSYfEsOl0WOe3afSOZS0UvU6bh3GlKaaUjDQ7EXuD3+znkX82qgcO4qPM6jkhKqOhlytQcih+I9fCK2NE05ixnjjXT3tHqdRSRlFDRy5TpPVPBkDPyCoq9jvIGkdLYvvmh5jMeJxFJDRW9TJlI0wGq/AvT5kDsBTnZ2VRSzryeo15HEUkJFb1MCReNUt5zlMa81V5HGdWp8GrWRCvpaNPZv5J5VPQyJeprTlJCG9G5G7yOMqqBgiUEbYjjO37mdRSRpFPRy5SoPbIDgILlmz1OMrrCkjLaXTaDr//C6ygiSaeilynRe6aCQedj8ZotXkcZld/n57B/FYtbthMd0miWkllU9DIlcpoOUuVfSFZ2rtdRxtSUv4pZNHNs93NeRxFJKhW9pJyLRlnQe5TG/JE3Jksv+WWL6HNBWiue8DqKSFKp6CXl6s4ep4h2XJoeiL0gFApyOGczS88/q903klFU9JJyda/HDsQWrUjP/fPDDa2+M7b7puJXXkcRSRoVvaRc75ndDDg/C1df7XWUca16y/tju292P+l1FJGkUdFLyuU0H6QqsIisSI7XUcaVm1+k3TeScVT0klIuGmVh71Ga0vxA7HAXdt8crXjW6ygiSaGil5SqPXOMQjpx8zZ6HSVhF3bftFVo941kBhW9pFTd668AUJymV8SO5sLum2UNzzI0OOh1HJFJU9FLSvVVvUa/87Nw9Savo0yIu+Juymjh4G9+6HUUkUlT0UtK5TXv50xgCeGsbK+jTMjlN99LM/lEdz/mdRSRSVPRS8oMDQ6yuPcozUXrvI4yYaFwFsfmvJvLO1+hsa7K6zgik6Kil5Q5e3wvudaDr/wqr6Ncknk33x8buvjpr3sdRWRSVPSSMudfj90jdtbq6zxOcmkWrtzA4dAVLDj9lM6pl2lNRS8p46oraCebBcuv8DrKJeu+/A8od3UcfkU3JJHpS0UvKVPaeoAz4cvw+f1eR7lkl9/yIdrJoXfnt72OInLJVPSSEj1dHSwaPE1naXqPWDmerOxcjpTexrr2X9NUX+11HJFLEvA6gGSm0we3s9qiRBZPnwulxjLnbX9O6Ps/4NhP/xFf/tyLTrvl7genKJVI4vSJXlKi7XjsitjyK673OMnkLbpsA3uz38Sqs//BgK6UlWlIRS8pEazbQy1llM5Z4HWUpAhd/zGKaKe95qjXUUQmTEUvKTGv8xC1udNnxMrxrN7ydo4FVnJFx0tEo1Gv44hMiIpekq6x7ixzaaB/zpVeR0ka8/nouPKjLLB6mnWlrEwzKnpJuuqDLwGQv/waj5Mk1/q3fYgaV8rilpe9jiIyISp6SbqeUzsZdD6WXHGt11GSKhAMsT/3etZygqaGOq/jiCRMRS9Jl9e4hzOBxURy8ryOknR55atpcvnMbXjJ6ygiCVPRS1L19/WyrPcwjcWZs39+uGAgwKs5b2GjO0xzc4PXcUQSogumJKlOHniZVdZPcOn0HMhs55NfHHea3PmX03rsecrqX2Ko+K4pSCUyOfpEL0nVevgFABZuvMXbICkUCgXZkX0Dm6IHaGlp9DqOyLhU9JJUkdqdVPnmZ8yFUmPJLl9Hu8umqG6711FExqWil6QZGhxkSc8B6gozc//8cOFQiB2R69kS3UtrW4vXcUQuKqF99GZ2G/AVwA98yzn3uRHvh4F/A64CmoAPOOdOm9li4Ahw4brxHc65jyYnuqSb04dfZRndNAzlJrSve7oLl6+n6/ivyat9BQre4XUckTGN+4nezPzAI8DtwBrgXjMbeW37R4AW59xy4MvA54e9d8I5tyH+pZLPYA2Hngcgq+jiIzxmiqxwFtuzrueawd20tbV6HUdkTInsutkMVDrnTjrn+oHHgTtHTHMn8Fj88VPAW83MkhdTpoNQzQ5qKSM3J9frKFMmWL6RHkLk1L7idRSRMSVS9POBs8OeV8dfG3Ua59wg0AaUxN9bYmZ7zOzXZjb9x6yVUblolEWd+6gu2Oh1lCkVycrilfB1XDNYQXt7m9dxREaV6oOxtcBC59xG4C+A75lZ/siJzOx+M6sws4qGBl2EMh2drdxPCW24hW/2OsqU85dfST9BIud2eB1FZFSJFH0NMPxcufL4a6NOY2YBoABocs71OeeaAJxzu4ETwMqRK3DOfcM5t8k5t6msrGzi34V4rm7/cwDMXXezx0mmXnYkwvbwdVwzuIvqyoNexxH5HYkU/S5ghZktMbMQcA+wdcQ0W4H74o/fBzznnHNmVhY/mIuZLQVWACeTE13Sia9qO40UUr7sCq+jeMJXfiVD+Dn3s7/3OorI7xi36OP73B8AniZ2quQTzrlDZvawmd0Rn+xfgBIzqyS2i+ah+Os3APvNbC+xg7Qfdc41J/ubEG9Fh4ZY3L6LM3kbMd/MvDQjO5LN9tCb2ND8c+qqjnsdR+QNEjqP3jm3Ddg24rVPD3vcC9w9ynw/AH4wyYyS5k7sf5kVtHJq+a1eR/FUdP4mOPUyZ7b+PXMeeNTrOCK/NTM/fklSNe75CVFnLHvTyLNuZ5bcnFz2Ft/OhoatNOouVJJGVPQyaSXnXuB48DKKZ40863bmmf/uTxJgkMoff278iUWmiIpeJqWx7iwrB4/RXH6T11HSwvyla9lTcAvrap+ipaHW6zgigIpeJunkKz8CYNaVd4wz5cxRdvsnyKKf13/8+fEnFpkCKnqZlEDlM5ynmKWXZ9aNwCdj0eqr2Jt3PZdXP06bxquXNKCil0vW39fLys5dnC6+dsaeVjmWgrd/ijzr4fCPvuB1FBEVvVy6Y7t+Sa71EFqtIXpHWnbFNezJfjNrqr5DR5suHRFvqejlknUe+Bl9LsjKN73T6yhpKfdtn6CALg7+OPPH5pf0ppuDyyVx0Sjl51/gaGQ963ILvI6TNkbecGW3reWyk4/x4vfyCAWDbLn7QY+SyUymT/RySV7f9Qzlro6+VXd5HSWtnZ91PcXWQWf1Ia+jyAymopdL0vHKt+lyWay95UNeR0lrxaWzeM3WsKXrefr7B7yOIzOUil4mrLuzjbUtz3Go6GaytdtmXPVzbqTYOuiu3ud1FJmhVPQyYYee/Q451kvuNfeNP7FQXFzKq771vLn7edqa6r2OIzOQil4mLPvw41TbHFZvntmjVU5Ey7wbyKGXwz/4O6+jyAykopcJqTl5hLX9+zm78D26SGoCCguK2BG4ivU1j9NUX+11HJlh9JsqE1L1/LeIOmPJLX/idZRpp2vetYQYoPLJ/+N1FJlhVPSSsIH+Ppac/U8OZW1kzoLlXseZdvLzC9hddhebGn7EyYM7vY4jM4iKXhK25yf/zBwaGNr8p15HmbZW3fv3tFsuPVsfxEWjXseRGUJFLwkZ6O+j/OAjHA+sYP1N7/c6zrRVUDKbY2s/ztr+A7z2c91uUKaGil4SsucnX2OeO0/3m/9SB2EnadNdH6fSv4zyXZ+lu7PN6zgyA+g3VsbV39dL+cGvcSywknU36tP8ZPkDAQZv/RyzaWLfdz/pdRyZAVT0Mq698U/zPdf+lT7NJ8mqLbfyatG72HLuuxze8Quv40iG02+tXFRPVwcLD36No4HLWPeW3/M6TkZZ+0ePcM43m6JfPEB7a5PXcSSDqejlovY99iBzaGDw5r/Wp/kky8krpPOdX6PMNXHsUZ3JJKmj31wZ05GdT7O5/gl2lr6XtW/WXaRSYdWmt7Jr4UfY1P4MFT/5utdxJEOp6GVUPV0d5P7i49T5yrj8vi97HSejXf3hz3IkuIbLKz7F6zt/6XUcyUDmnPM6wxts2rTJVVRUeB1jRtv55BfpPP4Sb+1/jm1lf0zJrHleR8p4PT29LDv1HfJdG633/JRFq670OpJMM2a22zm3abT39Ilefkdj7Rlu6nueFwLXqeSnSCSShe9DP2SAIOHH30/DudNeR5IMoqKXNzixfzs3Nj3OMVtEYNkNXseZUeYvXU3rXd8lz3XQ+83bOVt5wOtIkiFU9PJbjefOkPvDD9JBDrVL30cwoHvHT7Xl66/j7Dv+nVzXSd53buPQ9m1eR5IMoKIXALo6Wml+9H3kuU72zb+X7Ei215FmrFVbbqX7w7+gzVfIiqc/yKtPfUkDoMmkqOiFjrZmzv7T7SwdqOTotV+isKjE60gz3vylayl84AWOZq1j88G/4cAXbuHc6aNex5JpSkU/w7W1NFL7/97Osv6j7L/mS2y89YNeR5K4guIy1v7Vr9i5+hMs6zlE4b9ez45//zS93Z1eR5NpRkU/gzXVV3P+q29n8cAJDl77T1x5+3/zOpKM4PP72fKBh+j445c5lr2Ra058hY4vXM6O73+W3p4ur+PJNKHz6D2y88kvXvT9LXc/mNL1V+57idwf3Ueha+PoW77K+pvvSTibeKepoZby879mHcdocIW8lv1mwnPXEolEUv4zI+ntYufR67SKGajiZ99k7aufpM3yqX7vj1m//jqvI0mCSsrm0lN2D9saapndsJ2392yj78QzvBq8itcrNnDZlTdpTCL5HSr6GaS9tYnXH/tzNrf8lCOhtcz64ydYPrvc61hyCUrK5jJY9nv8sv0WgnV72Nz/Kjk/fS8nty2m4bLfZ9WtH6GgqNTrmJImVPQzxN5nv8+8lz7JVa6FV+Z9kKv+8IuEwllex5JJKsgvgPwbea3/WkKhACWvf48tRz5L7+F/oKLgLWRtvo81b3onPr/f66jiIRX9JRpvP/bV7/04zQ3naG88R29nCwPdrQz0dGAWwBcI0lhfjT8UISuSQ1YojPksJTkP7/gFQ89/ng19r3HKt5i2dz+Gr3IXe7Y+kpL1iTdCoSAAjSt/n8rWJsKNB7mqbTv5zz5L3TPFHMy6kmV3PsSSNVenLMPFfifS/fiB18fMUk1FfwmiQ0N0dXfT19NJtK8TX18H4cE2sgfbKIi2UuJaiB78v5RalLH+8bxx2OMeF6La5lAXmEdneDYuZxad7S3k5hddUr6OtmaOvvgUkf3/xtr+AzRRwI7lH+fKuz9BKJzFzspdl7RcSX/mM4qKS6H4Rg4MXkdr/Wlmtx/gxt7nCDzxLFW++dTMfitFV72HFRvegl9XP88ICZ11Y2a3AV8B/MC3nHOfG/F+GPg34CqgCfiAc+50/L1PAB8BhoA/d849fbF1pcNZN9GhIZrqz9J09hid9ScZaDqFv62KnO4aigbqKI02ErKhN8zT5cI0WDEtVkSnP5/A7FX48uYQLJhDMKeYcG4B4UgeURdlaKCP49t/QrS/C19/B6GBNooG6lkYraHUYjeLjjrjrH8+jTkr6S9eSXje5RTOX0l+6VwKS+YQCIZw0Sh9fT20nK/m/Il99FQfIKv2VdZ0VxCyQc5TzMmVH2H9nR8jkpP326w6q2bm6enpIRIOkn3y56zq3U/Qhmgnm1ORK+iZdw05i65i7vINlMxZMKGDuS4apaO9hbaGag488x3cYB8M9WFDfVh0ECPWL4XzlmPhPPxZeQRzisgumkN+2XyKyuZ7vgvRRaO8+L3P0dfXy0BfN26gF4b68Q31Y24gln/uMvD58WXlE8guJJhTTG7JHApnLaSgeFZa7Bq72Fk34xa9mfmBY8DbgGpgF3Cvc+7wsGn+B7DOOfdRM7sHuMs59wEzWwN8H9gMzAOeBVY654ZGrueCZBW9i0YZGhpkcKCfgYF++nq66O/por+3k96OFvo6mxjobGGwowHXWU+gu4FIbz2F/fXMijYQssE3LK+BIpoCc+iKzKU/t5yWji5cOI9AVh5ZkWzCwdAbdr+M90+9scq2u6eb7rYminPDRBr2MavnBPPc+d+Zrt8FficjwDmbRVXZTRRc9XtctumWUX8AVfQz04WfybbmBo5v/xFDJ19kbutuFkZrfjtNGzk0+8roChbSGyoh6g+D+XA+P77BPgKDnQQGu4gMtpM31EqRaxv153AimsmnxV9CZ6iMvnApQzmzsNxZBHJKCOYWE84rJpydRyiSTzg7h2AwjD8YIhAMYRb7nXPOER0aZGBggKGBPvr7eujr7mSgt5O+zjb6OxsZ6GxmqLMR6zpPsKeBSF8j+QMNlESbiVj/Jefvd36arZi2QAld4VkMREqJZpfhy4t9D6HcQrLySghl5xOO5BCO5BIMZxEIhgiFspL2R2Kyp1duBiqdcyfjC3scuBM4PGyaO4G/jj9+Cviqxf4P3Ak87pzrA06ZWWV8ea9cyjdyMc3na8h5ZD1GFD9R/OYIEPsGs4C8i8zb7wI0WxFtgRLqc1dxNvet+AoXkjVrKYXzVjB7wXLKsnMpGzZPqsoyO5JNdiT7DX8oujpaqTm+j87zpxhoP0+0swEGeiEQhkAYX3YR+QuvYN6KK5lXXIYGFpaLKSguY9O77gfuB2K/O+eO7abz7EGs8SihnvNE+luY03mIoBvARxTDMUiQXl+EPl82XaESmsOXcTJSiuWUEMifzfmzx/EFw/iDYYL+IP6AHzPDgPXvvJ+ezqB3ZNoAAAV7SURBVDZ6Olvpbm+ip7mW/rZ6oh11+DrryOqpJ7e/gXk9xylqaSNgqRvbp9NFaPEV0REopj53DdXZs2np6CYazIFQhEAwgj8YIhgM4PfHKvLKd3+UgYEBejpa6Olopqe9mZ6WOgbazuE66gh01RPpraek5ySFXbspIPGL2aLOiBL7qgytZs2nXk7695xI0c8Hzg57Xg1sGWsa59ygmbUBJfHXd4yYd/7IFZjZf/3UQaeZeTCoRzNwYvgLpUDjpS/vLycXJ7H5J5kx5dI9H6R/xiTmm+zP5JgSyPhQqtadiBH52oH6CS4i5fnjGbfD/77kEzMWjfVGWhyJcc59A/iG1zmGM7OKsf4ZlC7SPWO654P0z5ju+SD9M6Z7Pkh9xkSOutQAC4Y9L4+/Nuo0ZhYACogdlE1kXhERSaFEin4XsMLMlphZCLgH2Dpimq3AffHH7wOec7GjvFuBe8wsbGZLgBXAq8mJLiIiiRh31018n/sDwNPETq981Dl3yMweBiqcc1uBfwH+PX6wtZnYHwPi0z1B7MDtIPBnFzvjJs2k1a6kMaR7xnTPB+mfMd3zQfpnTPd8kOKMaTd6pYiIJJeGuRMRyXAqehGRDKeiH4WZnTazA2a218w8vwuKmT1qZufN7OCw14rN7BkzOx7/76UNjJPajH9tZjXx7bjXzN7hYb4FZva8mR02s0Nm9rH462mzHS+SMS22o5llmdmrZrYvnu9v4q8vMbOdZlZpZv8RP2nDExfJ+G0zOzVsG27wKmM8j9/M9pjZT+PPU7oNVfRju8k5tyFNzr/9NnDbiNceAn7lnFsB/AqPr0hh9IwAX45vxw3OuW1TnGm4QeBB59wa4Brgz+JDdKTTdhwrI6THduwDbnbOrQc2ALeZ2TXA5+P5lgMtxMa28spYGQH+57BtuNe7iAB8DDgy7HlKt6GKfhpwzv2G2NlMw90JPBZ//BjwnikNNcIYGdOGc67WOfda/HEHsV+y+aTRdrxIxrTgYi7cmTwY/3LAzcSGPgHvt+FYGdOGmZUD7wS+FX9upHgbquhH54Bfmtnu+PAM6Wi2c642/rgOmO1lmIt4wMz2x3fteLp76QIzW0xspOidpOl2HJER0mQ7xnc57AXOA88QGzek1Tl3YWSzUYc5mUojMzrnLmzDv4tvwy/HR9z1yj8CfwVcGNCnhBRvQxX96K5zzl0J3E7sn883eB3oYuIXp6XVp5a4fwaWEfsndC3g+bCZZpYL/AD4uHOuffh76bIdR8mYNtvROTfknNtA7Cr3zcAqr7KMZWRGM7sc+ASxrFcDxcD/8iKbmb0LOO+c2z2V61XRj8I5VxP/73ngR8R+oNNNvZnNBYj/93fHMvaYc64+/ksXBb6Jx9vRzILECvS7zrkfxl9Oq+04WsZ0247xTK3A88CbgML40CeQRsOcDMt4W3y3mIuPpPuveLcNrwXuMLPTwOPEdtl8hRRvQxX9CGaWY2Z5Fx4DtwIHLz6XJ4YPO3Ef8J8eZhnVhQKNuwsPt2N8P+i/AEecc18a9lbabMexMqbLdjSzMjMrjD+OELtHxRFiZfq++GReb8PRMr4+7I+5Edv/7ck2dM59wjlX7pxbTGwEgeecc39AirehrowdwcyWEvsUD7EhIr7nnPs7DyNhZt8HbiQ2lGk98Bngx8ATwELgDPB+55xnB0PHyHgjsd0NDjgN/Omw/eFTne864EXgAP+1b/STxPaBp8V2vEjGe0mD7Whm64gdKPQT+5D4hHPu4fjvzOPEdonsAT4Y/+Q85S6S8TmgDDBgL/DRYQdtPWFmNwJ/6Zx7V6q3oYpeRCTDadeNiEiGU9GLiGQ4Fb2ISIZT0YuIZDgVvYhIhlPRi4hkOBW9iEiG+/8rxKVHkwfAFAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -185,7 +185,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAIECAYAAAC0fv6LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMTQAADE0B0s6tTgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5Sb133u+2ejzADTe+HMkMNOSiwSRYkqkWRLlmPJjmzHiotsJ3biEztOnDheyYnvSc5JcpzcHOeu68TnprjF5diSnLjFcpO7ZBWLpCSKvZPD4fQOTAMGZd8/AFAUNZRmhnjnRfl+1sLiEHgB/DgSMQ/33r+9jbVWAAAAgFM8bhcAAACAwkbgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOMrndgELUVpaahsbG90uAwAAAJfR29s7Z60tne+xvAicjY2N6unpcbsMAAAAXIYxZvhyjzGlDgAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHCUz+0CACDjwd3dS37u/btWZrESAEA2McIJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABw1IIDpzFmvTHmKWPMCWPMXmPM1fNcc4cxZo8x5ogx5rAx5u+NMZ6LHn+DMeaYMeakMeabxpiqbP1BAAAAkJsWM8L5aUmfsdZukPRxSV+c55pxSW+31l4l6TpJN0v6TUkyxlRI+jdJb7LWrpfUJ+m/L710AAAA5IMFBU5jTJOknZK+kr7rG5I6jDHrLr7OWrvPWnsm/XVE0vOSOtMP3y1pn7X2WPr3/yLpHVdUPQAAAHLeQkc4OyT1W2vjkmSttZK6Ja283BOMMS2S7pP03fRdKyWdu+iSLkmtxhjfPM/9iDGmJ3ObmppaYJkAAADINY40DaXXZn5H0t9ba59Z7POttZ+w1rZnbhUVFdkvEgAAAMtioYHzvC4ajTTGGKVGLLsvvdAYUynpEUnfttZ+4qKHuiWtuuj3nbpo1BQAAACFaUGB01o7JOk5Se9K3/UWST3W2lMXX5duDHpE0iPW2r+55GUekbTDGLMp/fsPSvrqUgsHAABAfljMlPr7Jb3fGHNC0kclvVeSjDGfM8bcm77mjyTdIOnXjTHPp29/LknW2klJ75P0n8aYU5LaJX0sS38OAAAA5CiT6v/Jbe3t7banp8ftMgA47MHdL1mls2D377psDyMAYBkYY3qtte3zPcZJQwAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAclY0lnC7BABAFhA4AeSkHx8Z1P/87hE9enxI1lq3ywEAXAECJ4Cc88SpEf38+JCMkX50ZFDfOdCnJKETAPIWgRNATnnu3Li+f7BfjZWl+shdG7WmoVxPnxnTQ3u6FUsk3S4PALAEBE4AOeNof1jf3NejmqBfv33LatWVl+g9N3dqa1u1DveF9YUnuzQ7x7pOAMg3BE4AOeHpM6N6aE+3gn6vfvuW1aoO+iVJPq9Hb7u+QzevrVfX6LQ+8/hphWZjLlcLAFgMAicA1x3qDel9X3pGXo/Re25ZrYbK0hc97jFGr9/aqtdd3aLBcFSfe/yMEknWdAJAviBwAnDVVDSu93xhr+YSSb37plVqqwnOe50xRrdtaNRt6xs1Oj2n08NTy1wpAGCpCJwAXPWjwwMamYrqo6/bpDUNFa94/Q2r6yRJ+7rHnS4NAJAlBE4Arnp4f598HqM3Xdu2oOvryku0qr5MR/rDirAxPADkhQUHTmPMemPMU8aYE8aYvcaYq+e5ptMY86gxJmSMef6Sx15ljJk1xjx/0W3+uTMARWF0KqrHT47o1vUNqisvWfDzdnTUKpawOtQbcrA6AEC2LGaE89OSPmOt3SDp45K+OM81YUl/Ien+y7zGcWvtNRfdZhdVLYCC8v1DA0okre69ZsWinrelrVo+j9G+8xMOVQYAyKYFBU5jTJOknZK+kr7rG5I6jDHrLr7OWjtmrX1C0nRWqwRQkL7zfJ8Cfo/uuqplUc8Llni1ubVKZ0emNT4951B1AIBsWegIZ4ekfmttXJJs6mDjbkkrF/l+a40xz6Wn5D94uYuMMR8xxvRkblNTdKMChaZvYlZ7usZ05+ZmVZT6Fv38HStrJEn7ztM8BAC5bjmbhp6T1G6t3SHpzZI+YIx563wXWms/Ya1tz9wqKl65cxVAfvnO/j5J0r3bFzednrGuqVIVpT7t656Q5Zx1AMhpCw2c5yW1GmN8kmSMMUqNbnYv9I2stWFrbSj9dY+khyTdurhyARSKh/f3qTLg06s2Ni7p+V6P0TUdNRqdntP5sZksVwcAyKYFBU5r7ZBSI5TvSt/1Fkk91tpTC30jY0yrMcaT/rpS0hsk7VtcuQAKwenhKR3uC+vuLS0q9XmX/DrXpqfVn6N5CABy2mKm1N8v6f3GmBOSPirpvZJkjPmcMebe9NdlxpgeSV+TdFV6DebfpZ//FkkHjTH7JT0t6ceSvpClPweAPPLw85np9IXtvXk5rdVBtVQFdKBngj05ASCHLXilvrX2uKSb5rn/fRd9PSOp/TLP/ydJ/7SEGgEUEGutHt7fp4aKUt20tv6KX+/alTX6waEB/ezYkO7Z2pqFCgEA2cZJQwCW1aHesM6OTOsN21rl9Zgrfr1rOmpkJH3zuZ4rLw4A4AgCJ4Bl9fD+Xkla9Gbvl1MZ8Gt9c4UePT6skaloVl4TAJBdBE4AyyaZtPrO/n511AV1bUdN1l732pW1iifthbWhAIDcQuAEsGz2dI1pIBzRvdtXKLW7WnZc1VqloN+rHx0ZyNprAgCyh8AJYNk8vD873emX8ns92tlZq33dE4rG6VYHgFxD4ASwbB49NqQ1jeXa2FKZ9dfetbpO0XhS+8+Hsv7aAIArQ+AEsCx6xmfUF4po1+or3wppPrvWpF5395lRR14fALB0BE4Ay+KZrnFJ0g2rax15/W3t1Qr4PXr6LIETAHINgRPAstjTNSZJur6zzpHXL/V5tWNlrZ49N665eNKR9wAALA2BE8Cy2Ht2TK3VAbXVBB17j12r6xWJJXWwl7PVASCXEDgBOG58ek4nh6Z0fWddVrdDutSuNanR06fPjDn2HgCAxSNwAnDcM+dS6zev73Rm/WbGNR01KvF59DSNQwCQUwicABz3TGb95mpn1m9mBPxeXdtRo2fPjSuWYB0nAOQKAicAx+3pGlNVwKcNTdnff/NSu9bUa2YuoUO97McJALmCwAnAUbNzCR3sCWlnZ508HufWb2bcmB5F3X2WdZwAkCsInAAc9fz5CcWT1rHtkC517cpalXhZxwkAuYTACcBRe9PrN53a8P1SwRKvtndU65muccVZxwkAOcHndgEACs+Du7svfP2d/X3yeYwO94Z1fGBqWd5/1+p67e0a15H+sLa11yzLewIALo8RTgCOSSStzo3NqL22TD7v8n3cZPbj3M1+nACQEwicABwzEI5oLp5UZ33Zsr7vdatq5fMY1nECQI4gcAJwTNfItCSps6F8Wd+3rMSnbe3V2tM1pkTSLut7AwBeisAJwDFdo9MyklbWLe8Ip5Taj3MyEtfR/vCyvzcA4MUInAAcYa3VudEZtVQHFPB7l/39d63OnKvOtDoAuI3ACcARo9NzmorG1Vm/vNPpGTs76+T1GDaAB4AcQOAE4Ihzo6n1m6uWuWEoo6LUpy1t1drbNaYk6zgBwFUETgCO6BqZkbT8DUMXu3F1nSZmYjo+OOlaDQAAAicAh3SNTquuvERVAb9rNdyQXsf5TBfT6gDgJgIngKybjMQ0Oj237PtvXmp7R+qUof09IVfrAIBiR+AEkHVdo+npdJcahjIaKkrVXhvU/vMTrtYBAMWOwAkg63rGUoHTjf03L7W9o0anhqc0GYm5XQoAFC0CJ4Cs6w3NqsTrUUNlqdul6Jr2GlkrHexlWh0A3ELgBJBV1lr1TcyqtTogjzFul/PCOs7zBE4AcAuBE0BW9YzPKhJLakVN0O1SJElb2qrkMWIdJwC4iMAJIKsOpaeucyVwlpX4tKG5Uvt7CJwA4BYCJ4CsOtSXCZwBlyt5wfb2GvWHIhoKR9wuBQCKEoETQFYd6g3L5zFqqsyhwMl+nADgKp/bBQAoHNZaHeoNqaU6IK9neRuGHtzdfdnH+iZmJUkP7D6n4cnoix67f9dKR+sCADDCCSCLBsNRjU7PaUV1bqzfzGiuCsjvNeoZn3W7FAAoSgROAFmTaw1DGV6P0YrqoHrGZ5S01u1yAKDoEDgBZM3hvrCk3GoYymivDSoSS2psas7tUgCg6BA4AWTNob6QvB6j5qpcDJypYzbPj8+4XAkAFB8CJ4CsOdwb0vqmCvm9uffR0l6bmubvmWAdJwAst9z7qQAgL41ORdUXimhLW7XbpcyrrrxEQb9XPWOMcALAciNwAsiKzPrNLSuqXK5kfsYYddQF1R+KKJ5Mul0OABQVAieArMicMJSrI5xSah1nPGk1GIq+8sUAgKwhcALIisO9YRkjbW7NzRFO6YV1nDQOAcDyInACyIpDfSGtaShXeWnuHmCW6VRnA3gAWF4ETgBXLDQb07nRmZyeTpekilKfasr86mGEEwCWFYETwBU7cqFhKLcDp5Qa5RyejCoaS7hdCgAUDQIngCt2ON0wdHVb7q7fzOioDcpK6mU/TgBYNgROAFcsc4b61XkywimxjhMAlhOBE8AVO9QXVkddUNVBv9ulvKIVNQEZ0akOAMuJwAngiszMxXVmeCov1m9KUqnPq6aqUkY4AWAZETgBXJGj/ZNK2tze8P1S7bVlCs3GNBmJuV0KABQFAieAK3KhYShHj7ScT2YDeBqHAGB55O4OzQBc9eDu7gVd9+3n+yRJxwcm1TcRcbKkrGmrSQdOptUBYFkwwgngivRNzKoq4FNlIPcbhjJaqgLyGsMIJwAsEwIngCWLJ5IaDEe0Ij1imC98Xo9aqgPqGZ+VtdbtcgCg4BE4ASzZ4GRUSau8C5xSalp9KhrXQDg/lgEAQD4jcAJYsoFQKqy1VAVcrmTx2tKNQwd6Qi5XAgCFj8AJYMkGw/kbODOd6gcJnADgOAIngCUbCEfk9xrVVZS4XcqiNVUG5PMYHeglcAKA0wicAJZsMBRRU2VAHmPcLmXRvB6j1uqADvZM0DgEAA4jcAJYkuloXJPReF5Op2e01ZZpfCbGMZcA4DACJ4AlyXR3N1fnb+Bsr6FxCACWA4ETwJLkc4d6xoVO9d4JlysBgMJG4ASwJJkO9eaqUpcrWbrGylKVlXjpVAcAhxE4ASzJQDii8hJvXh1peSmPMdqyoloHe0NKJmkcAgCnEDgBLFrSWg2Fo2rJ4/WbGVvbqzUZievc2IzbpQBAwSJwAli08ek5zSWSeb1+M2Nbe7Uk6UAP6zgBwCkETgCLdqFDvQAC59a2TOBkHScAOIXACWDRMoGzEKbUO+vLVVnqo3EIABxE4ASwaIOhiIxSx0PmO4/HaGt7tQ71hZSgcQgAHEHgBLBoA+Go6spLVOIrjI+Qre3VmplL6MzwlNulAEBBKoyfFgCWTSyR1OhUYXSoZ2xrq5HEOk4AcAqBE8CiDIWjsiqMhqGMTKf6wV4CJwA4gcAJYFEuNAwVUOBsrw2qtszP1kgA4BACJ4BFGSzAwGmM0db2Gh3uCyuWSLpdDgAUHAIngEUZCEfk9xrVVZS4XUpWbWurVjSe1MlBGocAINsInAAWZTAUUVNlQB5j3C4lq7ZeWMfJtDoAZBuBE8CCTUXjmozGC2o6PeOFIy5pHAKAbCNwAliwzPrN5gLaEimjpSqghopS7adxCACyjsAJYMEGQoXXMJRhjNE1HTU61j+pSCzhdjkAUFAInAAWbLCAzlCfz7UraxRPWh3uY1odALLJ53YBAPLHQDii8lKfKkoL56Pjwd3dF74enZqTJP3bE106PvDK3er371rpWF0AUEgY4QSwIElrNRiOqKWq1O1SHNNeG5SRdH5sxu1SAKCgEDgBLMj49JxiCVuQ6zczAn6vGipL1TNO4ASAbCJwAliQzJGWhXSG+nw6ass0PhPTVDTudikAUDAInAAWZKDAG4YyOuqCkphWB4BsInACWJDBUERGUlNlgQfO2jJJ0nmm1QEgawicABZkIBxVXXmJSnyF/bHRXBWQ32vUMzbrdikAUDAK+ycHgKyIJZIanYoW/PpNSfJ6jFbUBHV+fEZJa90uBwAKAoETwCsamYrKSmou4C2RLtZRW6ZoPKmRyajbpQBAQSBwAnhFg+FU8CqGEU5J6qhLrePsGWdaHQCygcAJ4BVljrRsKpbAWZvuVKdxCACygsAJ4BUNhSPyGKmhosTtUpZFddCvilIfgRMAsoTACeAVDU5G1VBRKp+nOD4yjDHqqA1qIBRRLJF0uxwAyHvF8dMDwJLNxZMan54rmun0jI66MiWt1DfBOk4AuFILDpzGmPXGmKeMMSeMMXuNMVfPc02nMeZRY0zIGPP8PI//jjHmpDHmtDHms8YY/5X+AQA4a3iyuDrUM9ozG8Bz4hAAXLHFjHB+WtJnrLUbJH1c0hfnuSYs6S8k3X/pA8aY1ZI+JulWSeskNUv63UXWC2CZDU6mz1Av8BOGLtVeG5SRdJ5OdQC4YgsKnMaYJkk7JX0lfdc3JHUYY9ZdfJ21dsxa+4Sk6Xle5j5JD1trB6y1VtKnJL1jyZUDWBYvdKgX1whnwO9VY2UpjUMAkAULHeHskNRvrY1LUjowdktauYj3Winp3EW/77rc840xHzHG9GRuU1NTi3gbANk0FI7K6zGqLy+uwCmlNoCfmIlpMhJzuxQAyGs52TRkrf2EtbY9c6uoqHC7JKBoDU5G1FhRKq/HuF3KsmuvS+3HyQbwAHBlFho4z0tqNcb4JMkYY5QanexexHt1S1p10e87F/l8AMssGktoYiZWdNPpGR00DgFAViwocFprhyQ9J+ld6bveIqnHWntqEe/1DUn3GmNa0oH1A5K+uphiASyvofRZ4i1FtiVSRnNVQH6vYR0nAFyhxUypv1/S+40xJyR9VNJ7JckY8zljzL3pr8uMMT2SvibpqvQazL+TJGvtGUl/KelJSackDSvV+Q4gR11oGCqyDvUMr8doRU1QPeOzSlrrdjkAkLd8C73QWntc0k3z3P++i76ekdT+Mq/xWUmfXWSNAFySCZzFtgfnxTpqy3RudEYjk9Gi2/weALIlJ5uGAOSGocmo/F6j2vLiOEN9Ph116XWcTKsDwJIROAFc1mA4osbKUnlM8XWoZ6xMB85zowROAFgqAieAec3OJRSOxIvuhKFLVQf9qi3z6+zIfOdZAAAWgsAJYF5DmSMtWbeo1Q3lGp2eYwN4AFgiAieAeQ2GU1siFesenBfrrC+XJHUxrQ4AS0LgBDCvFzrUGeF8IXAyrQ4AS0HgBDCvwcmISnwe1QT9bpfiuvqKEpWX+tTFOk4AWBICJ4B5DYWjaqoslSniDvUMY4xW15dpIBRRJJZwuxwAyDsETgAvMTY9p6lonOn0i3Q2lMuK7ZEAYCkInABe4sTgpCSpuZKGoQzWcQLA0hE4AbzEyXTg5CjHF7RUB1Tq87COEwCWgMAJ4CWOZ0Y4CZwXeIzRqvoy9UzMKpZIul0OAOQVAieAlzgxOKWA36OqgM/tUnJKZ325EkmrnvFZt0sBgLxC4ATwItZanRycVFNlgA71S7COEwCWhsAJ4EWGp6Ian4kxnT6P9tqgfB7DOk4AWCQCJ4AXOTk4JUlq5kjLl/B5PWqvLdO5sRklktbtcgAgbxA4AbzICRqGXlZnQ5nm4kkNhCJulwIAeYPACeBFMoGziT0458U6TgBYPAIngBc5MTiluvISVZTSoT6flXVlMpLOso4TABaMwAngAmutTgxMan1TBR3qlxHwe7WiJqhzo9OylnWcALAQBE4AF/SHIpqMxrWxpdLtUnJaZ32ZpucSOj3MKCcALASBE8AFmfWbG5oJnC9nVXod596uMZcrAYD8QOAEcEEmcDLC+fI6G1KBc89ZAicALASBE8AFxwdSe3BuaCJwvpyKUp8aK0oJnACwQAROABecHJpUc1Wpqsv8bpeS8zobytQ7Maue8Rm3SwGAnEfgBCBJSiatTgxOsn5zgdY2VkiSHj854nIlAJD7CJwAJEnnx2cUiSUJnAu0rrFCHiP94sSw26UAQM4jcAKQJB0fSDcMETgXpKzUp23tNXri1IjiiaTb5QBATiNwApAknRxKNwzRob5gt21o1GQkrv09E26XAgA5jcAJQNILI5zrmypcriR/3L6hQZL02HGm1QHg5RA4AUhK7cHZXhtUOWeoL9j29hpVBnx6jMYhAHhZBE4AiiWSOjM8zfrNRfJ5PfqVdQ060DOh8ek5t8sBgJxF4ASgc6PTmksktZ7AuWi3b2iUtdITpxjlBIDLIXACuHDC0MYW1m8u1m0bGiWxPRIAvBwCJ4ALZ6izB+firagJal1ThX5xcljWWrfLAYCcROAEoBODk/KYF07PweLctr5Rg+GoTgxOuV0KAOQkAicAHR+cVGd9uQJ+r9ul5KXb0tsjMa0OAPMjcAJFLhJLqGtkmun0K7Brdb1KfB49RuAEgHkROIEid2Z4WkkrbWhmOn2pgiVe7Vpdpz1dY5qdS7hdDgDkHAInUOQuNAxxpOUVuX1Do+biST19dtTtUgAg5xA4gSJ3PB042fT9yrA9EgBcHoETKHInByfl9xp1NpS7XUpeW99UoZaqAIETAOZB4ASK3PHBSa1pqJDfy8fBlTDG6LYNDTo9PK3eiVm3ywGAnMJPGKCITUfjOj82y/rNLGFaHQDmR+AEitipofSRlnSoZ8WvrGuQx0iPHSdwAsDFCJxAEcs0DK2nYSgraspKtGNlrR4/OaxIjO2RACCDwAkUsRMDdKhn2+u2tGh6LsG0OgBchMAJFLHjg5MK+D3qqCtzu5SC8botLZKkHxwacLkSAMgdBE6giJ0cnNK6pgp5PcbtUgpGe22ZtrdX6ydHBhWNM60OABKBEyhaoZmYBsIRzlB3wN1bWzUZjevJUyNulwIAOYHACRSpE0PpIy0JnFl3d3pa/fsHmVYHAInACRStY/1hSdIm9uDMulX15bp6RZV+dHhAc/Gk2+UAgOsInECROtKfGuG8qrXK5UoK0z1bWxWOxPXLM6NulwIAriNwAkXqaH9Y9eUlaqwsdbuUgpSZVv/BwX6XKwEA9xE4gSKUTFodH5jUptZKGUOHuhPWNFZoU0ulfnh4QPEE0+oAihuBEyhC58ZmNBtLaHML0+lOuntLq8ZnYtp9dsztUgDAVQROoAgdzTQMsX7TUfdszXSrM60OoLgROIEilOlQ39xKh7qT1jdXal1ThX54eECJpHW7HABwDYETKEJH+ifl8xita6pwu5SCd8+WFo1MzWlvF9PqAIoXgRMoQscGwlrbWKFSn9ftUgre67a0SqJbHUBxI3ACRSYcialnfJbp9GWyubVSnfVl+sGhASWZVgdQpAicQJE5lt7wnYah5WGM0d1bWzU0GdVz3eNulwMAriBwAkXm2ECmYYjAuVzuSU+rP7y/z+VKAMAdPrcLALC8jtKhvuy2tFVpXVOFHt7fpz9//WaV+rx6cHf3kl7r/l0rs1wdADiPEU6gyBzpn0wdaVnBkZbLxRij37iuXRMzMf306JDb5QDAsiNwAkUkkbQ6MTCpza1VHGm5zN58bZu8HqOvP9vjdikAsOwInEAROTc6nTrSkun0ZddUFdDtGxr16PEhDYUjbpcDAMuKwAkUkaOZDnXOUHfFfde1K2mlb+3rdbsUAFhWBE6giNCh7q47Nzeppsyvrz3bI2vZkxNA8SBwAkXkaH9YPo/R2qZyt0spSqU+r964fYVODU2pZ3zW7XIAYNkQOIEicrR/UuuaONLSTb+xs0OS9CybwAMoIgROoEiEZmPqnZhlOt1lV6+o0qaWSh3omVAskXS7HABYFgROoEgcS2/4vqmFDnU3GWN033XtisSSOpL+bwIAhY7ACRSJYwOpDnVGON33pmvb5DHSc+eYVgdQHMbNCPIAACAASURBVAicQJHIHGm5iT04XddQUaqNLVU6NTSl0GzM7XIAwHEETqBIHO0Pq6GiRE2VAbdLgaTrVtbKStpH8xCAIkDgBIpAIml1fHCS6fQcsrGlUuUlXj17bpw9OQEUPAInUAS6RqcViSVpGMohXo/RNR01Gp2eU9fojNvlAICjCJxAETjWT8NQLtrZWSdJ2ts15nIlAOAsAidQBDINQwTO3NJcFVBnfbkO9oY0FY27XQ4AOIbACRSBo/1h+b1Gaxsr3C4Fl9i1uk6JpGWLJAAFjcAJFIGj/WGtbaxQiY+/8rnm6hVVKivxak/XmJI0DwEoUPz0AQrc6FRUfaGIrl5R7XYpmIfP69HOVbUam57T6eEpt8sBAEf43C4AgLMO9IQkSds7CJzZ9uDu7qy8zg2r6/WLkyPac3ZM65vYSQBA4WGEEyhw+3smJEnb2mtcrgSXU1deovVNFTraH1aYk4cAFCACJ1DgDvSE5PcabeZIy5y2a3WdklZ65hxbJAEoPAROoIBZa3WgZ0KbWqpU6vO6XQ5exsaWKlUFfNrbNa5EkuYhAIWFwAkUsL5QRCNTc9rWzvrNXOf1GO3srFNoNqYTg5NulwMAWUXgBArYgfOp9ZvbWb+ZF67vrJORtOcs0+oACguBEyhg+9Md6tvoUM8L1UG/NrVW6cTgpMan59wuBwCyhsAJFLADPRMK+r1axwlDeWPX6jpZcb46gMJC4AQKVDJpdbAnpC1tVfJ5+aueL9Y1Vai2zK+958YVTybdLgcAsoKN34ECdXZ0WpPRuEq8nqxtUA7neYzRDavr9cPDAzrSF2b/VAAFgWEPoEAdSG/43l5b5nIlWKzrVtXKa4x20zwEoEAQOIECtf98qmGovTbociVYrIpSn65uq9LZkWkNhSNulwMAV4zACRSoAz0Tqg76VVde4nYpWIJdq+slSbtpHgJQAAicQAGKJZI63BfWtvZqGWPcLgdL0FlfpqbKUu3rHtdcnOYhAPltwYHTGLPeGPOUMeaEMWavMebqy1z3O8aYk8aY08aYzxpj/On7X2WMmTXGPH/Rjbk+wAEnBicVjSc5YSiPGWO0a029IrHkhfW4AJCvFjPC+WlJn7HWbpD0cUlfvPQCY8xqSR+TdKukdZKaJf3uRZcct9Zec9FtdsmVA7isA5kN3+lwzmvXdtSoxOuheQhA3ltQ4DTGNEnaKekr6bu+IanDGLPukkvvk/SwtXbAWmslfUrSO7JVLICFyYyIcaRlfgv4vdreUaPeiVn1jM+4XQ4ALNlCRzg7JPVba+OSlA6T3ZJWXnLdSknnLvp91yXXrDXGPJeekv/g5d7MGPMRY0xP5jY1NbXAMgFIqQ71pspStVQH3C4FV2jX6jpJ0u4zjHICyF/L2TT0nKR2a+0OSW+W9AFjzFvnu9Ba+wlrbXvmVlHBsXzAQkViCR0fnGQ6vUCsqAmqozaoA70Tmp1LuF0OACzJQgPneUmtxhifJJlU2+tKpUY5L9YtadVFv+/MXGOtDVtrQ+mveyQ9pNRaTwBZdLgvrETSajsNQwVj15p6xRJWz3WPu10KACzJggKntXZIqRHKd6XveoukHmvtqUsu/Yake40xLelQ+gFJX5UkY0yrMcaT/rpS0hsk7bvyPwKAi2XWb27rYISzUGxtq1bQ79Xus2NKrWgCgPyymCn190t6vzHmhKSPSnqvJBljPmeMuVeSrLVnJP2lpCclnZI0rFR3u5QKqQeNMfslPS3px5K+kI0/BIAXXOhQb2OEs1D4vR5dt6pWI1NR/fL0qNvlAMCi+RZ6obX2uKSb5rn/fZf8/rOSPjvPdf8k6Z+WUCOARdjfM6GVdWWq5YShgrJrdZ2eODWir+w+p5vXNbhdDgAsCicNAQUkHInpzPA0G74XoPqKUq1rrNCPDg9qaJLz1QHkFwInUEAOpafT2X+zMN2wuk7xpNXXnulxuxQAWBQCJ1BADvRmThhihLMQbW6tUmNlqR7a061kkuYhAPmDwAkUkH3d4/IYaQsNQwXJ6zF6284O9YzP6hcnh90uBwAWjMAJFIhk0mr32TFtbatWeemC+wGRZ95+Q4eMkR7cfek2yACQuwicQIE4NjCpiZmYblxb73YpcFB7bZlu39Conx4b0kCI5iEA+YHACRSIp8+k9me8cQ2Bs9C9c9cqJZJW/773vNulAMCCEDiBAvH0mVF5PUbXd9a5XQoc9uqNjWqpCuire7sVTyTdLgcAXhGBEygAF6/frGD9ZsHzeT16+w0d6g9F9OhxmocA5D4CJ1AAjg6EFZqNMZ1eRN52fYc8RnpwD81DAHIfgRMoAE+fGZMk3biG6fRi0Vod1J2bm/Xz40PqGZ9xuxwAeFkETqAAZNZv7mT9ZlG5f9dKWSuahwDkPAInkOcSSavdZ0a1rZ31m8XmtvWNaqsJ6qt7zytG8xCAHEbgBPLc0f6wwpE46zeLkNdjdP+ulRqejOonRwbdLgcALovACeQ59t8sbr+xs10+j6F5CEBOI3ACee7pM6PyeYx2rqp1uxS4oKkyoF+9ukWPnxxR18i02+UAwLwInEAeS6T339zWzvnpxeydu1ZKYoskALmLwAnksaP9YU2yfrPo3bS2XmsayvW1Z84rEku4XQ4AvASBE8hjrN+EJBmTah4an4npkUMDbpcDAC9B4ATy2C9Pp9dvdrJ+s9jdd127SnwePbD7nNulAMBLEDiBPJVIWu05O6btHTUqK2H9ZrGrKSvRG7a1am/XuI4NhN0uBwBehMAJ5KkjfWFNRuMcZ4kL3rlrlSTpwd00DwHILQROIE9l1m/etKbB5UqQK3asrNGmlkp987leTUfjbpcDABcQOIE89cszo/J7jXasqnG7FOQIY4zeeeMqTUXj+s7+PrfLAYALCJxAHoonktp7dkzb21m/iRd70zUrVFbi1QNMqwPIIfykAvLQ4QvrN9kOqdgsZH3m1SuqtbdrTH//yDG115ZduP/+9AbxALDcGOEE8tDPjg1Jkm5Zx/pNvNSu1alGst1nx1yuBABSCJxAHvrh4QHVlZfoevbfxDxW1ATVURvUgZ4JzczRPATAfQROIM+cHZnWsYFJ3bW5WT4vf4UxvxvX1CuWsHqma9ztUgCAwAnkm8zRha/b2uJyJchlW9uqVVHq09NnRpVIWrfLAVDkCJxAnnnk8IAqS326eS0NQ7g8n9ejXavrNDEb09F+Th4C4C4CJ5BH+iZmtf/8hO7Y3KRSn9ftcpDjblhdJ68xeur0iNulAChyBE4gj/zwcGo6/e4tTKfjlVUG/NrWXq2u0Rn1Tcy6XQ6AIkbgBPLII4cGFPB7dNuGRrdLQZ64eW1q66ynTo+6XAmAYkbgBPLEyFRUe7vGdPuGRk4XwoK11Qa1qq5M+3smNDIVdbscAEWKwAnkiR8fGVTSSndvaXW7FOSZm9bWK5G0eojjLgG4hMAJ5IlHDg3I7zV69aYmt0tBnrl6RbWqg359+elzmosn3S4HQBEicAJ5IDQb01OnR3Tz2gZVB/1ul4M84/UY3bi6TkOTUf3gUL/b5QAoQgROIA/87NigYglLdzqW7PrOOpX6PPrCk11ulwKgCBE4gTzwyKEBeYz0mqua3S4Feaqs1Kc3X9um589PaF83x10CWF4ETiDHzczF9diJYV3fWaeGilK3y0Eee88tnZKkf3virLuFACg6BE4gxz12fFiRWJLpdFyxTS1Vum1Do753sF+nh6fcLgdAESFwAjnukfTpQq+9msCJK/dHd66TtdI///yU26UAKCIETiCHzc4l9LOjQ9reUaMVNUG3y0EBuG5VnW5eW69vP9+nc6PTbpcDoEgQOIEc9p/P92oyGtdbdrS5XQoKyIfuWK9E0upffn7a7VIAFAkCJ5CjrLX60lNdqij16dd3tLtdDgrIjWvqdH1nrb7xXI96xmfcLgdAESBwAjlq99kxHRuY1H3XtauilLPTkT3GGH3ojvWKJ60+9RijnACcR+AEctSXnuqSJP3mTavcLQQF6db1DdreUaP/2NujgVDE7XIAFDgCJ5CD+iZm9aMjg7ptQ6PWNFa4XQ4KkDFGf3TnOs0lkvr0LxjlBOAsAieQgx7YfU6JpNV7bmZ0E8559cYmbWmr0oO7uzU0ySgnAOcQOIEcE4kl9NCe81pVX6ZXbWhyuxwUMGOM/uDV6xWNJ/W5xzl9CIBzCJxAjvnugX6NTc/p3Teuksdj3C4HBe61VzVrY3OlvvL0OY1Nz7ldDoACReAEckhmK6Sg36vf2NnhdjkoAh6P0YfuXKeZuYT+909Pul0OgAJF4ARyyHPdEzrYG9Kbd7SpOuh3uxwUiXu2tGrHyhp9+elzOjYQdrscAAWIwAnkkMxWSL91U6erdaC4eDxGf33vFiWt1V8/fETWWrdLAlBgCJxAjhgKR/T9g/26aU29NrZUul0OiszW9mq9/foO/fLMqL5/cMDtcgAUGAInkCMe2N2teNLqt27udLsUFKk/ee1GVQZ8+tvvHdHsXMLtcgAUEAInkAPGpuf0+SfPqqMuqNdsZiskuKO+olQfuWuD+kIR/StHXgLIIgInkAM++ZMTmozE9Wev2ySfl7+WcM+7b1ylDc0V+tRjp3V+bMbtcgAUCH6yAS47NTSlr+zu1o6VNXr91la3y0GR83k9+qtfu1pz8aT+5ntH3C4HQIEgcAIu+18/OKpE0urPX3+VjGGjd7jv5nUNumdri354eFCPnxx2uxwABYDACbjoqdMj+snRIb1+W6uuW1XrdjnABf/tns0K+D36q4cPKxKjgQjAlSFwAi5JJq3+9ntHVeL16KOv2+R2OcCLtNeW6UN3rNfp4Wn97feOul0OgDznc7sAoJg8uLv7wtfPnRvX4b6wbl3XoMdPjrhYFYrFxf//LUR10K81DeX68tPndNPaet3DGmMAS8QIJ+CCuXhSPzoyoLISr161kW2QkJs8xuit13eooaJEf/b1A+oepWsdwNIQOAEXPHFqWOFIXHdsalKwxOt2OcBlVQX8+oe3XaOpubj+4KHnFI2znhPA4hE4gWUWjsT0ixMjaqgo0a7V9W6XA7yiW9c36vdftU4HekL6Xz845nY5APIQgRNYRtZafXtfr+YSSd29pVVeD9sgIT98+DXrdUNnnb7wZJd+eJiz1gEsDoETWEZ7u8Z1dGBS29urtbm1yu1ygAXzeT365DuuUW2ZX3/6tf3qGWc9J4CFI3ACy+TM8JS+d7BPNUG/7t3e5nY5wKK1Vgf1ibddo3Akrv/yf57VxMyc2yUByBMETmAZxBJJffjfn1c8YXXfznYahZC3Xr2xSX/6qxt1tD+s3/z8HoVmY26XBCAPEDiBZfDJn5zUgZ6QbtvQqDUNFW6XA1yR33/1Ov3hnet1oCek3/r8Hk1GCJ0AXh6BE3DY3q4x/cujp7SlrUp3bmbPTRSGP37Nen3wVWv1/PkJvfcLezUdjbtdEoAcRuAEHBSOxPThrz6vEp9H//i2a+Xz8FcOhcEYoz/91Y363dvW6Jlz4/rtL+7VzByhE8D8+OkHOOgvv31YvROz+ovXX6V1TUylo7AYY/R/3b1J772lU7vPjul9X3pGs3NsDA/gpQicgEO+8ORZfWtfr+7c1KR37lrpdjmAI4wx+h9vuErvvnGVnjo9qrf861McgQngJQicgAN+enRQH/vuEa1pLNcn3nqNjGGDdxQuY4z++t6r9eHXrNfRgbDe8P89rp8cGXS7LAA5hMAJZNmh3pA+9NA+1ZSV6AvvuV7VZX63SwIc5/EYffg1G/TF994gj8foff/nGf39I8cUTyTdLg1ADiBwAlnUH5rV73xpr+IJq8+8+zqtqi93uyRgWd2+oVHf/dCvaHt7tf7l0dP6zc/v0chU1O2yALiMwAlkyXQ0rt/54jMaDEf1//zGNu3srHO7JMAV7bVl+o8P3KR33bhST50e1T2ffFw/ONgva63bpQFwCYETyIJE0uoPH9qnI/1hfeSuDXrjNRxdieJW6vPqb960Vf/4tmsUiSX0ew88p9/6wl51jUy7XRoAFxA4gStkrdVfPnxIPz02pF/f0aYP3bHO7ZKAnPGma9v0sz95ld6yo12/ODGs1/7jL/QPPz6hSIztk4BiYvJhiqO9vd329PS4XQZewYO7u5f0vPvzeMugZNLqv3/7kB7Y3a2b1tTri799vUp9lz8nfanfI6AQnB2Z1ref79XQZFR15SV6/dZWbWqpnHcXh3z+XACKlTGm11rbPt9jjHACS5RIWn30mwf0wO5u3bKuXv/2np0vGzaBYre6oVwfumO97t7SoqlIXF9++pw+/YszOj085XZpABzmc7sAIB/FE0n9168f0Df39er2DY369LuvU8BP2AReiddjdOv6Rm1vr9HPjw9pb9eY/u2Js1rbWK7XXtWijroyt0sE4AACJ7BIsURSf/zvz+u7B/r1ms1N+ud37mBkE1ikqqBfb7ymTbeub9TPjg1qX/eE/vWx09rUUqk7Nze7XR6ALCNwAoswF0/qDx/ap0cOD+juLS365NuvVYmPlSnAUtWVl+i+6zp02/pG/eTYkA71hnRsYFKH+0L60B3rdN0qthcDCgGBE1igocmI/uCBfdrTNaZf275C//DW7fJ5CZtANjRVBXT/DSvVH5rVo8eH9diJYT16fFg3ranXH9yxTjevreeIWCCPETiBBXima0wffOA5DU1G9d5bOvUXr79KXg8//IBsa60O6h03rNQNq+v0r4+e1n8+36t3fm63rl1Zow/cvlZ3bW6Wh797QN4hcAIvw1qrLz3Vpb/53lH5vR7973dcq3u3r3C7LKDgrWuq0P/71u368GvW61OPndbXnunR+7/8rNY0luv9t63Rm65tY+00kEeYDwQuY3YuoY/8x3791XeOqKOuTP/5+7cQNoFl1lFXpr9981Y98Wev1u+9aq2GJ6P6s28c1K0f/7n+9dHTCkdibpcIYAEInMA8nj8/oTf/y5P61r5evWZzs779B7doY0ul22UBRaupKqA/e90mPfXRO/Tn92yWxxh9/JFjuun//qn+6uHDOsNenkBO46ShAuXUqT+xRFLh2ZgmI3EZI5X4PCrxelTi8+hbz/XK6zGLXtifSyeKDE1G9PePHNfXn+2Rz2P0x3dt0O/dvvZFa8Y4LQhwXzyZ1IHzIT15ekT9oYgkaWNzpW5aW6+//LWr8qbB6Eo+T3LpszNXFeMJeG56uZOGWMMJSakgOT4zp8dPDqtvYla9ExH1Tcyqb2JWI1NRhWfjCkdimpl7+fOPPUaqKStRfXmJastTv9aVl6ixslQNFaXy5OgPgbl4Ul96qkuf/OlJTUXjunV9g/7HG67S+mZGNYFc5PN4tGNVra5dWaOzo9P65elRHekL6/jgpB4/Oaz7d63Sm65ZofqKUrdLBSACZ9Gw1mp6LqGx6TmNTUfTv8YufB2OxOd9XmWpT42VpWqpDmhDS6Wqg35VBXyqDPglpYJaNJ7QXDypE4OTisZTwbVrdFonh148xRXwe9RRW6aOurL0r0GVlbj7v2A8kdRPjw3p448c05nhaXXUBfWJt27XXVc1580ICVDMjDFa01ChNQ0VGp+e09NnRrW/Z0If++4R/d33j+qOTU2677p2vXpTk/xsYwa4hsBZQJJJq6HJqM6OTGtv15hGp6IanZ5Lh8s5RePJlzynrMSruvISraovV115ie66qlltNUGtqAmqtSagqnSwXIiLpy6stZqMxjU2lXrvgXBE58dmdHbkxUG0sbJUh/tCumF1nW5cU6/mqsCVfRMWqGtkWv/xzHl9/dkeDU1GFfR79Sev3aD33bqGIyqBPFVbXqK7t7bqs7+1Uz88PKCvP9ujHx8d1I+ODKq+vERvvKZNr9vSoh0ra9hDF1hmBM48FJqN6czwlM4MT+vMSOrXsyPT6hqdViT24lBpJFWX+dVWG0xPb5eqLj3VXVtWomDJi8NVttatGGNUFfCrKuBXZ0P5hfvjyaQGQqnw2T02o67RGT2wu1sPpMPqqvoy3dBZp+0dNdrWXq2NLZVZ2/pkbHpOjx4f0r/vPa/dZ8ckSe21QX3krg162/UdyxZ2ATgr4Pfqjde06Y3XtKlvYlbf2terrz/bo88/eVaff/KsqoN+vWpjo+7Y1KTbNzSqpqzE7ZKBgkfTUI5KJK16x2d1emRKp4emdHp4WmeGU7+OTEVfdK0xUltNUKsbytVZX65V9WXqHp1RXUWJ6spKFvUv+SsJnEtZnG2t1W0bGrX77Jj2nB3V7rNjOjc6c+Fxv9doY0ultrZVa1NLlZqrAmqpDqi5KrUm9NIpMmut5hJJTUbiOtof1sHekA72hHSgJ6TeiVlJUonXo1/d0qK37ezQzWvrF72JNE1DQG6b73PMWquDvSH99OiQfnZsSAd7Q5JS6863d9Roe3uNtrRVa2tbtdY2ljs6Amqt1fhMTIPhiL6657zCkViqGTMa1+xcQpFYQrOxhGbmEpqdSyieTKafl35++nUqA77UP+yDqV+rg6lbc1VAK2oCaqkOqrU69ZlZWeorymVCX/7lOU1F4wrNxhSaTX2fw7MxhSMxRWLJC9/raDyp2VhC8URSxhj5PEZej5HHGBkjVZT6VB30q7asRLXlflUHS1RX7ldLdVArqgNqrQ6qrSaoqmBxfp8zstI0ZIxZL+lLkhokhSS9x1p7eJ7rfkfSR5Xaculnkj5orY290mPFaHYuof7QrHrGZ3VudFpdozPqSo9Unh+b1VzixaOVVQGf1jRW6PYNjVrTWK41DeVa01ihVfVlL5kGzpdQZIxJremsK9N916X+Hx0KR1JBMRMWe0M61Ht+nudK9eWl8nuNIrFE6sMjntCl/4bymNQm0r++o007Vtbq9VtbVVvOiAZQTIwx2tZeo23tNfrjuzZoMBzRz48N6afHhrT7zKj2dU9cuDbo9+qqFVVa3VCu5qpSNVcF1FSZ+oduY2WpSnweeYyR1xh5PEYeIyWTSgXHSGoXj1SoiWt0KqrBcFSD4UjqNhnRYDiquXmWOGWU+DwK+r0K+r2qrvbL7zUyMuk/xwvX1ZaVKByJaWImpu7RGU1G4y/5/MuoKPWpvTaYvpVd+HpFTVAt1QE1lJfm5QlOkVhC/aGI+idm1TuR+nmaus2oZ3xW/aFZJS/zPfF5jAJ+rwJ+ryoDPjVVlsrnMbKSVtQElbRWSZtarjYZjSs0M6cj/WGFZi8fW8pKvFpRE3zR97qt5oXvdUNFadGeUreYKfVPS/qMtfaLxpj7JH1R0vUXX2CMWS3pY5J2SBqU9G1Jvyvpn1/usSv8M+SMWCKpmWhC03NxTczEND6TWr+Y+XV0ak79oVn1TUTUH5rV+MxL/6f1e406ast0y7p6rWms0NrGCq1pLNfaxgo1VJQUxb+cmqoCurMqoDs3N1+4bzAc0amhKQ2lP6wvfHiHo4onrYJ+T+qDw+dVwO9RsMSn9U0V2tZeratWVLnenAQgtzRXBfT2G1bq7TeslLVW58dmdbA3pAO9EzrUG9Kh3rCePTee1fesLy9Rc1VAa9dWqKUqoOaqgLpHZ1QVTDViVgZ8CpZ45fMsbHT10pHcZNIqNBvTQDiigVBE/aGIBkKz6guldh3pGU+dUx+fJ4H5vUbNVYH0iGjwwg4jF5ZglZeopsyv8hKfKkp9Kiv1Zv2kJ2utZuYSmo7GNRWNazqa0NhMqtF1dGou1ZMwNaeRqWgqZF7m56iUGqBpry1TVdCvmvTIb1XwhVHgyoDvZZvIXm62L5H+Po9Np+uYiKh3YvbCz/feiVk9dXp03n9UeD1GTZWpf8S0pGfs6tLf39oyv+rKSlRTlv5el/pUVuItmGa3Bf0UNsY0Sdop6bXpu74h6Z+MMeustacuuvQ+SQ9bawfSz/uUpP+mVKh8ucdywshUVH/9nSNKJq0SSauEtbI29XU8aRVLJBVLpH6diyc1l0gqGvv/27u/ELnOOozj32dmdp3dtNmtS9Ndm2y3JaWKEqpY9KYRBUUtlGikIrZibmwvKsGlIIqgoBd6U4oUqlLFVi8UKbQgIgoaLa1CsDbWG/snrslimz+FkpKSTXbn58U5k5ydPTM5kZ097ybPB4adOefAvvtw8ptf3vPOnA6nzy7z1tLKmhnJMq2GmJ5oc/O2q5meaDMz2Wb75Bhz+eXwmYm2F7OXuC4vzmZm600Ss1PjzE6Nc8euGeDCBx+Pn1rieGFm8uSbS5xb6dAJWIk4/37RkM43jlvbLbaOjXB1e4S3bxlleqLNtVdlM6O91vNqVKOhrHHZMsq7ZraWHrPSCY6dOnN+FrDbuHUb1FdOnObgQrVGe6QpxkdbtEcajDSz72RuNcVIs0Gr2aBseiRb9tR9P+1wbrnD2ZXgzLlssqbKKr9uc1x8H53Z2s5nFse5/poxJsayD7wO42pfs6HzzfjObeVfndfpBCdPL62ace1mfOxU9h+AQ4tvVPp7R1sNtow2V2fdyn6O5Hk3Gxdm3JvKlwM0xFc/fgvbrxlf5wT+P1WnfXYAr0bEMkBEhKQjwCxQbDhngf8UXi/k2y62bxVJ88B8YdOKpNcqjjV5r1Q/9CpgQ2+f8fmN/GXr+zs3PKtNzFlV56yqSyarOurYJVqXrDbB37keSrN6ueTA9bRJs12T1cMbP4Zr++1I8jpjRDwIPFj3OOomabHf4ltbzVlV56yqc1bVOavqnFV1zqq61LOqeu32KDAjqQWgbCHhLNA7V30EuKHweq5wzKB9ZmZmZnaZqtRwRsRx4Dng7nzTXmCxZ/0mZGs775Q0nTel9wG/qLDPzMzMzC5Tl/LplHuBeyW9SPbVRvsAJD0q6U6AiDgMfBN4hmyJxQmyT7cP3Gd9XfHLCi6Bs6rOWVXnrKpzVtU5q+qcVXVJZ7UpvvjdzMzMzDYvf/+OmZmZmQ2VG04zMzMzGyo3nGZmZmY2VG44EyRpQdK/JD2fPz5b95hSIen7eT4hj1AwaAAAA6RJREFU6dbC9pslPSvpRUkHJb27znGmYEBWPr96SGpLejI/fw5J+r2knfm+bZJ+K+klSf+UtLvu8dbpIlkdkPTvwrn1lbrHWzdJv5P0jzyPpyW9N9/umtVjQFauWX1I2pfX+D3563TrVeS3b/QjnQfZXZhurXscKT6A3cD23oyAPwBfzJ9/BjhY91jrfgzIyufX2qzawCe58EHK+4ED+fOfAN/Kn98GLAIjdY850awOAHvqHmNKD2Cy8PxTwKH8uWtW9axcs8rzmgOeBf7S/XeXcr3yDKdtKhHx54hYLG6TtA14P/DzfNMTwI7urMuVqiwrKxcRZyLiN5FXaeCvZMUc4C7gB/lxB4H/Ah/a8EEm4iJZWY+IeKPwcgII16xyZVnVNZbUSWoAjwJfBpYKu5KtV2440/W4pBck/VhS33uTGgA7gFcjYhkgfyM8QnY3LCvn82uw/cBTkqbIZgdeK+xbwOdW0X7gqcLr7+bn1i8l3VTXoFIi6XFJR4FvA/fgmtVXSVZdrlmrzQPPRMTfuhtSr1duONO0OyJ2Ae8DTgKP1Tweu7z4/BpA0teBncDX6h5L6kqyuici3gnsAp4Gfl3X2FISEV+IiB3AN4Dv1T2elPXJyjWrQNJ7yO74+J26x3Ip3HAmKCKO5D/PAQ8Bt9c7ouQdBWYktQDyW6fOks0YWA+fX/1JegD4NPCJiHgrIl4HliVNFw6bw+fWmqwAIuJo/jMi4mHgpnzWxYCIeAz4MNm6OtesAbpZSZpyzVrjdrI69JKkBeCDwI/ILqcnW6/ccCZG0hZJk4VNnwP+Xtd4NoOIOA48B9ydb9oLLEbEy/WNKk0+v/qTNE+Wx0d71pL9CrgvP+Y24HrgTxs/wnSUZSWpJem6wjF7gWN5035FkjQp6R2F13uA1wHXrB4DsjrjmrVaRDwSETMRMRcRc2TrqL8UEY+QcL3yrS0Tk695egJoAgIOA/sjYqHOcaVC0g+BO4BpsmL0ZkTslHQL8FNgCjgF7IuIF2obaALKsgI+hs+vNSRtJ5spP0yWE8BSRHwgb6J+BtwInAXuj4g/1jPS+vXLCvgI2Rvb24AO2aXP+Yg4VMc4UyDpBrIGYIwskxPAAxHxvGvWav2yIsvGNWsASQeAhyLiyZTrlRtOMzMzMxsqX1I3MzMzs6Fyw2lmZmZmQ+WG08zMzMyGyg2nmZmZmQ2VG04zMzMzGyo3nGZmZmY2VG44zczMzGyo3HCamZmZ2VD9D7cmW678BC1NAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAIECAYAAAC0fv6LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMTQAADE0B0s6tTgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXzcV33v//eZRSON9l2yFkuO7TixHcfZnLAkJDRA0hRow2UJ0JYLLZQL/PqD9le63Lb3tvfRQn8/fvf2QssOpWmghUCBUhLSkJDdTuJ4323ZlmTty4w0mhnNcu4f0jiOI9uSPF99Z3k9H4+JpVk/0iOeefuc8znHWGsFAAAAOMXjdgEAAAAobAROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAo3xuF7AYgUDANjY2ul0GAAAALqC/v3/WWhtY6La8CJyNjY3q6+tzuwwAAABcgDFm5EK3MaUOAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcJTP7QIAIOOB7aeX/dj7tnVmsRIAQDYxwgkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHLXowGmMWWeMecYYc8QY87wxZuMC97nDGLPDGHPAGLPfGPNZY4znnNvvMcYcMsYcNcZ83xhTla0fBAAAALlpKSOcX5L0ZWvtekmfkfTNBe4zIend1tqrJV0v6TWSfl2SjDEVkr4m6e3W2nWSzkj6r8svHQAAAPlgUYHTGNMk6QZJ989f9aCkDmPM2nPvZ619yVp7Yv7rmKRdkrrmb75L0kvW2kPz3/+dpPdcVvUAAADIeYsd4eyQNGCtTUqStdZKOi2p80IPMMa0SHqHpH+bv6pT0qlz7nJSUqsxxrfAYz9pjOnLXKanpxdZJgAAAHKNI01D82szfyzps9baF5b6eGvt56y17ZlLRUVF9osEAADAilhs4OzVOaORxhijuRHL0+ff0RhTKekhST+01n7unJtOS1p9zvddOmfUFAAAAIVpUYHTWjssaaek981fda+kPmvtsXPvN98Y9JCkh6y1f3ne0zwk6TpjzIb57z8q6TvLLRwAAAD5YSlT6h+W9GFjzBFJn5b0AUkyxnzVGPPW+fv8X5JukvRrxphd85c/liRr7ZSkD0n6V2PMMUntkv4iSz8HAAAAcpSZ6//Jbe3t7bavr8/tMgA47IHtr1qls2j3bbtgDyMAYAUYY/qtte0L3cZJQwAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETAAAAjiJwAgAAwFEETgAAADiKwAkAAABHETgBAADgKAInAAAAHEXgBAAAgKMInAAAAHAUgRMAAACOInACAADAUQROAAAAOIrACQAAAEcROAEAAOAoAicAAAAcReAEAACAowicAAAAcBSBEwAAAI4icAIAAMBRBE4AAAA4isAJAAAARxE4AQAA4CgCJwAAABxF4AQAAICjCJwAAABwFIETQM5KW+t2CQCALCBwAshJTxwZ0V/82wG9dHrC7VIAAJfJ53YBAHC+xw4P65EDQ5Kk773Yp1Ta6oauOperAgAsFyOcAHLKoweH9MiBIbVWl+q/vGGtaoJ+ff+lfj13Yszt0gAAy0TgBJATrLV65MCQHj00rFU1pfrg67rVVlum3771CtWXl+hHu8/oqWOjbpcJAFgGAicA11lr9f/+7LAeOzystpoyffC1axQsmVvxU13m12/dukZNlQH9+94BPX542OVqAQBLReAE4LrPPnxYX3jsuDpqy/SfX9utshLvK26vKvXrQ69fo9bqUv3swJB+fmjIpUoBAMtB4ATgqoMDYf3948e1tbNGH1ggbGZUBHz64Ou61VpdqkcPDisUTaxwpQCA5SJwAnDV93f2SZL++O6rVOpfOGxmBEt8uv3KJllJe/omV6A6AEA2LDpwGmPWGWOeMcYcMcY8b4zZuMB9uowxjxtjQsaYXefd9gZjTNQYs+ucS1k2fggA+SmVtvrhrjPqrAvq+tW1i3rMhpZKlfo9euk0gRMA8sVSRji/JOnL1tr1kj4j6ZsL3Ccs6U8k3XeB5zhsrb32nEt0SdUCKChPHxvV8FRcb9/aJmPMoh7j83q0ua1Gg+GYBkK8hQBAPlhU4DTGNEm6QdL981c9KKnDGLP23PtZa8ettU9JimS1SgAF6Qcv9UuSfnVr25Iet7WjRpK0q5dRTgDIB4sd4eyQNGCtTUqStdZKOi2pc4mvd4UxZuf8lPxHL3QnY8wnjTF9mcv09PQSXwZArovEk3po36C2dtaou6F8SY9dXR9UbdCv3b2TnLcOAHlgJZuGdkpqt9ZeJ+lXJX3EGPPOhe5orf2ctbY9c6moqFjBMgGshIf2DSqaSOnXrmtf8mONMbq2o0bhWFInRphQAYBct9jA2Sup1RjjkyQzt9iqU3OjnItirQ1ba0PzX/dJ+rak1y+tXACF4gcv9cvvNbpnc+uyHr+1Y67J6KXTE9ksCwDggEUFTmvtsOZGKN83f9W9kvqstccW+0LGmFZjjGf+60pJ90h6aWnlAigEg6GYnj4+qtuvbFJtecmynqOhMqD22jLtHwhrNpnOcoUAgGxaypT6hyV92BhzRNKnJX1AkowxXzXGvHX+66Axpk/SdyVdPb8G86/mH3+vpL3GmN2SnpP0iKRvZOnnAJBHfrirX9ZKv3bd0pqFzre1o0azybQODISzVBkAwAm+xd7RWntY0i0LXP+hc76ekbTggixr7eclfX4ZNQIoINZafX9nv6rL/Lp9Q9NlPdfm9hr9ZO+AdvUyrQ4AuYyThgCsqAMDYR0emtI917Qq4Lv4yUKXUhHwaX1zpY4OTWtkKp6lCgEA2UbgBLCifrBzbu/Ny51Oz7i2o0ZW0o92n8nK8wEAso/ACWDFJFNp/XD3Ga2uD+q6zsUdZXkpV7VWKeDz6Acv9WXl+QAA2UfgBLBinj4+ppGpuN5+7eKPsrwUv9ejTW3V2tcf1tGhqaw8JwAguwicAFbMvy7zKMtLyRx1mTkqEwCQWwicAFaEtVa/ODKijauq1LXEoywvpauhXPXlJXri6EhWnxcAkB0ETgAr4tjwtMYjs7p5TX3Wn9tjjG7qrtOBM2GFY4msPz8A4PIQOAGsiO0945Kkbd11jjz/tu46pa30wslxR54fALB8BE4AKyITOG/scihwzo+cbj9B4ASAXEPgBOA4a6129IzpyubKZZ+dfilXNleqJujXcz0ETgDINQROAI47PT6joXBc29Y4M7opSR6P0Y1dddrXH9J0POnY6wAAlo7ACcBxmWnumxxav5mxrbtOqbTVzlOcrQ4AuYTACcBxmfWbzgfO+XWcPWOOvg4AYGkInAAct71nTGsaytVUWero61y9qkqVAR+NQwCQYwicABzVPxlV30TU8dFNSfJ6jG7oqtXuvklFZ1OOvx4AYHEInAActWN+etvJhqFzbVtTr0TK6qXTrOMEgFxB4ATgqB1n129m/4ShhWRGUtkeCQByB4ETgKO294yrvbZMbTVlK/J6m9uqFSzxavsJGocAIFcQOAE4ZngqphMjkRVZv5nh93p0/epavdQ7qXiSdZwAkAt8bhcAoPA8sP20JGlvf2juCvvydSthW3ednjw6qt29oRUNuwCAhTHCCcAxPaPTkqTuhvIVfd2Xz1VnWh0AcgGBE4BjTo7OqLLUpzqHzk+/kGvaqxXwec5uOA8AcBeBE4AjZmaTGgzH1N1QLmPMir52wOfV1s4avXhqQolUekVfGwDwagROAI44OTojSeqqX9np9Ixt3fWKJlLa0xdy5fUBAC8jcAJwxMmxiKSVX7+ZkdlonnPVAcB9BE4AjugZjShY4lVTZcCV17+us1YlXg/nqgNADiBwAsi6WCKlM5NRddWv/PrNjFK/V1s6qvXiqQklWccJAK4icALIulNjM7Jybzo946buOk3HkzowEHa1DgAodgROAFl3anxu/WaX64Fzbj/OF05OuFoHABQ7AieArDszGZXXY9RSVepqHVvaqyVJe/omXa0DAIodgRNAVllr1T8RVUtVqbwed9ZvZtQES9RVH9RutkYCAFcROAFk1WA4pshsSm01ZW6XIkna0lGjntGIQjMJt0sBgKJF4ASQVXvnRxNzJXBe014jSdrTz7Q6ALiFwAkgq/b1zwXOVbW5ETiv7Zhbx7m7l8AJAG4hcALIqr39IXk9Rs1V7mz4fr6Nq6rl9RjWcQKAiwicALLGWqu9/WG1VJXK58mNt5dSv1dXNldqV++krLVulwMARSk3PhEAFIShcFyj03GtqnF3O6Tzbemo0chUXIPhmNulAEBRInACyJqz6zdzpGEo4+V1nEyrA4AbfG4XAKBw7O13r0P9ge2nL3jbQCgqSfr2jtMaj8y+4rb7tnU6WhcAgBFOAFm0rz8kv9f9E4bO11RZKr/XqHdixu1SAKAoETgBZM3e/pDWN1fK582ttxavx6itpkz9E1GlaRwCgBWXW58KAPLWcDim4am4NrdVu13Kgtprg4on0xqdjrtdCgAUHQIngKzIrN/cmLOBc25dad9E1OVKAKD4EDgBZEUmcObyCKdE4AQANxA4AWTFvv6wfB6jDS2VbpeyoNqgX8ESr/poHAKAFUfgBJAV+/pDWtdcqVK/1+1SFmSMUXttmQZCMSXTabfLAYCiQuAEcNkyp/hsbqtyu5SLaq8NKpW2Ggxx4hAArCQCJ4DLti/H129m0DgEAO7gpCEAC7rYyT3n+/mhIUlS/2RsSY9baTQOAYA7GOEEcNn6J2PyGKm1OrdOGDpfRcCn2qCfxiEAWGEETgCX7cxkdP74yNx/S2mrDWpkKq54IuV2KQBQNHL/0wFATpuOJxWKJrSqpsztUhalo7ZMVlL/JNPqALBSCJwALsuZ+eDWVpPb0+kZrOMEgJVH4ARwWfrPBs78GOFcVVMqI6mXdZwAsGIInAAuS/9EVEZSS3V+BM6Az6umqoD6GeEEgBVD4ARwWc5MRtVYGVCJL3/eTtprgpqMJjQVS7hdCgAUhfz5hACQcyLxpCajibyZTs9om98A/gyNQwCwIgicAJZtYP6IyHzpUM/gxCEAWFkETgDLNhieC5wtOb7h+/laqkrlNYatkQBghRA4ASzb0PwIZ3NVfgVOn9ej5uq5xiFrrdvlAEDBI3ACWLbBcEyVAZ8qAj63S1mytpqgpuJJDYXjbpcCAAWPwAlgWdLWaigcU3OeTadntM+vO93TN+lyJQBQ+AicAJZlfHpWybRVS55Np2dkOtX39odcrgQACh+BE8CyDGQahvI0cDZXlcrnMdrTR+AEAKcROAEsy1CedqhneD1GrdWl2tsfonEIABxG4ASwLIOhmDxGaqwMuF3KsrXVlmk8Msv2SADgMAIngGUZDMdUXxGQ35u/byNtNUFJ0l6m1QHAUfn7SQHANfFkSuOR2bxdv5mRaRzaQ+MQADiKwAlgyYbn967M1/WbGY0VAZX5vYxwAoDDCJwAlmwwlN8d6hlej9HGVVXa0zdJ4xAAOIjACWDJBvN8S6RzbW6vVjiW1OnxGbdLAYCCReAEsGSD4ZgCPo9qgn63S7ls17RXS5J2M60OAI4hcAJYEmutBkMxNVeVyhjjdjmX7Zr2GknSXo64BADHEDgBLEk4llQ0kSqI6XRJ6q4vV0XAx4lDAOAgAieAJcn3E4bO5/EYbWqr0r7+kNJpGocAwAkETgBLkulQby6QEU5pblo9MpvSidGI26UAQEEicAJYkkLqUM/Y3DbXOLS3n3WcAOAEAieAJRkMxVRd5ldZidftUrIm06nOOk4AcAaBE8CipdJWI1PxghrdlKTOuqCqSn2cOAQADiFwAli0kem4UtYWTMNQhjFG17TXaP+ZsJKptNvlAEDBIXACWLShAjnSciGb26sVTaR0fITGIQDINgIngEXLNAw1F9gIpyRd05ZZx0njEABkG4ETwKINhmLyGqPGioDbpWTdNR3zJw71s44TALKNwAlg0YbCMTVWBuT15P+RludbVV2q+vIS7e5lhBMAso3ACWBRorMpTUYTBdcwlGGM0ZaOGh0YCCuWSLldDgAUFAIngEUZKsAN3893bUeNEimrgwNht0sBgILic7sAAPlhsMDOUM94YPvps19PRGYlSV97qkevuWLqko+9b1unY3UBQCFhhBPAopztUC/gEc722qAkqXd8xuVKAKCwEDgBLMpgKKYyv1dVpYU7MVJW4lVDRYl6J6JulwIABYXACeCSrLUaCsfUXFUqYwqvQ/1cHbVBjUdmFYkn3S4FAAoGgRPAJYVjScWTaTVXFd7+m+drr5ubVu+bYFodALKFwAngkjId6k0FvH4zo6O2TJKYVgeALCJwArik4UzDUGXhj3C2VJfK5zE0DgFAFhE4AVzS0FRcUnGMcPo8Hq2qKVPfRFTWWrfLAYCCQOAEcEnD4ZjKAz5VBAq3Q/1cHbVliiZSGpvflxMAcHkInAAuylqroal4UUynZ2Qah5hWB4DsIHACuKjJaEKzyXRRTKdndGQ2gKdxCACygsAJ4KLONgwVwZZIGbVBv4IlXrZGAoAsIXACuKih8HzDUGXxjHAaY9RRG9TAZEyJVNrtcgAg7y06cBpj1hljnjHGHDHGPG+M2bjAfbqMMY8bY0LGmF0L3P5BY8xRY8xxY8xXjDH+y/0BADhreKr4RjglqaOuTClrNRCKuV0KAOS9pYxwfknSl6216yV9RtI3F7hPWNKfSLrv/BuMMd2S/kLS6yWtldQs6beXWC+AFTYUjqsy4FOwpDg61DPOruOkcQgALtuiAqcxpknSDZLun7/qQUkdxpi1597PWjturX1KUmSBp3mHpB9Zawft3OZ2X5T0nmVXDsBxaWs1PBVTU5GNbkpS+9nGIQInAFyuxY5wdkgasNYmJWk+MJ6W1LmE1+qUdOqc709e6PHGmE8aY/oyl+np6SW8DIBsmZxJKJGyRdWhnlFW4lVDRUB9dKoDwGXLyaYha+3nrLXtmUtFRYXbJQFF6eUjLYsvcEpzG8CPR2Y1HU+6XQoA5LXFBs5eSa3GGJ8kGWOM5kYnTy/htU5LWn3O911LfDyAFZY50rLYGoYyMhvA9zOtDgCXZVGB01o7LGmnpPfNX3WvpD5r7bElvNaDkt5qjGmZD6wfkfSdpRQLYGVlRjiLaUukc3XUlkliA3gAuFxLmVL/sKQPG2OOSPq0pA9IkjHmq8aYt85/HTTG9En6rqSr59dg/pUkWWtPSPozSU9LOiZpRHOd7wBy1NBUTFWlPpWVeN0uxRUt1aXyeQyd6gBwmRa9z4m19rCkWxa4/kPnfD0jqf0iz/EVSV9ZYo0AXJC2ViNTcXXVl7tdimt8Ho9W1ZSpbyIqa63mJmcAAEuVk01DANw3EZmd61CvLM71mxkdtWWKJlIam551uxQAyFsETgALGj7bMFSc6zczMo1D7McJAMtH4ASwoKFMw1CRB87O+cB5cozACQDLReAEsKCzgbPIp9RrgyWqLvPr5NhCB6gBABaDwAlgQcNTcVWX+VXqL84O9XN1N5RrZCquCBvAA8CyEDgBvEoqPdehXqwbvp9vdf3ctPopRjkBYFkInABe5dRYRMm0LdojLc+X2RqqZ5TACQDLQeAE8CpHhqYl0TCU0VQZULDES+MQACwTgRPAqxwdmpJUvGeon88Yo676cg2EooonU26XAwB5h8AJ4FWODM+NcDYWeYf6ubrqg0pb6TTHXALAkhE4AbzK0aEp1Qb9CvjoUM/oaphbx3lylMAJAEtF4ATwCslUWidGImqiYegVWqvLVOL1sB8nACwDgRPAK5wcm9FsKs36zfN4PUad9UH1js8omUq7XQ4A5BUCJ4BXyDQM0aH+al31QSXTVv2TUbdLAYC8QuAE8AqZLZHYg/PVMvtxsj0SACwNgRPAKxwZnpIxdKgvpKMuKK8xOskG8ACwJAROAK9wdGhKHbVBlfh4ezif3+tRW22ZTo1HlLbW7XIAIG/wiQLgrEQqrZ7RiNY3V7hdSs7qqi9XLJHWUDjmdikAkDcInADOOjkaUSJlta650u1SclZXQ1CSmFYHgCUgcAI4K9MwxAjnha2uK5eR1EPjEAAsGoETwFlH5rdEWtfECOeFlJV41VJdqlOjEVnWcQLAohA4AZx1dHhKHiOtbWKE82JW15drKp7UKUY5AWBRCJwAzjoyNK3OuqBK/ZyhfjFd9XPrOHecHHe5EgDIDwROAJKk2WRaJ0cjNAwtQlfD3AbwO3oInACwGAROAJKkntGIkmlLw9AiVJX6VV9eoucZ4QSARSFwApD0csPQekY4F6WrvlynxmY0GGI/TgC4FAInAElzJwxJdKgv1hVNc9PqTx4dcbkSAMh9BE4AkuYahjxGWtNY7nYpeWHtfDB/4uioy5UAQO4jcAKQNDel3lVfTof6IlUEfNrUVqUnj44olWY/TgC4GAInAMUSKZ0ci2gdDUNLcuu6Rk3OJLS3P+R2KQCQ0wicAHRiJKK0pWFoqW5b3yhJeuII6zgB4GIInAB0dHi+YYjAuSTXra5VRcBH4ASASyBwAjhnSySm1JfC7/Xolivq9VLvpELRhNvlAEDOInAC0JGhaXk9Rt0NdKgv1a3rG5VKWz1zjG51ALgQAicAHR2aUld9UAEfHepLddu6+XWc7McJABdE4ASKXCyR0qnxGRqGlqmzPqjuhnI9cWRU1rI9EgAshMAJFLljw9Oyloahy3Hrugb1T0Z1fCTidikAkJMInECRy3So0zC0fLeyPRIAXBSBEyhyR4amJbEH5+W4eU29/F7DOk4AuAACJ1Dkjg5Nyecx6qqnQ325ygM+3bC6Ts+dGFMskXK7HADIOQROoMgdGZpWd0O5Sny8HVyO265sVCyR1vMnx90uBQByDp8wQBGLzqbUO0GHejbcuo51nABwIQROoIi93KFOw9Dluqq1Uo2VAT1xhA3gAeB8BE6giL18pCUjnJfLGKPXr2vQ4aEpDYZibpcDADmFwAkUsSNsiZRVt63n1CEAWAiBEyhiR4em5fcaraZDPStet7ZBxki/YB0nALwCgRMoYkeGprSmoUJ+L28F2VBfEdA17TV64vCI4km2RwKADD5lgCIViSfVNxGlYSjL7trUoql4Uk8fo3kIADIInECROjbMCUNOuGtTiyTp3/cOulwJAOQOAidQpA4P0qHuhNX15dq4qko/2z+o2WTa7XIAICcQOIEidWg+cF7VSuDMtrs3tyocS+rZE2NulwIAOYHACRSpQ4NhBUu86qgNul1KwclMq/9074DLlQBAbiBwAkXIWqtDg1Na31wpj8e4XU7BWdNYoQ0tlXp4/6CSKabVAYDACRShkem4xiOzTKc76K5NrZqYSWh7z7jbpQCA6wicQBHKNAxdScOQY+7enOlWZ1odAAicQBE6NDAXODe0VrlcSeFa11yptU0Venj/oFJp63Y5AOAqAidQhDId6htaGOF00t2bWjQ6PavnTzKtDqC4ETiBInRoMKyWqlLVBEvcLqWg3bW5VRLd6gBA4ASKTDKV1tHhaV3J6KbjNrRUqruhXD/dN6g00+oAihiBEygyJ8cimk2mtYEOdccZY3TXphYNT8X14ukJt8sBANcQOIEic3CA9Zsr6e75aXW61QEUMwInUGQOn20YokN9JWxcVaWOujI9xLQ6gCJG4ASKzKHBsHweoysaK9wupSgYY3T3plYNhGLa1TfpdjkA4AoCJ1BkDg1O6YrGCpX4+Ou/UjLd6j/efcblSgDAHT63CwCwcqZiCfVNRPW2a1e5XUpR2dJerTUN5frhrjP6w7uuUonPowe2n17Wc923rTPL1QGA8xjiAIrIkaH5Iy1pGFpRxhjde327xiOzeuzwsNvlAMCKI3ACRSTToX4VDUMr7t7r2uUx0ndf6HO7FABYcQROoIhkOtQZ4Vx5LdWlev26Rj12eFgjU3G3ywGAFUXgBIrIocGwqkp9aq0udbuUovSO69uVSlv9cFe/26UAwIoicAJFwlqrQ4NT2tBSJWOM2+UUpTuvblZVqU/ffaFP1rInJ4DiQeAEisSZUExTsSRHWrqo1O/V265t0+GhKfVPRt0uBwBWDIETKBKHB8OSOGHIbe+4vl2StJOz1QEUEQInUCQyHeo0DLnrmvZqrW+u0O7ekBKptNvlAMCKIHACReIQHeo5wRij/3R9h6KJlA4OhN0uBwBWBIETKBKHB8PqqCtTRYADxtz2tq2r5DFMqwMoHgROoAjEkykdH4mwfjNHNKZCxg4AACAASURBVFWWan1zpY4OTSsUTbhdDgA4jsAJFIHjwxGl0lYbmE7PGdevrpWVtKt30u1SAMBxBE6gCByiQz3nXNlSqWCJVy+emmBPTgAFj8AJFAGOtMw9Po9H13bUaHQ6rtPjM26XAwCOInACReDg4JQCPo+66oNul4Jz3NhVJ0na0TPuciUA4CwCJ1AEDg2Eta65Qj4vf+VzSXNVqbrqg9rbH9JMPOl2OQDgGD59gAI3HI5peCquja3VbpeCBdzUXa9k2upFtkgCUMAInECB29sfkiRtbidw5qJNq6oULPFqR8+40jQPAShQBE6gwGUC5zUEzpzk83p0/epajUVmdWIk4nY5AOAIjhwBCtzevpD8XkOHugMe2H46K89zU1ednjw6qu09Y1rbVJGV5wSAXMIIJ1Dg9vSHdGVLpQI+r9ul4ALqKwJa11ShgwNhhTl5CEABInACBWwoHNPIVFyb22rcLgWXcFN3ndJWeuEUzUMACg+BEyhge/rmG4baWL+Z6za0VKmq1KfnT9I8BKDwEDiBAra3b+6cbhqGcp/XY3RDV51C0cTZk6EAoFAQOIECtrc/pBKvR+ubaRjKBzd21cmIk4cAFB4CJ1CgrLXa2x/ShtZKlfj4q54Pqsv82tBapSNDU5qIzLpdDgBkDZ9CQIEaCMU0Oj3L+s08s627TlbSjpOMcgIoHAROoECx4Xt+WttUodqgXy+cmlAynXa7HADICjZ+BwrU3vkO9d7xaNY2KIfzPMbopu56Pbx/UAfOhHVNO1taAch/jHACBWpPf0glPo+aq0rdLgVLdP3qWnk9RttpHgJQIAicQAGy1mpff0hXt1bJ6zFul4Mlqgj4tGlVlXpGIxoKx9wuBwAuG4ETKED9k1GNR2gYymfbuuslsUUSgMJA4AQKUGb95mYahvLW6vqgmqsC2nl6QrNJmocA5LdFB05jzDpjzDPGmCPGmOeNMRsvcL8PGmOOGmOOG2O+Yozxz1//BmNM1Biz65xLWbZ+EAAvy3SoM8KZv4wx2tZdr3gyrd3zJ0YBQL5aygjnlyR92Vq7XtJnJH3z/DsYY7ol/YWk10taK6lZ0m+fc5fD1tprz7lEl105gAva2x9SwOfRuqYKt0vBZbi2o0YlXo+294zJcr46gDy2qMBpjGmSdIOk++evelBShzFm7Xl3fYekH1lrB+3cu+MXJb0nW8UCuDRrrfb0hbRxVZV8XlbN5LNSv1fXdtTozGRMfRP8+xxA/lrsp1GHpAFrbVKS5sPkaUmd592vU9Kpc74/ed59rjDG7Jyfkv/ohV7MGPNJY0xf5jI9Pb3IMgH0TUQViiaYTi8Q29bUSRJbJAHIays5/LFTUru19jpJvyrpI8aYdy50R2vt56y17ZlLRQXTgsBi7TnbMMSG4YWgtbpMnXVB7emb1Mxs0u1yAGBZFhs4eyW1GmN8kmSMMZobuTz/+JLTklaf831X5j7W2rC1NjT/dZ+kb2turSeALNrTP9dgwpGWhWNbd52Saaudp2keApCfFhU4rbXDmhuhfN/8VfdK6rPWHjvvrg9KeqsxpmU+lH5E0nckyRjTaozxzH9dKekeSS9d/o8A4Fz7+kMq83t1RSMzA4ViU1u1giVe7aB5CECeWsqU+oclfdgYc0TSpyV9QJKMMV81xrxVkqy1JyT9maSnJR2TNKK57nZpLqTuNcbslvScpEckfSMbPwSAOec2DHHCUOHwez26vrNWo9Ozeub4mNvlAMCS+RZ7R2vtYUm3LHD9h877/iuSvrLA/T4v6fPLqBHAIp0am9FULMmG7wXopu46PXlsVPc/d0qvXdvgdjkAsCTsmQIUEDZ8L1z1FQGta6rQIweGNMz56gDyDIETKCCZwEnDUGG6sWuueehfXuh1uxQAWBICJ1BAXjg5rspSn7obaBgqRFe1VqmxMqBv7+hVKk3zEID8QeAECsTMbFJ7+kK6sauOhqEC5fUYvfvGDvVPRvXE0RG3ywGARSNwAgXipdOTSqattnXXuV0KHPSuGztkjPRPz52/DTIA5C4CJ1Agtp+Y2y5n25p6lyuBk9prg7r9yib9/NCQBkKcrw4gPxA4gQLxXM+4giVebVxV5XYpcNh9N3UqbaV/fp7mIQD5gcAJFIBYIqVdvZO6fnWt/F7+Whe6N1zZqNbqUn1nR6+SqbTb5QDAJfHJBBSA3b2Tmk2mdTPT6UXB5/Xo3Td2ajAc02OHaR4CkPsInEAB2NEzLmnuNBoUh3fd2CGvx+iftp9yuxQAuCQCJ1AAtveMK+DzsOF7EWmpLtUbNzTpF0dG1Ds+43Y5AHBRBE4gzyVSab14akLXddYq4PO6XQ5W0H3bOmVpHgKQBwicQJ7b2x9SNJFiOr0I3bquUe21ZfrnF3qVoHkIQA4jcAJ5bvuJufWb29YQOIuNx2P0nps6NTIV1yMHhtwuBwAuiMAJ5LntPWPye42u66x1uxS44J03dMjnMXpgOycPAchdBE4gj6XSVi+cnNCW9hqV+lm/WYwaKwN686YWPXVsVD2jEbfLAYAFETiBPHbgTFjT8STT6UXuvds6JUkPsEUSgBxF4ATy2Pae+fPTu9nwvZjdsqZeaxrL9d0X+xRLpNwuBwBehcAJ5LHtPePyeoyuW836zWJmjNF7t63W5ExCP9034HY5APAqBE4gT6XTVs+fHNemtmpVBHxulwOX3XtdmwI+j/7pOZqHAOQeAieQpw4PTWlyJqGb2X8TkmqCJbrnmlV64dSEDg2G3S4HAF6BwAnkKc5Px/nee/Nc8xCjnAByDYETyFPbe8ZkjHRDF4ETc7Z21Oiq1ir94KV+ReJJt8sBgLMInEAestZqR8+4rm6tUnWZ3+1ykCPmmoc6NR1P6ke7z7hdDgCcReAE8tDxkYhGp2eZTservH1rm8pLvLr/uVOy1rpdDgBIkmhtBfLQk0dHJM3tv4jispgjLDeuqtaOk+P6m4cPq702ePb6++Y3iAeAlcYIJ5CHHt4/qIDPo9eta3C7FOSgzMj39hPjLlcCAHMInECeGY/MakfPuG5d36hgCZMUeLVVNWXqqC3T7r5JzdA8BCAHEDiBPPPowSGlrfTmjS1ul4IcdvOaeiXTVi+cmnC7FAAgcAL55uH9Q/J6jN64ocntUpDDNrdXqzLg07MnxpRK0zwEwF0ETiCPzMwm9eTREd3UVafa8hK3y0EO83k8umlNnULRhA4OcPIQAHcROIE88sSREcWTab15Y7PbpSAP3NRVJ6/H6Jnjo26XAqDIETiBPPLw/iFJ0p2s38QiVJb6dU1btU6OzejMZNTtcgAUMQInkCcSqbQePTikzW3Vaqspc7sc5InXXDG3ddYzx8dcrgRAMSNwAnli+4lxhWNJptOxJG21ZVpdF9TuvkmNTsfdLgdAkSJwAnni4f2DkqQ3MZ2OJXrN2gal0lbfXsQpRQDgBAInkAfSaaufHRhUd0O51jVVuF0O8szVrVWqLvPrH587pdlk2u1yABQhAieQB/b0hzQUjutNVzfLGON2OcgzXo/Rzd11Gp6K66f7BtwuB0ARInACeYDpdFyuG7vqFPB59I2nT7pdCoAiROAE8sDD+wfVWBnQ1o4at0tBngoGfPrVrW3a1Tupl05z3CWAlUXgBHLcseFpnRiJ6M6rm+XxMJ2O5fvN13ZJkr72VI+7hQAoOgROIMdlptPfzHQ6LtOGlirdur5RP9k7oOMj026XA6CIEDiBHPez/YOqDPh0y5p6t0tBAfjEHWtlrfSFx465XQqAIkLgBHLYiZFp7e4L6Y6rmlTi468rLt8NXXW6ZU29frjrjE6PzbhdDoAiwScYkMP+8blTkqT33NTpciUoJB9/41ql0lZ/9zijnABWBoETyFGReFLfe6FP65srtK27zu1yUEBuWVOvG1bX6sGdfeqbYJQTgPMInECO+tdd/ZqKJ/Xrt3Sx2TuyyhijT7xxnRIpqy/+4rjb5QAoAgROIAdZa/WPz55S5fzeiUC2vX5dg7Z01Ohfnu/TYCjmdjkAChyBE8hBz5+c0KHBKd17fbvKAz63y0EBMsboE3es1WwqrS89wSgnAGcROIEc9K1nT0qS3nfzalfrQGG7Y0OTNq6q0gPbT2tkKu52OQAKGIETyDHD4Zge2jeo166t19qmCrfLQQEzxujjd6xVPJnWV5884XY5AAoYgRPIMd/e0atk2ur9N3e5XQqKwJuubtGVzZX6x+dOaTwy63Y5AAoUgRPIIYlUWv+0/ZRWVZfql65qcrscFAGPx+hjd6zVzGxK//vnR90uB0CBInACOeRn+4c0PBXXe29eLZ+Xv55YGb+8uVVbO2v0rWdP6fDglNvlAChAfKIBOeRbz55Uidejd93Y4XYpKCIej9Gf/8pGpa3Vf/vxfllr3S4JQIEhcAI54vDglLb3jOvuzS1qqAi4XQ6KzJaOGr3z+g49c3xMD+0bdLscAAWGwAnkiG8+c1KS9P5bulytA8Xr999ypSpLffrLnxxUdDbldjkACgiBE8gBJ0am9d0XerW1s0bXdda4XQ6KVENFQP/3L61X/2SUIy8BZBWBE8gBn33osJJpqz+++yrOTYer3n/Laq1rqtAXf3FcveMzbpcDoEAQOAGXPX9yXA/tH9RbNrbohq46t8tBkfN7Pfrzt25UPJnW//jJQbfLAVAgCJyAi6y1+h8/OSifx+gP7trgdjmAJOm1axt016YWPbR/UE8dHXW7HAAFgMAJuOgnewe0q3dS77t5tbobyt0uBzjrj+6+SgGfR3/+4/2KJWggAnB5CJyAS+LJlD7z0CFVlvr0iTeuc7sc4BU66oL62O1rdWx4Wn/170ytA7g8PrcLAIrJA9tPn/36qWOj6h2P6i0bW9j3ECvi3P//FqO2vETdDeX6h2dP6eY19bprc6tDlQEodIxwAi6YmU3qsUPDqinz65Yr6t0uB1iQxxi964YO1ZeX6P95cI9Oj9G1DmB5CJyACx4/PKJoIqU3bWyRnzPTkcOqyvz63Luu1VQsqY9/e6dmk2m3SwKQh/ikA1bYeGRWz54YU1tNma5pr3a7HOCSblvfqN95wxXa3RfSZx465HY5APIQgRNYQWlr9eDOPqXSVndtbpGHTd6RJz5153rdsLpWX3uqR48cGHK7HAB5hsAJrKCnjo6qZzSim9fUa01DhdvlAIvm83r0t+/ZqpqgX7/33d3qn4y6XRKAPELgBFbIvv6QHjkwpMbKgN6yscXtcoAlW1VTps+9c4tC0YR++1svKDSTcLskAHmCwAmsgFgipd/9512ysnrnDR0q8fFXD/npjg3N+tSd67X/TFi//vXtCscInQAujU89YAX89U8P6djwtO68qlltNWVulwNclo/dsVYfu32tdveF9Jtf36HpeNLtkgDkOAIn4LDHDw/rm8+c1E1ddXr9+ka3ywEumzFGn3rTen34tjXaeXpSH/jGDkUInQAugsAJOGg8Mqvf/94eVQZ8+v/euYWudBQMY4w+/ZYN+uDruvX8yQl98B+eV3SWM9cBLIzACTjEWqs//P4ejUzF9d/fvlEddUG3SwKyyhijP/nlq/Sbr+nScyfG9VvfekGxBKETwKsROAGH/N3jx/Xw/iHdc02r3n5tm9vlAI4wxujPfuVqvXdbp546Nqp3fPEZ9Y5zBCaAVyJwAg748e4z+puHD+uq1ir99b3XyDCVjgJmjNFfvG2TPvHGddrXH9Yv/+2TevQgm8MDeBmBE8iyF09N6FPf3a2myoC+9hs3qCLgc7skwHEej9En71yvb3zgRnk8Rh/8hxf0Nw8fUipt3S4NQA4gcAJZ1Ds+o9/+1gvyGqOv/caNWsUWSCgyt1/ZpH/7+Ot0TXu1vvDYcb3/a9s1Oh13uywALiNwAlkSiib0n7/5vMZnZvU/332tNrdXu10S4Ir22qC++5Fb9L6bO/XM8THd/b+e1L/vHZC1jHYCxYrACWRBIpXWxx7YqaPD0/qju67Smzm6EkUu4PPqL9++Wf/zXdcqlkjpo/+0U7/+9R3qGY24XRoAFxA4gcuUTlv98Q/26smjo7pvW6c+9Pput0sCcsbbt7bp57/3Bt17XbuePDqqN///T+hzPzvM9klAkTH5MMXR3t5u+/r63C4Dl/DA9tPLetx92zqzXMnKSaWt/uDBPfrei326bX2jvvobN8jvvfC/45b7OwIKQc9oRD/a3a+hcFy1Qb9+eXOrrmqtWnAXh3x+XwCKlTGm31rbvtBtjHACy5RMpfWpf9ml773Yp9uvbNSX3n/9RcMmUOy6G8r1sdvX6e5NLYrMpnT/9tP64i+O69jwtNulAXAY+7UAy5BIpfW7/7xLP9kzoDuvbtbn79uqgM/rdllAzvN6jF63rlHXdNTo8cPDer5nQl9/ukdrGsr1pqub1Vlf7naJABxA4ASWaDaZ1se/vVMP7x/S3Ztb9L/evZWRTWCJqkr9euuWNr1+baN+fmhYO09P6ItPnNCVzZX6paua3S4PQJYROIEliCdT+uj9O/XooWG9dcsqfe6dW+QjbALLVlteonuvb9et6xv1HweHtLc/pMNDU9p7JqSP37FWN3bVuV0igCwgcAKLNBCK6nfu36ldvZP6teva9Dfv2CKvhyMrgWxorAzoPTd16vZQTI8fGdZTR0f0xJERbeuu08fuWKvXrW3giFggjxE4gUV49viYPv7tnRqdntWHb1ujP3jzBnkIm0DWtVSX6t03duqWd9fr7x8/pu/v7Nf7v7ZDWzpq9Du3rdGdV7fwDz0gDxE4gYuw1uprT/Xor356SKU+j/7+vdfprs2tbpcFFLzuhnJ99h1b9Ik3rtOXnzih7zzfq4/cv1NrGsr1W7eu0a9ubVOpn0Y9IF+w+Ay4gEg8qY9/+yX95U8Oqqs+qB9+7LWETWCFtdcG9d/ftklP/8Ed+tjtazU6Hdcffn+vXv/Zx/R3jx9TKJpwu0QAi0DgBBbw4qlxvf0LT+vf9gzoLRtb9K//5bVa21TpdllA0WqsDOj33nylnvnDN+q/3nO1/B6jzz50WLf81aP60x/u0/ER9vIEchknDRUop079iSdTCkUTmool5TFGJT6PSrweBfwe/WBnv3wes+SF/bl0oshQOKa//ukh/eClfvm9Rp+880p95LY1r/iZOC0IcF8qbbWnb1JPHxvVmVBMkrS+uUKvuaJBf3rP1Xm1xroYT2lbKfxuV9bFThpiDSckze0tOTEzq8cPD+vMZExnJqM6MxlV/2RUo9NxhWNJhaMJxZPpiz6Px0g1wRLVlc9d6ucvjZWlqq8okSdHu0zjyZS+8fRJ/e9Hjyoym9IbrmzUn95ztdY0VrhdGoAFeD1GWztrdW1HjU6OzeiZ46M6cCasI0PTeuLoiO67qVNv39qmhoqA26UCEIGzaFhrNR1Pajwyq7HIrMYjs5qY/3N8ZlZTseSCj6sq9amxMqCO2jJVrapSdZlfVaV+VZbO/a8TT6Y1O385PDSleCKl8ZlZnRqLvOq4ujK/Vx11ZeqoDaqjLqiO2qDKStxd9J9MpfUfB4f0mYcOq2c0otX1Qf3tPVfrjg1NbMEC5AFjjLobytXdUK7JmVk9d2JMu/tC+sufHNRf//SQbt/QpP90fbtu39DEAQ2AiwicBSSdthoIx3RqNKIdPeMai8Q1Nj0fKiOzmk29enSyvMSruvISdTeUqy5YojdtbNGqmlK11ZSptaZMFYHF/y9y7tSFtVZT8aTGp+cC7mAoqt6JqI6PRHRk6OUg2lwV0KHBsG7qrtNN3XVqqiy9vF/CIvWMRvQvL/Tqey/2aWQqrjK/V7//5iv1wdd10/kK5KmaYInesqlVX/71G/TIgSF998U+/cfBIT1yYEj15SV627VtesumFl3XWcOBDcAKI3DmoYnIrE6MTuv4SEQnRiI6MTKtntGITo3PaPa8KW+PkarL/OqsC56d5q4rL1F9RYlqgyWvClfZWrdijFFV6dxoaFdDuaRaSXMjigOhmE6Pz+j0+IxOjkX0rWdP6VvPnpIkrWks17buOm1pr9Hm9mqtb67M2qjERGRWjx8Z1nd29Gp7z7gkqaOuTJ+6c73edWOHmqpWJuwCcFap36tf2bJKv7JllQZCUX1/Z78efLFPX3+6R19/ukfVZX7dtr5Rb7yqSbetb1RNsMTtkoGCR9NQjkqm0uqdiOrEyLSOj0zr+HDkbMgcj8y+4r5ej1F7bZm66uemlVbXB3VydOZsqFzKJsmXEziXszjbWqvXrm3Q9p4xbe8Z1/YT4+qfjJ69vcTn0VWtVdrcVqUNLVVqqSpVS3WpmqoCqi8PLPizJVJpTcWSOjgQ1t7+kPb2hbSnf1K943PPW+L16C2bWvSuGzt0y5r6JTcX0DQE5LaF3sestdrXH9ajh4b06MFh7e0PSZr7R/mWjhptaa/RprZqXdNerSsaKxzdXN5aq1A0ocFwTIOhmH6064xCsYSmY0nNzKYUS6QUTaQ0M5tSdDalxPzslJ3/j537ShUBn6rmlzlVlflUXeZXdZlfLVWlaq0pU0t1qVqrS9VaXaaqUl9RLhO6/7lTmo4lFYomFIomFI4lzja+Rs/5XceTaUUTKSVTaRkZeb1GRpLHGHmMVB7wqSboV02wRLVBv2rKSlRbXjL/+y3VqpoytdWUqSboL8rfc0ZWmoaMMesk/YOkBkkhSb9prd2/wP0+KOnTmtty6eeSPmqtTVzqtmIUnU3pTCiqvomoTo5GdHIsopOjEZ0am1HvxIwSqVf+Y6Am6NcVjRX6paua1N1QoTWN5bqisVyddeUq8b1yFDBfQpExRl0N5epqKNe7bpz7kBgIRbWnL6R9/SHt6Qtpb39Iu3snX/VYr8eosSIgn9colkgplkgrlkgpmbbnvYa0trFCv3Zdm67rrNUvb25VbTkjGkAxMcZoc3u1NrdX63d/ab2GwjE9dmhYjx4a1vYTY3rp9MvvMWV+rzauqlJ3Q7maq0rVXBVQU1WpmqtK1VgZUInXI69nLoh4PEZeY5SyVlPzzZWZP8OxhMamZzUYjmkoHNNwOK6hqbmvY4kLN2CW+DwK+r0qK/Gqpsx/dpYnk2Mycaa2vEThWELhaFJnQlGFowmlLzCGVF7iVXttUO21ZfOXua9X1ZSptbpUDRWBvOrsz4gnUxoMxc42u/ZNRNU3MTP35+SM+ieiF/yd+DxGpX6vSv1eVZX61FQZmFtqYa1W1ZQpbeeifSptFYknNTmT0NGhKYUu8nsu9Xu0qqbsFb/rtvnvV9WUzn9mFedyjkWPcBpjfi7pW9babxpj3iHpD6y1N553n25JT0u6TtKQpB9Ketha+4WL3Xap186XEc5EKq1IPKnIbEqTM7OaiCQ0PvNyc85YJK6ByZjOhGIaCEU1OfPqrF3i9aizPqiu+qDWNFboisby+T8rVLeEkOTGVhBOvaa1VmdCMR0bntZwOKbhqbiG5kcGhqbiSqetSv2es28cZX6vgiVerWuu1DXt1bq6tUrlS1iLein5EuaBYrXU9zFrrXrHo9rTP3l2VmRff0jhCzRTLlddeYmaq0rVVBlQS1WpmqtL1VJVqkOD4bPNmMES36JHV8//Oa21CkeTGgzPfcYMhmIamP+8OTMZU9/EjPono68azJDmwldz1dxoXct8AK0rnxvFq59filUT9Ku8xKeKgE/lAd+rBjoul7VW0URK0/GkIvGUIvONri83u8Y1HpnVyNSsBsNRDUzGNHbejF9GZcCnttoySXNre+dGf+dGhKtL/aos9V+0/ov9P5ROz/3jYiwSnwu7obmwOxCKqn8ypv753/NC/6jwmLk9ZTOzdS1VpaorD6iu3H92h5fMSGpFiU/BgDevmt0ue4TTGNMk6QZJb5q/6kFJnzfGrLXWHjvnru+Q9CNr7eD8474o6Y8kfeESt+WE0em4/tuPDyidtkqlrVLWytq5r5Npq0QqrURq7s/Z5P9p7+5C5LrrMI5/n3nZt9Tsymq7edtua2wEJVSxqBeNKCi+UaIRpdhKc2N7UQkuBVEEBb3Qm1KkUCtVbPVCkUILIqKg0WIVorUx3rQN6TZZ2yRNaJuQsjvdmZ8X52x6dnZm9kR29pxJng8MO3POgfntw9nf/Pd/zpnTotFssfhGiwuNJV5fbHa8KKddvSqmxke44Zq3sHU8OeyxbWL04qHwLeOjvk9wG0lsS3MyM1tvkpieHGN6cozP7N4KpIO3hSVOn1vg1Lnkn9xT5xc4c77BUqtFsxW0Imi1oBlBRaSDxuTw9vIAcvKqoYszo8O1zhckrtc/sZIYH6szPlZn11TnG1W0WsHp84vMv5IcSXvx1YUVA9Pnz1zgHy+8kuv96lWxabjGSK1KrSqGqhXq1Qq1qqhVK3T6JIsIGs3lz9MWS82g0Wyx0GhyobHUdeYwq1oRU5tHuO5tm/jQOybZOjHK1OaRdGYx+SaUzaPJKQT9mCCoVN7MudtX50UEZy80Vsy4nkwzPnlukVOvLXDkv6/l+n2HqhXGhqtsGqoxXK9czHmoVqFeFfV0xr0qXZxxr1aS51//xC62v3VsnRP4/+Sd9tkBvBQRSwAREZKOA9NAdsA5DbyQeT2XLltr3QqSZoHZzKKmpJM5ay29o2tvsuwqYENvn/GljXyz9X3PDc9qgDmr/JxVfqXJqog+donWJasB+D3XQ8esjvX5TQc021VZ3b/xNby924pSXqUeEfcC9xZdR9EkzXebmraVnFV+zio/Z5Wfs8rPWeXnrPIre1Z5Tww4AWyRVANQcgnWNNA+V30cuDbzeiazTa91ZmZmZnaZyjXgjIjTwFPAbemifcB82/mbkJzbeYukqXRQehfwyxzrzMzMzOwydSmXPt0J3CnpWZKvNtoPIOkhSbcARMQx4NskV6MfBV4GHlxrnXV1xZ9WcAmcVX7OKj9nlZ+zys9Z5ees8it1VgPxxe9mZmZmNrgG58udzMzMzGwgecBpZmZmZn3lAaeZmZmZ9ZUHBA4HaQAAA71JREFUnCUkaU7SM5KeTh9fLLqmspD0wzSfkHRjZvk7JT0p6VlJhyS9u8g6y6BHVt6/2kgakfRYuv8clvQHSTvTdVdL+p2k5yT9R9Keoust0hpZHZT0fGbf+lrR9RZN0u8l/TvN4wlJ702Xu2e16ZGVe1YXkvanPX5v+rq8/SrS2zf6UZ4HyV2Ybiy6jjI+gD3A9vaMgD8Cd6TPPw8cKrrWoh89svL+tTqrEeBTvHkh5d3AwfT5T4HvpM9vAuaBetE1lzSrg8Deomss0wOYyDz/LHA4fe6elT8r96zOec0ATwJ/W/67K3O/8gynDZSI+EtEzGeXSboaeD/wi3TRo8CO5VmXK1WnrKyziFiIiN9G2qWBv5M0c4AvAD9KtzsEvAh8eMOLLIk1srI2EfFq5uU4EO5ZnXXKqqhayk5SBXgI+CqwmFlV2n7lAWd5PSLpiKSfSOp6b1IDYAfwUkQsAaQfhMdJ7oZlnXn/6u0A8LikSZLZgZOZdXN438o6ADyeef39dN/6laTriyqqTCQ9IukE8F3gdtyzuuqQ1TL3rJVmgb9GxD+XF5S9X3nAWU57ImI38D7gDPBwwfXY5cX7Vw+SvgnsBL5RdC1l1yGr2yPiXcBu4AngN0XVViYR8eWI2AF8C/hB0fWUWZes3LMyJL2H5I6P3yu6lkvhAWcJRcTx9OcbwH3AzcVWVHongC2SagDprVOnSWYMrI33r+4k3QN8DvhkRLweEWeBJUlTmc1m8L61KiuAiDiR/oyIuB+4Pp11MSAiHgY+QnJenXtWD8tZSZp0z1rlZpI+9JykOeCDwI9JDqeXtl95wFkykjZJmsgsuhX4V1H1DIKIOA08BdyWLtoHzEfE0eKqKifvX91JmiXJ42Nt55L9Grgr3eYmYBvw542vsDw6ZSWpJumazDb7gFPpoP2KJGlC0tbM673AWcA9q02PrBbcs1aKiAciYktEzETEDMl51F+JiAcocb/yrS1LJj3n6VGgCgg4BhyIiLki6yoLSQ8CnwamSJrR+YjYKWkX8DNgEjgH7I+II4UVWgKdsgI+jvevVSRtJ5kpP0aSE8BiRHwgHUT9HLgOaAB3R8Sfiqm0eN2yAj5K8sE2DLRIDn3ORsThIuosA0nXkgwARkkyeRm4JyKeds9aqVtWJNm4Z/Ug6SBwX0Q8VuZ+5QGnmZmZmfWVD6mbmZmZWV95wGlmZmZmfeUBp5mZmZn1lQecZmZmZtZXHnCamZmZWV95wGlmZmZmfeUBp5mZmZn1lQecZmZmZtZX/wPPUoZXOKSirAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 800x640 with 1 Axes>" ] @@ -298,7 +298,7 @@ { "data": { "text/plain": [ - "[0.21542776998597474, 0.017952314165497897, 0.008976157082748949]" + "[0.21449518223711772, 0.01787459851975981, 0.008937299259879905]" ] }, "execution_count": 9, @@ -320,9 +320,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "5\n", + "6\n", "64\n", - "5\n" + "6\n" ] } ], @@ -342,7 +342,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "5\n" + "6\n" ] } ], @@ -357,7 +357,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAPgCAYAAACmnkrZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hVVdr38d9KJSGEUEIPEEBR2qgUBZSANFFARhDrCPIMItgZEBRFEMXRUcTuiKMUMRZwbK/IAzxURwFFkKEjQXqRFkINyf3+keRMGuWknE2Y7+e69pWcXe+9zjonufdaa29nZgIAAAAAfwR5HQAAAACAkodEAgAAAIDfSCQAAAAA+I1EAgAAAIDfSCQAAAAA+I1EAgAAAIDfSCQAAAAA+I1EAgAAAIDfSCQAAAAA+I1EAgAAAIDfSCTy4Zy7zzm32Tl33Dm32DnXwuuYSjrn3CjnnOWa1nodV0nknGvjnPvKObcjsxx75FrunHNPO+d2OueOOedmO+cu8irekuQcynZiPvX4W6/iLUmcc48555Y65w475/Y45z53ztXPtU4p59wbzrl9zrkU59x051xlr2IuKc6xbOflU3ff9irmksI5N9A594tzLjlz+t451yXbcupsIZxD+VJvi4Bzbnhm2Y3PNq9I6i6JRC7OuVskjZM0WtIVklZImumcq+RpYBeGVZKqZpuu9jacEqu0MurlfadZ/qikByXdK+lKSUeUUYdLBSa8Eu1sZStJ3ypnPb4tAHFdCBIkvSHpKkkdJYVK+l/nXOls67wsqZukmzPXrybpswDHWRKdS9lK0gTlrLuPBjLIEmqbpOGSmkpqJun/JH3hnGuYuZw6WzhnK1+JelsozrnmkgZI+iXXoiKpu87MChvjBcU5t1jSUjO7P/N1kKStkl4zs796GlwJ5pwbJamHmV3mdSwXEuecSfqjmX2e+dpJ2iHpJTN7MXNeWUm7JfU1s488C7aEyV22mfMmSooxsx6n3RDnxDkXK2mPpAQzW5BZT/dKut3MpmWuc4mkNZJamtkP3kVbsuQu28x58yQtN7OHvYztQuCc2y9pqKRpos4WuazyNbN/UG8LxzkXJWmZpEGSnlBmWRbl9y0tEtk458KUkRXPzppnZumZr1t6FdcF5KLMLiObnHNTnXM1vQ7oAhQvqYpy1uFDkhaLOlxU2mZ2H1nnnHvLOVfB64BKqLKZP/dn/myqjCvp2evuWklbRN31V+6yzXKHc+5359y/nXPPOeciAx1YSeacC3bO3aqMlsvvRZ0tUvmUbxbqbcG9Ien/mdnsXPOLrO6GFDbCC0xFScHKuHqb3W5JlwQ+nAvKYkl9Ja1TRtPkU5IWOucamdlhLwO7wFTJ/JlfHa4iFNa3ymj6TZJUV9JYSTOccy3NLM3TyEqQzJbe8ZK+M7N/Z86uIumkmR3MtTp11w+nKVtJ+lDSb8posWwi6XlJ9SXdFPAgSxjnXGNl/GNbSlKKMloqVzvnLhN1ttBOV76Zi6m3BZSZlF0hqXk+i4vs+5ZEAgFhZjOyvfwlswvZb5J6S/qHN1EB/snVNWylc+4XSb9KaitpjidBlUxvSGokxkkVh3zL1szeyfZypXNup6Q5zrm6ZvZrIAMsgdZJukwZLT29JE1yziV4G9IFJd/yNbPV1NuCcc7FSXpFUkczO16cx6JrU06/S0qTlHvUemVJuwIfzoUrMwteL6me17FcYLLqKXU4AMxskzK+N6jH58g597qkrpLamdm2bIt2SQpzzsXk2oS6e47OULb5WZz5k7p7FmZ20sw2mtlPZvaYMm7I8JCos0XiDOWbH+rtuWkqqZKkZc65U865U8oYUP1g5u+7VUR1l0QiGzM7KeknSe2z5mU2E7dXzv56KKTMAUB1Je30OpYLTJIyvgSy1+FoZdy9iTpcxJxzNSRVEPX4rFyG1yX9UdK1ZpaUa5WfJKUqZ92tL6mmqLtndA5lm5+sG19Qd/0XJClc1NniklW++aHenps5khoro7yyph8lTc32e5HUXbo25TVOGc1qP0paIulhZQz8ed/TqEo459yLkr5SRnemasq4vW6apEQv4yqJMpOw7Fdj4jP76u43sy2Z94l+wjm3QRmJxRhl9C/9PO/ekN2ZyjZzekrSdGUka3UlvSBpo6SZAQ61JHpD0u2SbpR02DmX1Q/3kJkdM7NDzrl/SBqXedeWZEmvSfqeu9+c1RnL1jlXN3P5N5L2KaOv+cuSFphZ7ltCIhvn3HOSZihjEGoZZZRjW0mdqbOFd6bypd4WXObY0+xjpOScOyJpX9bYqSKru2bGlGuSdL8y/uE9oYxmtCu9jqmkT5I+UsY/syeUcd/ojyTV9Tqukjgp40vW8pkmZi53kp5Wxj+7x5VxV4aLvY67JExnKltJEcpIGPZIOilps6R3JFX2Ou6SMJ2mXE0ZtyXOWqeUMv4p3q+M5598JqmK17Gf79PZylZSnKT5yvhn7LikDcpIgqO9jv18n5Qxhm9z5t+uPZnfpx2zLafOFlP5Um+LvKznSRqf7XWR1F2eIwEAAADAb4yRAAAAAOA3EgkAAAAAfiORAAAAAOA3EgkAAAAAfiORAAAAAOA3EgkAAAAAfiORyIdzLtw5N8o5d7onK6KAKNviQ9kWL8q3+FC2xYeyLT6UbfGhbItXUZYvz5HIh3MuWtIhSWXNLNnreC4klG3xoWyLF+VbfCjb4kPZFh/KtvhQtsWrKMuXFgkAAAAAfiORAAAAAOC3EK8DOM9Vdc6V8TqIC0xU5k/KtuhRtsWL8i0+lG3xoWyLD2VbfCjb4hV19lXODWMk8uGcu0rS917HAQAAABSTlmb2Q2F2QItE/rZK0pIlS1S1alWvYwEAAACKxM6dO9WiRQsp8//dwiCROIOqVauqRo0aXocBAAAAnHcYbA0AAADAbyQSAAAAAPxG16YCSEtLU2pqqtdhAACAQgoODlZISIicc16HApQ4JBJ+SklJ0bZt28TdrgAAuDBERkaqatWqCgsL8zoUoEQhkfBDWlqatm3bpsjISMXGxnL1AgCAEszMdPLkSe3du1dJSUm66KKLFBREr2/gXJFI+CE1NVVmptjYWEVERHgdDgAAKKSIiAiFhobqt99+08mTJ1WqVCmvQwJKDNLuAqAlAgCACwetEEDB0CJRSB8u3lIs+739yprFsl8AAACgKJCCl3BpaWkaP368Lr/8ckVGRioqKkqXXHKJ7rvvvoAcv3bt2nLOafPmzQE53qhRo+Sc06hRowq0vXPuvGpRmjhxokaNGpWj/Nq2bSvnnObNm+dZXPnx571evny5Ro0apc8//9w3b+LEiXLOqW/fvkUeW37lWBDz5s3z1ZE///nPOZZl1T3nnIKCglS5cmXdfvvtOnDggKT/lE9+0+nOefPmzerTp4+qVaumsLAwxcXFqU+fPoU6B69UqVLFVz82b94s55xq16591u3mzZunUaNGnVN9z/75zXqv2rZtW6B4N2/erFGjRmnixIk5YinMPv3Rt2/f09aXcym3TZs2adSoUZo8efI5H/Pqq6+Wc06LFi0667opKSlyzikkxLvrjenp6erdu7dq166tUqVKqVq1arrvvvt07NgxSdK+ffvUrFkzRUdHKzw8XHXq1NGYMWN8N0MxM40ZM0Y1atRQeHi4WrRooX/961+enQ9wIaJFooS79dZbNW3aNMXHx2vUqFGKiYnRihUrNH36dL3xxhteh3dBOXXqVJH/UZ04caLmz5+vtm3bntM/DwVxLnEX9bktX75co0ePVp8+fdSjRw9JUkJCghITExUfH19kx8lSVOWY9U9lcHCwPv30U7366quKjIzMsU737t3Vq1cvvfPOO0pMTFSlSpU0fvx4vfbaazpy5Ih27Nihv/zlL6pYsaJee+01Scr3nJOSktS8eXPt27dPvXv3VseOHbV792598MEHBYq9OOpnQcXGxioxMVGlS5c+67rz5s3T6NGjJem0/8BnnVtiYmKRxbh582aNHj1aCQkJvkSvQYMGvve0uA0cOFDXXXedJOnee+/VoUOH9Oqrryo2Nvacym3Tpk0aPXq02rdvr7vuuqu4w/VEenq6/vWvf6lv376qXbu2xo8frzfffFNRUVF6/vnnJUnt2rXToEGDdOzYMY0ZM0YjR45UixYt1LlzZ7333nsaOXKkOnbsqB49emjkyJG64YYblJSUpJiYGI/PDrhAmBlTrklSdUm2detWy+7YsWO2evVqO3bsmG/e1B9+K5bpXCxcuNAkWUxMjO3ZsyfHsuTkZN/vy5cvt06dOllMTIxVrFjRevToYRs3bvQtf+utt+zSSy+1iIgIq1Onjo0aNcpSU1PNzGzDhg3WunVri4iIsK5du1rnzp1Nkr3//vtmZlarVi2TZElJSWZmtmDBArvmmmssOjraqlSpYn/+85/twIED+cY/ceJEq1evnoWFhVnZsmXtyiuv9J3H999/b+3bt7dy5cpZZGSk3XjjjWZm9tRTT5kku/POO61du3YWFRVlbdu29W2XkpJijzzyiNWsWdMiIyPtD3/4g33yySe+Y0qyjGqfUUYtWrSwsmXLWlhYmNWuXdueffZZ37oJCQkmyR544AG7+OKLrV27dnnOYePGjXbZZZdZVFSUlSpVyurXr2/vvvuub3lW+axZsybHPufOnev7PfuUlJTkmz9s2DBr2LChlSlTxvr37+/b56ZNm6xnz54WGxtrZcuWtfbt29uyZcvMzGzu3LkmyZo2bWq9evWyMmXK2Ny5c/PEnRXX0KFDrVatWta3b18zM5swYYI1bNjQVxeef/75PNtkvdcdO3a08uXLW2hoqFWvXt0eeughO3XqlL3//vt5zuupp57yze/Tp4/9+uuv5pyz5s2b+/Y/ZMgQk2QTJkw4ayzZna4c9+zZY3fffbdVrVrVoqKi7KqrrrI5c+bkuw8zs8OHD1vp0qUtNjbWBg0aZJJs8uTJvuVZdW/YsGFmZvbPf/7TJFmXLl1y7GfNmjUmyWrVqnXaY5mZ9evXzyTZHXfckWN+Wlqa7/czfTbzq59Z73+zZs3stttus5iYGGvcuLH98MMPZma+9+CWW24xs//Ul4SEBDMzW7JkiTVv3twiIyMtIiLCGjRocNoy++abb6xevXpWpkwZGzp0qFWqVMlX9klJSTnK4Ndff7WEhAQrU6aMhYeHW7169Wzq1Km+Ms0+vf/++775vXv3tpYtW1poaKiZ5fz8ZsXeokULu+OOOywyMvKczzXr9+xTnz598pTHqVOnbMyYMVa3bl2LiIiwSy65xF5//XVfGWR9Jh577DGLj4+3mJgYGzVq1Bnf9/xUrlw5x2cry5w5c6xly5YWFRVlVatWtb59+9qePXts1qxZeeL/n//5Hztw4IA1b97c950WHx9vf/3rX337a926tUmyhQsX5hvHhAkTrFq1alaxYkV79tlnTZIFBwf7ln/yySd22WWXWWRkpNWsWdMeeeQRS0lJMTOzo0eP2uOPP2516tSxsLAwi4uLszlz5lhaWpo99NBDVrlyZQsJCbFKlSrZnXfeaWZmqampvviz6nVux48f9/0+bdo0k2SdOnXyzUtPT7e9e/fa6tWrrXHjxibJZs6caWZml112mUmy1atXm5nZ0KFDTZK9+uqreY6T39934EK1devWrM9edSvk/8x0bSrBfvjhB0nSNddco9jYWEnS77//rt9//10nTpxQamqqDh48qM6dO2vOnDkaMmSI+vfvr88//1w33HCDUlNTlZiYqIEDB8rM9Oqrr6pGjRoaNWqUxo4dK0m666679N133+n2229X69atNXv27NPGk5SUpC5dumjHjh0aMmSIevfurXfffVeDBg3Kd/2HHnpIR44c0VtvvaVnnnlG9evX16lTp7R582Z17NhR8+fP18CBA/XKK6+obt26Obb94osv1KNHDzVp0kTz5s3ztb4MHjxYL7/8spo0aaKXX35Z+/bt0y233JJvtwnnnDp37qwXX3xRL7zwgqpWraoRI0Zo1qxZeY41ePBg3XPPPXn2ERISop49e2r8+PEaM2aMgoKCdM8992jdunWnLacsI0eO1KWXXipJevLJJ5WYmOh7HyXpq6++0v3336/IyEhNmDBB8+bNU1pamrp27arp06frrrvu0mOPPaYFCxaoc+fO2rdvn2/bn376STExMRo3bpxq1jz9eJuZM2fqiSeeUK9evfTJJ5+of//+io2N1ciRI9WgQQMNGzZM77zzTr7btmzZUn/96181btw4NWnSRK+88oree+89JSQk6N5775UktWnTRomJierVq1eObevUqaP27dtr6dKlWrt2rdLS0vThhx8qOjpat912m1+xnK4c77zzTr3//vvq1KmTxo4dqzVr1uiGG2447Xszbdo0HTlyRLfddpvuvvtuScrR7SXLsWPHtHPnTn377beSpFatWp22fM8k6/N700035ZifNejzbJ/NLPnVzx9//FF169bV/fffr5UrV6pnz546fvz4WWN69tlntXTpUj399NN69dVX1alTp3wfvvn777/rlltu0W+//aYnnnhCBw8e1J49e06731dffVXz58/Xfffdp7feeks9e/ZUWlqaevXqpZ49e0qSevbsqcTERCUkJOQ4t65du+rFF1887b6XLFmi+Ph4DR48+JzPtUGDBnryySclSZdeeqmvrHN74YUX9OSTT6py5cp69dVXFRISovvvvz9Pd6KFCxdq8ODBOnHihEaPHq2kpKQzHv9cbNiwQTfccINWrVqlZ599Vl26dNHEiRN1xx13qHHjxhoxYoQkqVGjRkpMTNSAAQMUFBSkLl266MUXX9Tzzz+vSpUqafjw4Zo7d+5Zj7dy5UoNGDBAR48e1ahRo7RkyZIcyxcsWKBbbrlFe/bs0bhx43T55Zfr5Zdf1iOPPCIp47t37Nixio2N1Ztvvqn+/fsrPT1dy5Yt0yuvvKL69evrvffe05AhQxQdHX3O5RAeHu77/csvv5QkdejQwTfv0KFDio2NVYMGDbRy5UoNHz5cHTt2lCRt3LhRknzfgbVq1ZIkrV+//pyPD+AsCpuJXIiTSkiLxN/+9jeTZN26dfPFp2xXqGbMmGH/7//9P5NkHTt29G3XqFEjk2TLli2zm2++2STZ1KlTzczsxx9/NEnWpEkTS05ONkkWERHhu1rUoUOH07ZIvPnmm3mukkmy6OjofOO/6qqrLDQ01Hr27GlPPfWULViwwMzMt58//elPebbJulI5aNAgMzN75513clzVjY2NNUm2fft2MzN78cUXTZI9+OCDZpbziubu3butY8eOFhwcnCPerCt4WVd8s1+Vzm3t2rV21VVXWVBQUI59fPTRRznKJ78WifxeZ5+X1ZJy++23+67Ur1q1yiRZvXr1fOt37drVJNlnn33mu6Jat27d08acPa6sMjcz6927d77vX/fu3XNsk5SUZEeOHLHevXtbeHh4jnXvvfdeM7McrQ9Zcs/75JNPfFdzv/322xzbny2W3HKXY0pKijnnctTd+++/3yTZuHHjzriPzz77zJKSkqxmzZrmnLPNmzebmeV79bx79+526tSpHPs51xaJBg0amCSbPn16vsvP9NnMHm/2+pn1/jdu3Ng3L+sq7dKlS8/aIjF8+HCTZG3btrUhQ4bYtGnT8r1S/OWXX+a4Mnzq1CmLjIw8bYvE22+/bZKsefPm9uCDD9rkyZPt6NGjOcr1qaee8u0/a16/fv1yHDf757ew55r7dX7zmjdvbpLsu+++M7P/XBHP/ZlYsmSJmZm1atXKJNmsWbPyfU9PJ78WiVdeecUk2cCBA31lHBUVZc45O3TokK9Von379r5tdu7caR06dMjznfbiiy+a2ZlbJMaNG5fju3XLli05WiQeeeQRk+RrGdy1a5dJsgoVKpiZWYUKFUyS/fZbzr9fO3futKioKKtcubL16dPHXnzxRfv11199y1NTU0/bGpElLS3NHnzwQZNkN998c47PXGpqqs2aNcsmTZpkderUsdKlS/tapaKiokySr9XktddeM0l2//335zkGLRL4b0KLBCRlXBGWpEWLFmnfvn0KCwvTrFmz1KRJkzNud6bBxvkt83eAcrdu3TRr1izf9Omnn+a73pw5czRp0iTVq1dP06ZNU5s2bXxXnM4m68p9aGiopIw+1Pk5U9zjx4/XrFmz1LlzZ82YMcM3uDZrIF+WuLi40+5j9OjR+uGHH3TXXXdp5syZ6tatW459ZPVZz4pv//795xzfmc4x+3b57aNGjRqn3W92+Z3bE088keP9e+KJJ/Ks88EHH+iTTz5RkyZN9PXXX/vWyTrvc6kvPXr0UKVKlTR16lRNmjRJkjRgwAC/Yznb8bKWnWmdpKQkLViwQFJGC0F8fLy2bNkiM/PFluXWW2/VBx98oNq1a+vLL7/UlClTznqu+cn6/GYfkC5l9As/03nkdqb6mdvZ6uPYsWM1c+ZMtWvXTitWrFCvXr306KOPntO+LeMiTL4GDBigRYsW6Y9//KN27Nihu+66S3fccYekM78v/pxbboX57J3O6bY53Wf15MmTOn78+Gnf08LIL5Zx48Zp9uzZ6tKli7799lv169dPUt7vtOI6fn6qVKmitWvXatSoUYqOjtbYsWPVpEkT7d27V1JGWZ3u+1uSjh8/rptvvlmvvvqq7rnnHiUmJio4ONi3PCQkRB06dNBdd92l//mf/9GRI0f00UcfSZLq1asnSfrtt98kSVu2ZNxl8aKLLvL/hAHk6/wYmYcCad26tW6++WZ9+umnatmype69915VrFhRKSkpvnVatWqlypUra+7cuXruued05MgRrVy5UvXr11ejRo1000036dNPP9Uzzzyjo0ePaurUqZIyuhmUKVNGLVu21Pfff69BgwYpPj7+jE3k1113nUqXLq05c+aoZcuWio2N1YoVK7R161Z16tQpz/oDBgxQ06ZN1bBhQ61evVqrVq3Sli1b1LVrV0VFRSkxMVE1a9ZUfHy8Vq9erZdeeumsZXLTTTfp73//uwYOHKgbbrhB48ePl3MuT/eR7FJSUrR582bNnDnzrPs/nUOHDmnt2rVauHBhjvl169bVr7/+qgkTJiguLk4rV67Msbx8+fKSpE8//VR79+7VzTfffMbj1K9fXw0bNtSqVav06KOPqmLFipo5c6ZiY2PVpk2bPPv3R8+ePfXJJ58oMTFR1atXV1pamhYsWKAmTZqoefPm+W5z7Ngx7dixI88/w1nntWzZMiUmJqp169Z5tg0NDVXfvn31wgsvaOvWrWrRooUuu+yyAsWSXzl26tRJM2fOVP/+/XXFFVdoypQpKlWqlG644YY820+aNElmpn79+vmSwUOHDqlv376aNGmSrxuMlNE94o477lC1atV07bXXaujQob7Piz9GjBihzz//XFOmTFFqaqo6dOigvXv3asqUKVq1atUZP5tns3LlSl/MK1euVPXq1dWoUSNfN6XvvvtO06dP9w1YzTJmzBgFBwerdu3aSklJ0axZs3z/fGXXsmVLlSlTRnPnztXf/vY3bdiw4Yz/rL755pvavXu34uPj1aJFC02bNs2336z3bsGCBfroo4983VLOVUHPNeu4GzZs0AcffKCmTZvm2fdNN92kpUuX6tFHH1Xfvn19g+fP5T2QpE6dOmn+/PmaMWOGb2D1uerSpYuGDRumDz/8UJdeeql++eUXpaSkqGPHjoqOjvbFv27dOk2dOlXNmjXzbZuSkqKkpCS/vtM6duyooKAgffjhh2rQoEGeLp49evTw3VSgbNmyvq59Wd+tvXr10t///nf17t1b/fv3165du9SiRQvVqFFDL7/8sq644gpdccUVmjlzptavX699+/apXLlyvoe7pqam5rlZgJmpQ4cO+u6779S8eXO1a9dOn376qcqUKaMbbrhBEyZM0M8//6ymTZsqJSXF18X1D3/4gyRp0KBBuueee/Twww+rR48eeu+991S2bFn96U9/8uetAHAmhW3SuBAn+dG1yWupqan2t7/9zRo1amRhYWEWHR1tDRs2tAceeMDXvWf58uXWsWNHi4mJsQoVKtiNN9542sHW8fHx9tRTT+UYbN2qVSuLjo62bt262TXXXGOS7IsvvjCz/AdbJyQkWExMjEVFRdnll19ur732Wr6x9+rVy6pUqWKhoaFWsWJFu/POO+3w4cNmZrZo0SJr166dxcTEWGRkpK8rQe5uELm7L2QNto6Li/MNtv744499x1Surk1t27a18PBwa9asma/rS9a+8+t2lNu6deusadOmFh4ebtdee63deeedObp+/fTTT3bJJZdYdHS03Xbbbb7Bf1n7nDdvntWuXduccxYeHp7vcfv06WOS7K233jKzjMHWN910k1WsWNE32Pqnn34ys/y7a+Qn9/uWZcKECdaoUSOLiIiwChUqWLt27Wz27Nl5tjl69Kj16NHDNwD18ccfz9Ft6dixY9ahQwdf16fExMR8uztt2LDBnHMmKccg9bPFklt+5ZjfYOv8tk9PT7f4+HiTZMuXL8+xLKsb4Lx58/IMtjYzu/HGG02SPfHEE75559q1ySzjvfzTn/7kG4hatWpV30BUszN/NvOrn7kHIOcebG1mdt9991mZMmXsoosusoceeihHfRk7dqzVqVPHwsPDrUyZMta2bVvfQNXcvvnmG6tbt65VqFDB7r//fl+3wvy6Nr333ntWv359i4iIsMjISGvRooWve82uXbusefPmFhISYpLs+++/z7e7k1n+XZsKeq7p6el22223+bpkPffcc6cdbF2nTh2LiIiw+vXr5/g+y/05ynpPZsyYke/r0zmXwdZVqlTxDbbOir93796++P/2t7/Zrl27rE2bNhYeHm7Nmzf33TRgzJgxZnbug62rVq1qI0aMyNG1ySyjO+If/vAHi4yMtLi4OHv44Yd93YaOHDliw4YNs/j4eAsLC7MaNWrYnDlzLCkpyVq3bm0xMTEWGhpqtWrV8t3U4myDrbMvzz5ldd384osvfJ+P0qVLW8OGDe2ll17ybZ+enm6jRo2yqlWrWmhoqDVt2jRHd87szse/70BxKcquTc7O0Bz938o5V13Stq1bt+boInL8+HElJSUpPj5epUqV8i7AAI8ZVQoAACAASURBVFq8eLHWrFmjmjVrau3atfrLX/6iyMhIrV27NsfAYADemzdvntq1a6eEhITz7jkkwPnsv/HvO/57bdu2LavraA0z216YfdG1CWeUkpKiMWPGaNu2bYqOjlbbtm319NNPk0QAAAD8lyORwBm1b99ev/76q9dhADgHbdu2PeOgZwAAihJ3bSoA/lADAHDhKI47awH/DWiR8ENoaKicc9q7d69iY2MLdPtAAABwfjAznTx5Unv37lVQUJDCwsK8DgkoUUgk/BAcHKwaNWpo27Zt2rx5s9fhAACAIhAZGamaNWv6niwP4NyQSPgpKipKF110ke8e5QAAoOQKDg5WSEgIvQyAAiCRKIDg4OAcT9YEAAAA/tvQhgcAAADAbyQSAAAAAPxGIgEAAADAb4yRAIDzUPqpdK376Gcd+e13la5VUfVvvVxBIVz7AQCcP0gkAOA88/NL/6e0sX9V1UPrVN5O6pQL07KH6iv48eG6/C/Xeh0eAACS6NoEAOeVn1/6P5V7bIBqHvhFR4OjtD+sqo4GRynuwC8q99gA/fzS/3kdIgAAkkgkAOC8kX4qXWlj/6rIU4f1e6nqSg2JkAUFKTUkQvtKVVfEqcNKG/tXpZ9K9zpUAABIJADgfLHuo59V9dA6HQqtIOV+OJZzSg4tr6qH1mndRz97EyAAANkwRgIAPPTh4i2+33/bsEflGl+lIyFl8yYSkmSm0qcO6cCGPfo523a3X1kzEKECAJADLRIAcJ4IqxCldBesYDuV7/JgS1W6C1ZYhagARwYAQF4kEgBwnqjSPE6HIqqoVFqKZJZzoZlKpR3RoYgqqtI8zpsAAQDIhkQCAM4TLihIQV2uU2pQKZU+dVDB6SclMwWnn1TpUweVGhShoC7XyQXx1Q0A8B5/jQDgPBLX8RId/eOdOhBZQ2HpJ1T61CGFpZ/QgcgaOvrHOxTX8RKvQwQAQBKDrQHgvBPX8RJZ+4u1a+lWndyXorAKUarZPI6WCADAeYVEAgDOQy4oSFWvrOV1GAAAnBaXtwAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jUQCAAAAgN/Oi0TCOXefc26zc+64c26xc67FGdbt75xb6Jw7kDnNzr2+y/C0c26nc+5Y5joXFf+ZAAAAAP8dPE8knHO3SBonabSkKyStkDTTOVfpNJu0lZQoqZ2klpK2Svpf51z1bOs8KulBSfdKulLSkcx9liqOcwAAAAD+23ieSEgaLGmCmb1vZquV8c//UUn98lvZzO4wszfNbLmZrZX0Z2WcR3spozVC0sOSnjGzL8zsF0l3SaomqUd++3TOhTvnorMmSVFFfI4AAADABcXTRMI5FyapqaTZWfPMLD3zdctz3E2kpFBJ+zNfx0uqkmufhyQtPsM+H5N0KNu09pxPAgAAAPgv5HWLREVJwZJ255q/WxnJwLl4XtIO/SdxyNrOn30+J6lstumSczw2AAAA8F8pxOsACsM5N1zSrZLamtnxgu7HzE5IOpFtv2WKIDwAAADgguV1i8TvktIkVc41v7KkXWfa0Dk3RNJwSZ0yx0FkydrO730CAAAAODeeJhJmdlLST8ocKC1JzrmsgdPfn24759yjkp6UdJ2Z/ZhrcZIyEobs+4xWxt2bTrtPAAAAAOfufOjaNE7SJOfcj5KWKOOOS6UlvS9JzrnJkrab2WOZr4dJelrS7ZI2O+eyxj2kmFmKmZlzbrykJ5xzG5SRWIxRxjiKzwN4XgAAAMAFy/NEwsw+ds7FKiM5qCJpuTJaGrIGS9eUlJ5tk4GSwiRNy7Wr0ZJGZf7+gjKSkXckxUhalLnPAo+jAAAAAPAfnicSkmRmr0t6/TTL2uZ6Xfsc9meSRmZOAAAAAIqY14OtAQAAAJRAJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/EYiAQAAAMBvJBIAAAAA/BbidQAAAAC48E2ZMkVbt25V7969Va9ePa/DQRGgRQIAAADF6rHHHtOAAQP08ccfq2nTplq0aJHXIaEIkEgAAACgWE2cOFGJiYlasWKFxo8fr65du+rdd9/VggULdOTIEf34449asGCB12HCT3RtAgAAQLE6evSoGjduLEm6++67FRQUpAcffFApKSlaunSp/vSnP2n9+vVKS0vzOFL4gxYJAAAAFKsmTZpo8eLFvtd9+vTRgQMHdODAAV122WWaM2eONm3a5GGEKAgSCQAAABSroUOH6l//+leOeUFBQYqOjlZQUJCqVaumWrVqeRQdCoquTQAAAChW3bt3V/fu3b0OA0WMFgkAAAAEzMGDB/Xuu+/qscce0/79+yVJy5Yt0/bt2z2ODP6iRQIAAAAB8csvv6hDhw4qW7asNm/erP79+6t8+fL67LPPtGXLFk2ePNnrEOEHWiQAAAAQEIMHD1bfvn21YcMGlSpVyjf/+uuv5/avJRCJBAAAAAJi6dKlGjBgQJ751atX165duzyICIVBIgEAAICACA8PV3Jycp7569evV2xsrAcRoTBIJAAAABAQ3bt319NPP63U1FRJknNOW7Zs0bBhw9SzZ0+Po4O/SCQAAAAQEC+99JJSUlJUqVIlHTt2TAkJCapXr57KlCmjZ5991uvw4Cfu2gQAAICAKFu2rGbNmqXvvvtOK1asUEpKiq644gp16NDB69BQACQSAAAACKjWrVurdevWkjKeK4GSia5NAAAACIjnn39eH3/8se917969VaFCBVWvXl0rVqzwMDIUBIkEAAAAAuLtt99WXFycJGnWrFmaNWuWZsyYoS5dumjo0KEeRwd/0bUJAAAAAbFr1y5fIvH111+rd+/e6tSpk2rXrq0rr7zS4+jgL1okAAAAEBDlypXT1q1bJUnffvutb5C1mSktLc3L0FAAtEgAAAAgIG666Sbdfvvtuuiii7Rv3z516dJFkvTzzz+rXr16HkcHf5FIAAAAICBefvll1a5dW1u3btULL7ygqKgoSdLOnTs1aNAgj6ODv0gkAAAAEBChoaEaMmRInvmPPPKIB9GgsEgkAAAAUGy+/PJLdenSRaGhofryyy/PuG737t0DFBWKAokEAAAAik2PHj20a9cuVapUST169Djtes45BlyXMCQSAAAAKDbp6en5/o6Sj9u/AgAAICCOHz/udQgoQrRIAAAAICBiYmLUokULJSQkqG3btmrVqpUiIiK8DgsFRIsEAAAAAmL27Nm67rrrtHjxYt14440qV66crr76ao0YMUKzZs3yOjz4yZmZ1zGcd5xz1SVt27p1q2rUqOF1OAAuYB8u3lLofdx+Zc0iiAQAAuvUqVNaunSp/v73v2vq1KlKT09nsHUAbNu2TXFxcZJUw8y2F2ZfdG0CAABAwKxfv17z5s3zTSdOnFDXrl3Vtm1br0ODn0gkAAAAEBDVq1fXsWPH1LZtW7Vt21bDhg1TkyZN5JzzOjQUAGMkAAAAEBCxsbE6evSodu3apV27dmn37t06duyY12GhgEgkAAAAEBDLly/Xrl27NHz4cJ04cUKPP/64KlasqFatWmnEiBFehwc/Mdg6Hwy2BhAoDLYG8N9q3759mjdvnr744gslJiYy2DpAGGwNAACAEuezzz7zDbJevXq1ypcvr6uvvlovvfSSEhISvA4PfiKRAAAAQEDce++9atOmje655x4lJCSocePGXoeEQiCRAAAAQEDs2bPH6xBQhEgkAAAAEDBpaWn65z//qTVr1kiSLr30UvXo0UMhIfxbWtLwjgEAACAgVq1apW7dumn37t2qX7++JOn5559XbGysvvrqKzVq1MjjCOEPbv8KAACAgPjzn/+sRo0aadu2bVq2bJmWLVumrVu3qkmTJrrnnnu8Dg9+okUCAAAAAbF8+XL9+OOPKleunG9euXLl9Oyzz6p58+YeRoaCoEUCAAAAAXHxxRdr9+7deebv2bNH9erV8yAiFAaJBAAAAALiueee04MPPqhp06Zp27Zt2rZtm6ZNm6aHH35Yzz//vJKTk30Tzn90bQIAAEBAdO3aVZLUu3dvOeckSWYmSerWrZvvtXOOp1yXACQSAAAACIi5c+d6HQKKEIkEAAAAAiIhIcHrEFCEGCMBAACAgFm4cKHuvPNOtWrVStu3b5ckTZkyRYsWLfI4MviLRAIAAAABMX36dHXu3FkRERFatmyZTpw4IUk6dOiQxo4d63F08BeJBAAAAALimWee0dtvv60JEyYoNDTUN79169ZatmyZh5GhIEgkAAAAEBDr1q1TmzZt8swvW7asDh486EFEKAwSCQAAAARElSpVtHHjxjzzFy1apDp16ngQEQqDRAIAAAAB0b9/fz300ENavHixnHPasWOHpk6dqiFDhmjgwIFehwc/cftXAAAABMTw4cOVnp6u9u3b6+jRo2rTpo3Cw8M1ZMgQPfDAA16HBz+RSAAAACAgnHMaMWKEhg4dqo0bNyolJUUNGjRQVFSU16GhAOjaBAAAgIDo16+fDh8+rLCwMDVo0EAtWrRQVFSUjhw5on79+nkdHvxEIgEAAICAmDRpko4dO5Zn/rFjxzR58mQPIkJh0LUJAAAAxSo5OVlmJjPT4cOHVapUKd+ytLQ0ffPNN6pUqZKHEaIgSCQAAABQrGJiYuSck3NOF198cZ7lzjmNHj3ag8hQGCQSAAAAKFZz586Vmenaa6/V9OnTVb58ed+ysLAw1apVS9WqVfMwQhQEiQQAAACKVUJCgiQpKSlJNWvWlHPO44hQFBhsDQAAgIBYs2aNvvvuO9/rN954Q5dddpluv/12HThwwMPIUBAkEgAAAAiIoUOHKjk5WZK0cuVKDR48WNdff72SkpI0ePBgj6ODv+jaBAAAgIBISkpSgwYNJEnTp09Xt27dNHbsWC1btkzXX3+9x9HBX7RIAAAAICDCwsJ09OhRSdLs2bPVqVMnSVL58uV9LRUoOWiRAAAAQEBcffXVGjx4sFq3bq0lS5bo448/liStX79eNWrU8Dg6+IsWCQAAAATE66+/rpCQEE2bNk1vvfWWqlevLkmaMWOGrrvuOo+jg79okQAAAEBA1KxZU19//XWe+S+//LIH0aCwaJEAAAAA4DcSCQAAAAB+I5EAAAAA4DcSCQAAAAB+I5EAAABAsUtNTVVISIj+/e9/ex0KigiJBAAAAIpdaGioatasqbS0NK9DQREhkQAAAEBAjBgxQo8//rj279/vdSgoAjxHAgAAAAHx+uuva+PGjapWrZpq1aql0qVL51i+bNkyjyJDQZBIAAAAICB69OjhdQgoQiQSAAAACIinnnrK6xBQhEgkAAAAEFA//fST1qxZI0lq2LChLr/8co8jQkGQSAAAACAg9uzZo1tvvVXz5s1TTEyMJOngwYNq166dPvroI8XGxnocIfzBXZsAAAAQEA888IAOHz6sVatWaf/+/dq/f7/+/e9/Kzk5WQ8++KDX4cFPtEgAAAAgIL799lvNnj1bl156qW9egwYN9MYbb6hTp04eRoaCoEUCAAAAAZGenq7Q0NA880NDQ5Wenu5BRCgMEgkAAAAExLXXXquHHnpIO3bs8M3bvn27HnnkEbVv397DyFAQJBIAAAAIiNdff13JycmqXbu26tatq7p16yo+Pl7Jycl67bXXvA4PfmKMBAAAAAIiLi5Oy5Yt0+zZs7V27VpJ0qWXXqoOHTp4HBkKgkQCAAAAAeOcU8eOHdWxY0evQ0Eh0bUJAAAAgN9IJAAAAAD4jUQCAAAAgN9IJAAAAAD4jcHWAAAAKDbJycnnvG50dHQxRoKiRiIBAACAYhMTEyPn3Dmtm5aWVszRoCiRSAAAAKDYzJ071/f75s2bNXz4cPXt21ctW7aUJH3//feaNGmSnnvuOa9CRAGRSAAAAKDYJCQk+H5/+umnNW7cON12222+ed27d1fjxo31zjvvqE+fPl6EiAJisDUAAAAC4vvvv1ezZs3yzG/WrJmWLFniQUQoDBIJAAAABERcXJwmTJiQZ/67776ruLg4DyJCYdC1CQAAAAHx8ssvq2fPnpoxY4auvPJKSdKSJUu0YcMGTZ8+3ePo4C9aJAAAABAQ119/vdavX69u3bpp//792r9/v7p166b169fr+uuv9zo8+IkWCQAAAARMXFycxo4d63UYKAK0SAAAACBgFi5cqDvvvFOtWrXS9u3bJUlTpkzRokWLPI4M/iKRAAAAQEBMnz5dnTt3VkREhJYtW6YTJ05Ikg4dOkQrRQlEIgEAAICAeOaZZ/T2229rwoQJCg0N9c1v3bq1li1b5mFkKAgSCQAAAATEunXr1KZNmzzzy5Ytq4MHD3oQEQqDRAIAAAABUaVKFW3cuDHP/EWLFqlOnToeRITCIJEAAABAQPTv318PPfSQFi9eLOecduzYoalTp2rIkCEaOHCg1+HBT9z+FQAAAAExfPhwpaenq3379jp69KjatGmj8PBwDRkyRA888IDX4cFPJBIAcJ4wMy1O2q/IsGA1qRHjdTgAUOSccxoxYoSGDh2qjRs3KiUlRQ0aNFBUVJTXoaEA6NoEAOeJ7zft05crduijpVu1OGmf1+EAQJHr16+fDh8+rLCwMDVo0EAtWrRQVFSUjhw5on79+nkdHvxEIgEA54FtB45qxspdvtdfLt+h1TuSPYwIAIrepEmTdOzYsTzzjx07psmTJ3sQEQqDRAIAPHY8NU0fLd2qNDM1qBqtZrXKySR9tHSLftt3xOvwAKDQkpOTdejQIZmZDh8+rOTkZN904MABffPNN6pUqZLXYcJPjJEAAA+Zmf7583btP3JSMZGh6nlFDYWFBOnw8VNat/uwJn//mwYk1FGlMqW8DhUACiwmJkbOOTnndPHFF+dZ7pzT6NGjPYgMhUEiAQAeWrr5gFZuP6QgJ93avKYiwoIlSbe1qKl3F23StgPHNPG7zbo3oa6iI0LPsjcAOD/NnTtXZqZrr71W06dPV/ny5X3LwsLCVKtWLVWrVs3DCFEQJBIA4JE1O5P19S87JEmdG1ZRzfKRvmVhIUG6q2Vt/X3+r9p35KQm/muz7mlTR6VCg70KFwAKLCEhQadOnVKfPn3UrFkzxcXFeR0SigBjJADAA0dOnNL9Hy7TqXRT/cpl1LpexTzrRIWH6O7W8YoKD9Gu5OP64IffdCot3YNoAaDwQkJCNG3aNKWlpXkdCooIiQQAeODJL/6tX/ceUXSpEPVqWkNBzuW7XvnSYerbqrbCQoK06fcj+nnrwQBHCgBF59prr9X8+fO9DgNFhK5NABBg3/57pz5btl1BTrqleU2VDj/zV3G1mAi1uShWs9fs1pqdyWpeu/wZ1weA81WXLl00fPhwrVy5Uk2bNlXp0qVzLO/evbtHkaEgSCQAIMA+W7ZdkvTna+qodoXSZ1k7wyVVymj2mt36dW+KUtPSFRpMgzKAkmfQoEGSpHHjxuVZ5pyj21MJw18iAAigk6fS9a9fM55a3a3Jud+hpGrZUoouFaLUNNOmvTxbAkDJlJ6eftqJJKLkIZEAgABatuWAUk6cUoXSYWpYLfqct3PO6ZIqGeuv3cUTrwGUfMePH/c6BBSS54mEc+4+59xm59xx59xi51yLM6zb0Dk3PXN9c849nM86ozKXZZ/WFu9ZAMC5mb9+rySpzcWxCgrKf4D16VxSpYwkad2uwzKzIo8NAIpbWlqaxowZo+rVqysqKkqbNm2SJD355JP6xz/+4XF08JeniYRz7hZJ4ySNlnSFpBWSZjrnTveM9EhJmyQNl7TrDLteJalqtunqoooZAApj/rqsRCLv7V7Ppk5slEKCnA4eS9XuwyeKOjQAKHbPPvusJk6cqBdeeEFhYWG++Y0aNdK7777rYWQoCK9bJAZLmmBm75vZakn3SjoqqV9+K5vZUjMbamYfSTrTX9FTZrYr2/R70YcOAP7Zc/i4Vu/M6JZ0zUWxfm8fFhKkurFRkqR1O+neBKDkmTx5st555x3dcccdCg7+zwM2//CHP2jtWjqQlDSeJRLOuTBJTSXNzppnZumZr1sWcvcXOed2OOc2OeemOudqniWWcOdcdNYkKaqQxweAPBauz7im0bh6WVWMCi/QPupndm9au+twkcUFAIGyfft21atXL8/89PR0paamehARCsPLFomKkoIl7c41f7ekKoXY72JJfSVdJ2mgpHhJC51zZc6wzWOSDmWbSIkBFLms8REJF/vfGpEla5zElv1HdeTEqSKJCwACpUGDBlq4cGGe+dOmTdPll1/uQUQojAvuORJmNiPby1+cc4sl/Sapt6TTjeJ5ThljNbJUFckEgCKUlm5auCEzkahf8EQiJjJMVaJLaVfyca3ffViX1yxXVCECQLEbOXKk+vTpo+3btys9PV2fffaZ1q1bp8mTJ+vrr7/2Ojz4ycsWid8lpUmqnGt+ZZ15ILVfzOygpPWS8raj/WedE2aWnDVJSimq4wOAJK3cfkgHjqaqTHiILouLKdS+sro3rdtN9yYAJcuNN96or776SrNnz1bp0qU1cuRIrVmzRl999ZU6duzodXjwk2ctEmZ20jn3k6T2kj6XJOdcUObr14vqOM65KEl1JU0pqn0CgL8WZHZral2vYqGfSn1JlTKav36v1u8+rLR0bgMLoGS55pprNGvWLK/DQBHwumvTOEmTnHM/Sloi6WFJpSW9L0nOucmStpvZY5mvwyQ1yNw2TFJ159xlklLMbGPmOi9K+koZ3ZmqKePWsmmSEgN1UgCQm298RCG6NWWJKx+pyLBgHT2Zpt/285RrACXH0qVLlZ6eriuvvDLH/MWLFys4OFjNmjXzKDIUhKe3fzWzjyUNkfS0pOWSLpN0nZllDcCuqYzxClmqSfo5c6qaue3PkrLfeLiGMpKGdZI+kbRP0lVmtrf4zgQATu/Q0VT9vOWApIwH0RVWkHOqXzmze9NOujcBKDnuu+8+bd26Nc/87du367777vMgIhSG1y0SMrPXdZquTGbWNtfrzZLO+ChYM7u1qGIDgKKwaOPvSjepXqUoVY+JKJJ91q9SRj9vPai1jJMAUIKsXr1aV1xxRZ75l19+uVavXu1BRCgMrx9IBwAXvPnr90gq3G1fc7uoUhkFOWnv4RP6bR/dmwCUDOHh4dq9O/ed/6WdO3cqJMTz69vwE4kEABQjM9OCzAfRFWUiEREWrFoVSkuS/m/tniLbLwAUp06dOumxxx7ToUOHfPMOHjyoxx9/nLs2lUAkEgBQjNbvTtGu5OMqFRqkFvHli3TfWQ+nI5EAUFK8+OKL2rp1q2rVqqV27dqpXbt2io+P165du/TSSy95HR78RBsSABSjrG5NV9WpoFKhwUW670uqRGvGv3dp8ab9SjlxSlHhfKUDOL9Vr15dv/zyi6ZOnaoVK1YoIiJCd999t2677TaFhoZ6HR78xF8dAChGWbd9bXNR0XVrylIxKkzlS4dp/5GTWrThd13XqEqRHwMAilrp0qV1zz33eB0GigCJBAAUk6MnT2lpUsZtX4vi+RG5Oed0SZUy+tev+zRnzW4SCQAlwoYNGzR37lzt2bNH6enpOZaNHDnSo6hQECQSAFBMfti0TyfT0lWjXITqVCxdLMe4uHJGIrFk8/5i2T8AFKUJEyZo4MCBqlixoqpUqSLn/nNXf+cciUQJQyIBAMVk/rrMp1lfHJvjj2VRqpH5XIrf9h3VoWOpKhtBH2MA569nnnlGzz77rIYNG+Z1KCgC3LUJAIrJgg1Ff9vX3CLDQ1SjXEYysWr7obOsDQDeOnDggG6++Wavw0ARIZEAgGJw6Fiqkn7PeFBcUd/2NbdG1cpKkv69g0QCwPnt5ptv1v/+7/96HQaKCF2bAKAYrN6RLEmqHhOhmMiwYj1W4xpl9e2qXVq5PblYjwMAhVWvXj09+eST+uGHH9S4ceM8t3x98MEHPYoMBUEiAQDFYFVm60DDatHFfqxG1TNbJOjaBOA898477ygqKkrz58/X/PnzcyxzzpFIlDAkEgBQDFbvzGgdaJjZ7ag4Nc5MJJJ+P6Lk46mKLsWAawDnp6SkJK9DQBFijAQAFIOsrk0NAtAiUb50mKrHZA24pnsTgJLBzGRmXoeBQiCRAIAidjw1TRv2pEgKTNcmSWpUPeM4dG8CcL6bPHmyGjdurIiICEVERKhJkyaaMmWK12GhAOjaBABFbP3uw0pLN5WL/P/s3Xl41NX5///Xmcm+E0IWooS9EQOKUFT4VFTUunxKtdpa677VVtuKSq2tP+tSF9pv1Uuhn7oWa1tr7WatVWyLWEUstQIiCEggECAhgez7MvP+/TEzIWGTSSY5szwf15Wrmfd7El5ozeSec+77xKsgM2lI/szJhZl6Y32VPqKQABDGHnnkEd1111361re+pVmzZkmSli9frm984xvau3evbrnlFssJEQwKCQAIsd7bmgbrILr90XANIBIsXLhQP//5z3XFFVf0XJs7d66OPfZY3XPPPRQSEYatTQAQYusrhq7ROiBQSGzd26Km9q4h+3MBIBiVlZWaOXPmAddnzpypyspKC4kwEBQSABBiQzn6NSAnLbFnG1VgEJ7pKgAAIABJREFURQQAws348eP10ksvHXD9d7/7nSZMmGAhEQaCrU0AEEIer6ONu5skDW0hIflWJSob2vXRrgadOHb4kP7ZAHAk7r33Xl188cV6++23e3ok3n33XS1duvSgBQbCGysSABBC22pa1NrpUVK8S2Ny0ob0z55MnwSAMHfhhRdq5cqVysnJ0csvv6yXX35ZOTk5+s9//qMLLrjAdjwEiRUJAAihQH9EcX6G3K6habQOCBQSTG4CEM6mTZumX//617ZjIARYkQCAELLRHxHQu+G6uaN7yP98APg0r732mt54440Drr/xxht6/fXXLSTCQFBIAEAIDeWJ1vsbkZ6o/IwkOQ4N1wDC0x133CGPx3PAdcdxdMcdd1hIhIGgkACAEHEcp+cX+KEc/dpbCdubAISxzZs3a9KkSQdcLy4uVmlpqYVEGAh6JABgAF5YWd7zeUNbl2paOuUy0oc76q2sCkwuzNQ/N1RpPYUEgDCUmZmprVu3avTo0X2ul5aWKjU11U4o9BsrEgAQIpX1bZJ8ZzrEu+38eC0p9G2pYkUCQDj64he/qHnz5mnLli0910pLS3Xbbbdp7ty5FpOhPygkACBEKhraJUkjs5KtZQhMbtqyp1mtnTRcAwgvP/nJT5Samqri4mKNGTNGY8aM0THHHKPhw4frpz/9qe14CBJbmwAgRCobfCsSgROmbcjNSFJueqKqmzr0cUWjpo/OtpYFAPaXmZmpFStW6B//+Ic+/PBDJScna8qUKTrllFNsR0M/UEgAQIhU+Lc22VyRkHyrEks3VuujXQ0UEgDCjjFGZ511ls466yzbUTBAbG0CgBBo6/SorrVLkt0VCYnJTQCAoUEhAQAhUNnoW43ISo5XSoLdxd5An8Q6CgkAwCCikACAEKis9zVaF1je1iRJk4/yFRKl1TRcAwAGD4UEAIRAT3+E5W1NkpSXkaQR6YnyOtKGyibbcQAAUYpCAgBCoNI/+rUg0/6KhCSVjPSdJ8H2JgDAYKGQAIAB6vZ4Vd0UOEPC/oqEtK9PgoZrAOHmtNNO01VXXdXn2pVXXqnTTz/dTiD0G+NfAWCAqho75HWk5Hi3MpPjbceRtG9yEysSAMLN6NGjVVBQ0OdaYWGhXC7e3440FBIAMEA9B9FlJckYYzmNT6DhenN1s9q7PEqKd1tOBAA+ixcvPuDagw8+aCEJBorSDwAGqKIh0GgdHv0RkpSfkaSctAR5vI427qbhGgAQeqxIAMAAVdSHV3+E5Ds5dmJeuvY21+iTqiYdf3SW7UgAIElaunSpli5dqurqanm93j73fvGLX1hKhf5gRQIABsDrONodZhObAibmpUuSPmFFAkCYuPfee3XWWWdp6dKl2rt3r+rq6vp8ILKwIgEAA1Db3KlOj1dxLqOctETbcfroKSSqmy0nAQCfJ554Qs8995wuv/xy21EQAqxIAMAAVDb6ViPyM5PkdoVHo3XAxLw0SdLmKlYkAISHzs5OzZw503YMhAiFBAAMQOD8iNz08OmPCJjgX5GobGhXY3uX5TQAIF133XV64YUXbMdAiLC1CQAGYE9ThyRpRHp4bWuSpMzkeOVnJGl3Y7s2VzVpWlG27UgAYlx7e7ueeuop/fOf/9SUKVMUH9/37J1HHnnEUjL0B4UEAAzAXn8hkRuGhYQkTchL0+7Gdn1S1UwhAcC6tWvX6vjjj5ckrVu3rs+9cDmHB0eOQgIA+snrdbSn2b8iEWaN1gET89L1zua9+oQ+CQBhYNmyZbYjIITokQCAfqpsbFeXx5HbGA1LTbAd56D2NVwzuQlAeNm5c6d27txpOwYGgEICAPppi3+sanZaQthNbAoIjIDdxIoEgDDg9Xp13333KTMzU0VFRSoqKlJWVpZ+9KMfHXA4HcIfW5sAoJ+27PEVEuG6rUnaN7lpT1OH6ls7lZUSnisnAGLDnXfeqWeffVYLFizQrFmzJEnLly/XPffco/b2dj3wwAOWEyIYFBIA0E89hUSYNlpLUlpinAqzkrWrvk2fVDVrxhgargHY88tf/lLPPPOM5s6d23NtypQpKiws1I033kghEWHY2gQA/VRaHf6FhOSb3CSJhmsA1tXW1qq4uPiA68XFxaqtrbWQCAPBigQA9NOWPS2S7G9temFl+WHve7yOJOnVtRVyHWS84tdOHDUouQBgf8cdd5wWLVqkxx9/vM/1RYsW6bjjjrOUCv1FIQEA/dDQ1hXWh9H1luc/dbuqscNyEgCx7ic/+YnOO+88/fOf/9TJJ58sSXrvvfe0Y8cOvfbaa5bTIVhsbQKAftjq74/ISIpTUrzbcprDy83wFTrVje2WkwCIdbNnz9Ynn3yiCy64QPX19aqvr9eXvvQlbdq0SZ/73Odsx0OQWJEAgH4IbGvKCfPVCEnKTU+SkdTS6VFzR7fSEvnRD8CekSNH0lQdJXg1AYB+iITRrwEJcS4NS01QbUunqhrblTYizXYkADFk7dq1Kikpkcvl0tq1aw/73ClTpgxRKoQChQQA9MOWCJnYFJCbnqjalk5VN7ZrHIUEgCF0/PHHa/fu3crNzdXxxx8vY4wcxzngecYYeTweCwnRXxQSANAPkXCGRG95GUnauLtJVU00XAMYWmVlZRoxYkTP54geFBIAEKQuj1fba1olRcbWJknKo+EagCVFRUU9n2/fvl0zZ85UXFzfX0G7u7u1YsWKPs9F+GNqEwAEqby2Vd1eRykJbmUmx9uOc0Rye42APdiWAgAYCqeddtpBD55raGjQaaedZiERBoJCAgCCFDjRetyINJmDHPAWjkakJ8pIauvyqKmj23YcADHKcZyD/tysqalRamqqhUQYCLY2AUCQAv0R40ZEzotevNul7NQE1bR0qrqxQxlJkbGSAiA6fOlLX5Lka6i+6qqrlJi4b1uox+PR2rVrNXPmTFvx0E8UEgAQpC3VvjMkIm36UV5Gkmr8I2DH50ZWdgCRLTMzU5JvRSI9PV3Jyck99xISEnTSSSfp+uuvtxUP/UQhAQBB6lmRyE1TfWuX5TRHLi8jUR9XSlU0XAMYYosXL5YkjR49WvPnz2cbU5SgRwIAguA4Tq+tTZH1rn5uhq/hupoRsAAsufvuuykioggrEgAQhD3NHWpq75bLSEXDU/TB9jrbkY5YXs/kpvZDNjwCwGD7wx/+oJdeeknl5eXq7Ozsc2/VqlWWUqE/WJEAgCAE+iOOzk5RUrzbcprg5KQnyGWkjm6vGtuZ3ARg6D3++OO6+uqrlZeXp9WrV2vGjBkaPny4tm7dqnPOOcd2PASJQgIAghDY1jQ+wrY1SVKcy6Xh/gP06JMAYMP//d//6amnntLChQuVkJCg22+/Xf/4xz/0ne98Rw0NDbbjIUgUEgAQhN6N1pEoL51CAoA95eXlPWNek5OT1dTUJEm6/PLL9dvf/tZmNPQDhQQABGHfYXSR2SyYF2i4bqThGsDQy8/P7znZetSoUfr3v/8tSSorK5PjODajoR8oJAAgCFv3ROYZEgGByU1VTaxIABh6p59+ul555RVJ0tVXX61bbrlFZ555pi6++GJdcMEFltMhWExtAoAj1NrZrV31bZIit5AIbG2qbuyQ13HkYnITgCH01FNPyev1SpJuuukmDR8+XCtWrNDcuXN1ww03WE6HYFFIAMARCqxGZKcmaFhqguU0/TM8LVFuY9Tp8aqhtSti/x4AIpPL5ZLLtW9DzFe/+lV99atftZgIA8HWJgA4iG5vt3794a/1wNsP6Ncf/lrd3u5eB9FFZn+EJLldRiMCDddsbwIwxMaOHaurr75aHR19+7T27t2rsWPHWkqF/mJFAgD28/CKh/Xg8gfV0N4gR46MjG5+42adnvOIpJyI3dYUkJuRqN2N7apu7FBxvu00AGLJtm3bFBcXp8997nN65ZVXlJ/v+yHk8Xi0fft2y+kQLFYkAKCXh1c8rO8v/b7q2urkdrmV4EqQ2+VWXVud3t6yUZI0PkJHvwbk9jrhGgCGkjFGS5Ys0VFHHaVp06bp/ffftx0JA0AhAQB+3d5uPbj8QXV7u5XkTlKcK04ul0txrjgluZPk9hZKkkbnJFtOOjC5gYbrJkbAAhhajuMoLS1Nf/rTn3TFFVdo9uzZ+vWvf207FvqJrU0A4PfiRy+qob1B8e54GVffaUbGuBTvjJQkfVy7TGfoazYihkRuhq+Q2NPkm9wEAEPF9JoU99BDD+nYY4/V9ddfr0suucRiKvQXhQSAmPbCyvKez5dsblZK91mKM+4+L3aSZLzpMkqUo26t3NqoF+LK9/9WEWN4aq/JTW1dtuMAiCH7Hzp32WWXady4cZwhEaEoJADAb3hytowkrxy51beQcDlZkiSPqVdOSraFdKHjdhkNT0tQdVMHJ1wDGFKBMyR6O/nkk/Xhhx9q48aNFhJhIOiRAAC/zxZ+VslxyfJ4Pdp/x4/L6yskjKtJny38rIV0oRU44bqaEbAAwkBeXp5mz55tOwaCxIoEAPi5jFvnjD9Hf974Z3V5u+R2ueWSkVeO4r2ZkqSxw3PkMm7LSQeOhmsAQ+WEE07Q0qVLNWzYME2dOvWAraO9rVq1agiTYaAoJACglzPHnSVJer30dbV1t6lbkpGUYLIlRzpx1DFW84VKoJDYQyEBYJB98YtfVGKi72fO+eefbzkNQolCAgD2c+a4szRn7By9v+t91bTVanhytt78KFNN7d3KSUu0HS8kem9tchznsO8QAsBA3H333ZJ8h86ddtppmjJlirKysiynQijQIwEAB+Eybp141Ek6d8K5mpo/Q03t3ZJ8E4+iQU5qglxGau/ysr0JwJBwu90666yzVFdXZzsKQoRCAgA+RU2L7xftlAS3khMivz9CkuLcLmX7i6LNVc2W0wCIFSUlJdq6davtGAgRCgkA+BQ1zZ2SpOGpCZaThFagT2JzdZPlJABixf3336/58+fr1VdfVWVlpRobG/t8ILLQIwEAn6KmxV9IREl/REBuRqI+rpQ2V7MiAWBonHvuuZKkuXPn9unNCvRqeTweW9HQDxQSAPApapp9W5uib0XC13BdytYmAENk2bJltiMghCgkAOBT7FuRiLZCwrfC8kl1E5ObAAwJDp2LLkH1SBhjnjfGpPd6fJwxJj70sQAgfOxbkYiurU05aYkykupbu3qKJQAYbO+8844uu+wyzZw5U7t27ZIk/epXv9Ly5cstJ0Owgm22vlRScq/H70g6OnRxACC8dHZ71dgz+jW6ViQS4lwa5v87MbkJwFD44x//qM9//vNKTk7WqlWr1NHhe6OmoaFBDz74oOV0CFawhcT+696sgwOIarWtvnfqk+PdSkmMvt2gge1NpUxuAjAE7r//fj3xxBN6+umnFR+/b1PLrFmztGrVKovJ0B+MfwWAw+jZ1hRl/REB+0bAsiIBYPBt2rRJp5xyygHXMzMzVV9fbyERBqI/b69NMsbk+z83koqNMWm9n+A4ztoBJwOAMBA4QyI7yrY1BQQmN7G1CcBQyM/PV2lpqUaPHt3n+vLlyzV27Fg7odBv/SkklqrvlqZX/f/r+K87kqLj6FcAMS/QhJwTZWdIBORmsCIBYOhcf/31uvnmm/WLX/xCxhhVVFTovffe0/z583XXXXfZjocgBVtIjBmUFAAQpqL1DImAEf4CaW9zh+pbO5WVEp1/TwDh4Y477pDX69WcOXPU2tqqU045RYmJiZo/f76+/e1v246HIAVVSDiOs32wggBAOOo5QyJKC4nEeLcKs5K1q75NpdXNmj4623YkAFHMGKM777xT3/3ud1VaWqrm5mZNmjRJaWlpn/7FCDv9GkFijJkg6YuSRsu3lalM0suO42wNXTQAsKvL41VDW5ckaXiUbm2SpPG5adpV36bNFBIAhkhCQoImTZpkOwYGKOhCwhjzfUn3yTfxqVq+vogRkhYYY37gOM5PQxsRAOyo9a9GJMW7lJIQva1fE3LT9K9P9tBwDWDQtbe3a+HChVq2bJmqq6vl9Xr73GcEbGQJqpAwxpwm6X5JP5L0mOM4df7r2ZLmyVdM/MdxnLdDnhQAhlhgYtPw1EQZE73H5kzI820p2MxZEgAG2bXXXqu///3vuuiiizRjxoyo/tkaC4JdkfiGpGccx7mn90XHcWol/dA/FvabkigkAES8mpboPkMiYHxuuiSplMlNAAbZq6++qtdee02zZs2yHQUhEOyBdDMk/eow938l6aT+xwGA8LFvRSLaCwnfikRlQ7ua2rsspwEQzQoLC5Wenm47BkIk2EIiT9K2w9wvk5R/mPsAEDF6ViRSo7fRWpIyk+OV5z9PglUJAIPp4Ycf1ve+9z1t384g0GgQ7NamJEmdh7nfJSm637oDEDN6Rr9G+dYmybcqUdXYoc3VzZo6apjtOACi1PTp09Xe3q6xY8cqJSVF8fHxfe7X1tZaSob+6M/41+uMMYd6y4q1KgBRocvjVUNr9I9+DZiQm653S2tYkQAwqC655BLt2rVLDz74oPLy8mi2jnDBFhLlkq4/gucAQESra+mUIykxzqXUKB79GhDok9hcxeQmAINnxYoVeu+993TcccfZjoIQCPZk69GDlAMAwkrvbU2x8I7ZhEAhwYoEgEFUXFystrY22zEQIkE1WxtjTjfGfGyMyTjIvUxjzHpjzOdCFw8A7Khpjo1G64AJeb6dqTvr2tTa2W05DYBotWDBAt1222166623VFNTo8bGxj4fiCzBbm2aJ+lpx3EO+DftOE6DMeZJSbdKeicU4QDAlp4ViSgf/RqQnZqg4akJqmnp1JbqFk0+KtN2JABR6Oyzz5YkzZkzp891x3FkjJHH47ERC/0UbCFxnKTvHeb+3yXN738cAAgPsTSxKWB8bppqympVuqeJQgLAoFi2bJntCAihYAuJPPlGvB5Kt6QR/Y8DAOEh1rY2SdKEvDStLKvV5ir6JAAMjtmzZ9uOgBAKtpDYJalEUukh7k+RVDmgRABgWbfXq/qe0a+xsyIxIdfXJ0HDNYDBVF9fr2effVYbNmyQJB177LG65pprlJnJSmikCfZk69ck/cgYk7T/DWNMsqR7Jb0aimAAYEtdS5ccSQlxLqUl9ue4ncgUmNzEWRIABst///tfjRs3To8++qhqa2tVW1urRx55ROPGjdOqVatsx0OQgn2FvF/SlyR9YoxZJGmT/3qxpJskuSU9ELp4ADD0aloC25piY/RrwPg8XyGxvaZF7V0eJcVH//kZAIbWLbfcorlz5+rpp59WXJzv19Du7m5dd911mjdvnt5++23LCRGMYM+RqDLGzJT0c0kPSQq8wjqS3pB0k+M4VaGNCABDq6Y5tiY2BYxIS9SwlHjVtXaptLpZJYVsMwAQWv/973/7FBGSFBcXp9tvv13Tp0+3mAz9EezWJjmOs91xnHMl5Ug6UdJJknIcxznXcZyyUAcEgKHWsyKRFjuN1pJkjNFE/3kSn3DCNYBBkJGRofLy8gOu79ixQ+np6RYSYSCCLiQCHMepcxznfcdx/uM4Tl0oQwGATbG6IiFJn8n3vZBvopAAMAguvvhiXXvttfrd736nHTt2aMeOHXrxxRd13XXX6ZJLLrEdD0GKnS5CADhC+86QiI0ViRdW7nt3sKHNN63qrY17VJSdekRf/7UTRw1KLgDR56c//amMMbriiivU3d0tSYqPj9c3v/lNLViwwHI6BItCAgB66fZ6VRdjp1r3lpfuG8pX1dhuOQmAaJSQkKDHHntMDz30kLZs2SJJGjdunFJSUiwnQ3/0e2sTAESj+lbf6Nd4t1F6Uuy915KX4Ssk6tu61N7lsZwGQLRKSUnR5MmTVVRUpL///e89Z0ogslBIAEAvvU+0jqXRrwHJCW5l+AsoViUAhNpXvvIVLVq0SJLU1tam6dOn6ytf+YqmTJmiP/7xj5bTIVgUEgDQy77+iNjb1hQQWJWoauywnARAtHn77bf1uc99TpL05z//WY7jqL6+Xo8//rjuv/9+y+kQLAoJAOhl38Sm2Gi0Ppj8DPokAAyOhoYGZWdnS5KWLFmiCy+8UCkpKTrvvPO0efNmy+kQLAoJAOhl3xkSrEhQSAAItaOPPlrvvfeeWlpatGTJEp111lmSpLq6OiUlJVlOh2DFXichABxGLJ8hEUAhAWCwzJs3T5deeqnS0tJUVFSkU089VZJvy9PkyZPthkPQKCQAwM/jdVTXGltnSBzMiPREGUktnR41d3QrLZGXCgChceONN2rGjBnasWOHzjzzTLlcvs0xY8eOpUciAvHqAAB+9a2d8jpSnCs2R78GJMS5lJ2aoJqWTlU1tittRJrtSACiyPTp0zV9+vQ+18477zxLaTAQsftKCQD7CUxsyk5NkCsGR7/2lpeRpJqWTu1uaNc4CgkAA3DrrbfqRz/6kVJTU3Xrrbce9rmPPPLIEKVCKFBIAIBfbQyfaL2/vIxEfVxJnwSAgVu9erW6urp6Pj+UWDy7J9JRSACAX22vFYlYR8M1gFBZtmzZQT9H5GP8KwD4UUjs01NINHXIcRzLaQAA4YhCAgD89hUSsTuxKSAnLVFuY9TZ7VV9W5ftOACAMEQhAQCSHMehR6IXt8toRLqvoGJ7EwDgYCgkAEBSc0e3Oj1eGUlZqfG244SF3IxAIdFhOQkAIBxRSACA9m1rykyJV5yLH42SlE/DNQDgMJjaBADq1R+RwramACY3AQiFV155Reecc47i4+P1yiuvHPa5c+fOHaJUCAUKCQBQ38Po4BMoJKqbOuTxOnK7mPEOIHjnn3++du/erdzcXJ1//vmHfJ4xRh6PZwiTYaCsr98bY24yxmwzxrQbY1YaY2Yc5rnHGmP+6H++Y4yZN9DvCQASh9EdTFZKvBLcLnm8jmpa6JMA0D9er1e5ubk9nx/qgyIi8lgtJIwxF0t6RNK9kk6Q9KGkN4wxuYf4khRJWyXdIWl3iL4nAOzb2pTG6NcAlzE0XAMIqeeff14dHQf+POns7NTzzz9vIREGwvaKxK2SnnYcZ7HjOB9L+oakVknXHOzJjuO87zjOdx3HeVHSoV7VgvqekmSMSTTGZAQ+JKUN4O8EIAKxteng6JMAEEpXX321GhoaDrje1NSkq6++2kIiDIS1QsIYkyBpmqR/Bq45juP1Pz55iL/n9yU19PrY2J8/H0Bk6ujyqKWjWxJbm/ZHIQEglBzHkTEH9lvt3LlTmZmZFhJhIGw2W+dIckuq2u96laTiIf6eD8m3HSqgQBQTQMyobfWtRqQkuJUU77acJrzksbUJQAhMnTpVxhgZYzRnzhzFxe37FdTj8aisrExnn322xYToD6Y2SXIcp0O9tkoZY9ItxgEwxGrZ1nRIgRWJmuYOdXm8infb3hELIBIFpjWtWbNGn//855WWtm8XeUJCgkaPHq0LL7zQVjz0k81CYq8kj6S8/a7n6RCN1Ja+J4AoRyFxaOmJcUqOd6uty6M9TR0amZVsOxKACHT33XdLkkaPHq2LL75YSUlJlhMhFKy9teQ4TqekDyTNCVwzxrj8j98Ll+8JIPrRaH1oxhj6JACEzJVXXqmkpCR1dnZq586dKi8v7/OByGJ7a9Mjkn5pjPmvpP9ImicpVdJiSTLGPC9pl+M43/c/TpA0yf+1CZIKjTHHS2p2HKf0SL4nAOyPMyQOLy8jUdtqWigkAAzY5s2bdc0112jFihV9rgeasDlLIrJYLSQcx/mdMWaEpPsk5UtaI+lsx3ECzdKjJHl7fclISat7PZ7v//iXpFOP8HsCQB/7tjZxhsTB7FuRoOEawMBcddVViouL06uvvqqCgoKDTnBC5LC9IiHHcRZJWnSIe6fu93ibpE/9f9zhvicA9ObxOqpvZWvT4eSztQlAiKxZs0YffPCBiov7O6AT4YTxGwBiWkNbl7yOFOcySk+y/t5KWAqsSNS3dam9i20HAPpv0qRJ2rt3r+0YCBEKCQAxrabFt11nWGqCXCyxH1RyglsZ/iKrmlUJAAPw4x//WLfffrveeust1dTUqLGxsc8HIgtvvwGIaTRaH5m8jCQ1tjersrFdo4an2o4DIEKdccYZkqQ5c+b0uU6zdWSikAAQ02qb6Y84EgWZSdpc3azKBlYkAPTfsmXLbEdACFFIAIhpnCFxZAIH0VXUt1lOAiCSzZ4923YEhBCFBICYVtfK1qYjMTLTV0jsbmiXx+vI7aKfBED/tba2qry8XJ2dnX2uT5kyxVIi9AeFBICY5ThOrxUJzpA4nOy0BCXEudTZ7dXe5o6eSU4AEIw9e/bo6quv1uuvv37Q+/RIRBamNgGIWTUtners9spIGpYSbztOWHMZowJ/8cD2JgD9NW/ePNXX12vlypVKTk7WkiVL9Mtf/lITJkzQK6+8YjsegsSKBICYtb2mVZKUkRyvODfvq3yakVnJ2l7bqsqGdk21HQZARHrzzTf1l7/8RdOnT5fL5VJRUZHOPPNMZWRk6KGHHtJ5551nOyKCwCsngJhVXtsiiUbrIzUyy7cisYsVCQD91NLSotzcXEnSsGHDtGfPHknS5MmTtWrVKpvR0A8UEgBiVmBFgkbrI1Pgb7iubGiT4ziW0wCIRJ/5zGe0adMmSdJxxx2nJ598Urt27dITTzyhgoICy+kQLLY2AYhZ5f5CghWJI5ObkSi3MWrv8qqutYt/bgCCdvPNN6uyslKSdPfdd+vss8/Wb37zGyUkJOi5556zGw5Bo5AAELPKaykkghHncikvI1EVDe2qqG/jnxuAoF122WU9n0+bNk3bt2/Xxo0bNWrUKOXk5FhMhv5gaxOAmLWdQiJoPQfTNdAnAWDgUlJSdMIJJ1BERCgKCQAxqbWzW3uaOiRJwzlD4ogV+AuJyvp2y0kARJv77rtP77zzju0YCAKFBICYFNjWlBzvVnKC23KayDEy03+WBCsSAEJs8eLF+vznP68vfOELtqPgCNEjASAmbafRul/yM5NkJDW1d6upvUvpSRzkByA0ysqxCzsnAAAgAElEQVTK1NbWpmXLltmOgiPEigSAmMTEpv5JjHMrJ823Fayyge1NAEIrOTlZ5557ru0YOEIUEgBiUmBrE2dIBK/AfzBdBQfTAThCP/nJT9TWtu9nxrvvvquOjo6ex01NTbrxxhttRMMAUEgAiElMbOq/kf6D6SgkAByp73//+2pqaup5fM4552jXrl09j1tbW/Xkk0/aiIYBoJAAEJPKa1okUUj0x74RsGxtAnBkHMc57GNEJgoJADGn2+PVzjrfu+kUEsELTG6qbelUe5fHchoAgC0UEgBiTmVDu7q9jhLiXMpIZupQsFIS45Tl/+dGwzUAxC7GvwKIOYHRr0cPS5bLGMtpIlNBVrLq27rokwBwxJ555hmlpaVJkrq7u/Xcc8/1nGjdu38CkYNCAkDMCUxsKhqeajlJ5BqZmaQNlY0UEgCOyKhRo/T000/3PM7Pz9evfvWrA56DyEIhASDmbK/1NVqPyk6xnCRyBRqu2doE4Ehs27bNdgQMAnokAMScwGF0RcMpJPorUEhUN7XTcA2gX3bu3Cmv12s7BgaAQgJAzNlGITFgGUlxSklwy+tIm3aztxlA8CZNmsRKRYSjkAAQUxzH6TlDYlQ2PRL9ZYzpWZVYX9FoOQ2ASMRZEpGPQgJATKlp6VRLp0fGSEdnJ9uOE9EC50msr2iwnAQAYAOFBICYEhj9WpCRpMQ4t+U0kY0VCQAD8YMf/EDZ2dm2Y2AAmNoEIKaUByY20R8xYCMzfYXExt2N6vZ4FefmvSkAR+773/++7QgYIAoJADElsCJRRH/EgGWnJSghzqX2Lq+27m3RxLx025EARIiKigo9+eSTKi0tVUFBga677joVFxfbjoUg8fYRgJgSGP3KisTAuYxRQQZ9EgA+XUpKivbs2SNJ+vjjjzVp0iS98MIL6urq0t/+9jdNmzZNa9eutZwSwaKQABBTttcy+jWUevokdtEnAeDQ2tvbe6Y0/eAHP9App5yiDRs26KWXXtL69es1d+5c3XnnnZZTIlhsbQIQU7b7R7+OHs7WplAYmeVbkVjHigSAI7Rq1Sr95je/UVyc79dQl8ul22+/Xeedd57lZAgWKxIAYkZzR7f2NndKYmtTqBRm+f45frSzQR4vM+EBHJwxRsYYSb7CITMzs8/9rKws1dXV2YiGAaCQABAzAv0Rw1LilZEUbzlNdMjNSFRaYpxaOj2ccA3gkBzH0cSJE5Wdna2KiooD+iFKS0uVn59vKR36i61NAGLGvtGvbGsKFZcxOv7oLC0v3atV5XWaNDLDdiQAYWjx4sV9Ho8fP77P43//+9+64IILhjISQoBCAkDM2Df6lW1NoXTCqH2FxGUnFdmOAyAMXXnllYe9f9dddw1REoQSW5sAxAwmNg2OqUXDJEmrtrO/GQBiCYUEgJjRc4YEKxIhdcLRvkJiW02rapo7LKcBEIk2bNigsWPH2o6BIFFIAIgZ2/09EkX0SIRUZkq8xuemSZJWl9dbTgMgEnV2dmr79u22YyBI9EgAiAmd3V7tqmuTxNamwXDCqCyVVjdrVXmdzpiUZzsOgDBz6623HvZ+4NRrRBYKCQAxYVd9m7yOlBTvUm56ou04UeeEUcP00n93alU5fRIADvTYY4/p+OOPV0bGwSe7NTc3D3EihAKFBICYEDjRuig7tedQJITOCf6G6w93NKjb41Wcm52zAPYZP368brnlFl122WUHvb9mzRpNmzZtiFNhoPhJDyAmlPsnNnGi9eAYPyJN6UlxauvyaCMH0wHYz/Tp0/XBBx8c8r4xRo7jDGEihAIrEgBiAmdIDC6Xy2jqqGF6+5M9WlVep5LCTNuRAISRhx9+WB0dh57qdtxxx8nr9Q5hIoQCKxIAYkJPIcGKxKA5YVSWJM6TAHCg/Px8FRVxYGW0oZAAEBPK/aNfRzH6ddCcMMp/MB0jYAHsp66uTgsXLlRjY+MB9xoaGg55D+GNQgJA1HMcp6dHgq1Ng+f4UVkyxtePsqeJg+kA7LNo0SK9/fbbB53alJmZqXfeeUcLFy60kAwDQSEBIOpVN3Wovcsrt8uocFiy7ThRKyMpXhP8B9MxBhZAb3/84x/1jW9845D3b7jhBv3hD38YwkQIBQoJAFFv217ftqaRWUmKZyzpoNq3vYlCAsA+W7Zs0YQJEw55f8KECdqyZcsQJkIo8IoKIOpt929rGk1/xKALFBKrt9MnAWAft9utioqKQ96vqKiQy8WvpZGGf2MAol65f2LTKPojBl3PwXQ769XlYZQjAJ+pU6fq5ZdfPuT9P//5z5o6deoQJkIoUEgAiHqBFQlGvw6+sTmpykyOV0e3Vx9XMIEFgM+3vvUtPfzww1q0aJE8Hk/PdY/Ho4ULF+rRRx/VTTfdZDEh+oNCAkDUK6/xj37NZmvTYPMdTOc/T4I+CQB+F154oW6//XZ95zvfUXZ2tqZOnaqpU6cqOztb8+bN06233qqLLrrIdkwEiUICQNRjRWJocZ4EgIN54IEH9O9//1tXXXWVRo4cqYKCAl199dV67733tGDBAtvx0A9xtgMAwGBqaOtSfWuXJHokhkpPIcEJ1wD2M2PGDM2YMcN2DIQIKxIAolqg0TonLVGpibx3MhSOOzpTxki76ttU1dhuOw4AYJBQSACIattrff0RbGsaOulJ8fpMXrokViUAIJpRSACIatv9KxJFbGsaUoExsDRcA0D0opAAENW21wRWJJjYNJRouAaA6EchASCq9axIsLVpSJ3gHwH70a4GdXZzMB2AAy1YsED19bzZEMkoJABEtXL/6NdRFBJDakxOqoalxKuz26uPdvGLAoADPfjgg6qtrbUdAwNAIQEgarV3ebTbPzWIHomhZYzRiWOGS5JWlNZYTgMgHDmOYzsCBohCAkDU2lnXKseR0hLjlJ2aYDtOzJk1IUeStLx0r+UkAIDBQCEBIGoF+iNGZafIGGM5TeyZNc63IrG6vF6tnd2W0wAINx9//LGKiopsx8AAUEgAiFo0Wts1JidVIzOT1Onx6v1tjIEF0NfRRx8tt9ttOwYGgEICQNQKjH6l0doOY4xmjvdtb1rB9iYAiDoUEgCi1vbawGF0nCFhy/+Mp08CAKIVhQSAqFXu39o0mhUJa2b6+yQ+rmxUXUun5TQAgFCikAAQlTxeRzvqOEPCttyMJE3MS5PjSO9tZQwsAESTONsBAGAw7KprU5fHUUKcSyMzk23HiWkzx+Xok6pmLS/dq3MnF9iOA8Aij8ej5557TkuXLlV1dbW83r4n37/55puWkqE/KCQARKUyf6P16OEpcrkY/WrT/4zP0XMrttFwDUA333yznnvuOZ133nkqKSlhNHeEo5AAEJXK9jRLkkYPp9HathPHZsvtMtpW06qdda06ahhbzYBY9eKLL+qll17SueeeazsKQoAeCQBRaZu/0XrMCAoJ29KT4nXcUZmSpBWl9EkAsSwhIUHjx4+3HQMhQiEBICpt3evb2jSGFYmwMIsxsAAk3XbbbXrsscfkOI7tKAgBtjYBiErbAoVEDoVEOJg1PkcL3yzVii175TgO+6KBGLV8+XItW7ZMr7/+uo499ljFx8f3uf+nP/3JUjL0B4UEgKjT2e3VTv/oVwqJ8DB1VJaS4l3a29ypTVVNKs7PsB0JgAVZWVm64IILbMdAiFBIAIg65bWt8jpSaoJbI9ITbceBpMQ4t2aMGa63P9mjd0trKCSAGLV48WLbERBC9EgAiDpl/m1No3NS2UITRmb5T7l+lz4JIGbdfffd2r59u+0YCBEKCQBRh/6I8BRouF65tUZdHu+nPBtANPrLX/6icePGac6cOXrhhRfU0dFhOxIGgEICQNTZSiERliYVZGhYSrxaOj36cEe97TgALFizZo3ef/99HXvssbr55puVn5+vb37zm3r//fdtR0M/UEgAiDqsSIQnl8to5jjfqsS7nCcBxKypU6fq8ccfV0VFhZ599lnt3LlTs2bN0pQpU/TYY4+poaHBdkQcIQoJAFGnd48EwsvM8f4+iS30SQCxznEcdXV1qbOzU47jaNiwYVq0aJGOPvpo/e53v7MdD0eAQgJAVGnt7NbuxnZJ0lgKibDzP/4+idXldWrt7LacBoANH3zwgb71rW+poKBAt9xyi6ZOnaoNGzboX//6lzZv3qwHHnhA3/nOd2zHxBGgkAAQVbbt9Z0fkZUSr6yUBMtpsL9R2SkqzEpWl8fRf8pqbccBMMQmT56sk046SWVlZXr22We1Y8cOLViwQOPHj+95ziWXXKI9e/ZYTIkjRSEBIKpsq6E/IpwZY3pWJZZvZnsTEGu+8pWvaNu2bfrb3/6m888/X263+4Dn5OTkyOtlslskoJAAEFUC/RFjhlNIhKtTJo6QJL25qdpyEgBD7a677lJhYWHPY4/HozVr1qiurs5iKvQXJ1sDiCplTGwKe6dMzFG822jrnhZt3dOssSPS9MLK8gF9z6+dOCpE6QAMpnnz5mny5Mm69tpr5fF4NHv2bK1YsUIpKSl69dVXdeqpp9qOiCCwIgEgqjCxKfylJ8XrpLG+6U1LN7AqAcSSP/zhDzruuOMkSX/9619VVlamjRs36pZbbtGdd95pOR2CRSEBIKpwhkRkmFOcK0n6x4Yqy0kADKW9e/cqPz9fkvTaa6/py1/+siZOnKhrrrlGH330keV0CBaFBICo0dDWpZqWTkmsSIS7OcfkSZL+u61Wdf5/ZwCiX15enj7++GN5PB4tWbJEZ555piSptbX1oI3XCG8UEgCiRmA1Ijc9UWmJtICFs6OzU1Scny6vI731CdubgFhx9dVX6ytf+YpKSkpkjNEZZ5whSVq5cqWKi4stp0OweKUFEDXoj4gsZxyTp427m/TPj6s1yz8SFkB0u+eee1RSUqIdO3boy1/+shITEyVJbrdbd9xxh+V0CBaFBICoESgkONE6MpwxKU+LlpXqX5/s0YljsxXnYpEciAUXXXTRAdeuvPJKC0kwUPzUBhA1WJGILFMKMzUiPVHNHd09/+4AxK7nn39eW7ZssR0DQaCQABA1ONU6srhcpmd604bKJstpANh21VVXadKkSfr2t79tOwqOEIUEgKjgOI7K9lBIRJoz/NObNu5ulOM4ltMAsMnr9Wrjxo065phjbEfBEaKQABAValo61dTRLWOkUdkptuPgCM0an6PEOJfqW7u0u7HddhwAlo0ZM0Y33nij7Rg4QhQSAKJCYI/9yMxkJcUzizxSJCe49bkJvolNG3ezvQmIVtdee61Wrlx5yPt1dXU6/fTThzARQoFCAkBU6JnYNIJtTZEmsL1pQ2Wj5SQABsvixYt16qmnavHixQe939nZqX/9619DnAoDRSEBICr0TGwaTiERaU73N1zvrGtTU3uX5TQABsvtt9+uG264QTfffLO8Xq/tOAgBCgkAUSFwqjWN1pEnNyNJRw1LlsT2JiCa3XTTTfrHP/6hF198UWeddZZqa2ttR8IAUUgAiAplFBIRrTg/QxLbm4BoN3v2bP3nP/9RTU2NPvvZz2rdunW2I2EAKCQARDyv1+EMiQh3TEG6JGnLnmZ1drPlAYhmRUVFWrFihWbMmKGZM2fqT3/6k+1I6CcKCQARb3dju9q7vIpzmZ4tMogs+RlJykqJV5fH0ZY9zbbjAAgxY0yfx8nJyfrtb3+rO++8U1/96ld17733WkqGgaCQABDxAv0Ro7JTFOfmx1okMsb0bG/auJvtTUC0OdSBk9/73vf0l7/8RS+++OIQJ0Io8IoLIOJtDUxsYltTRAtsb9pY2SQvp1wDUWXx4sXKzMw86L1zzjlHK1eu1N133z3EqTBQFBIAIh4Tm6LDmJxUJca51NTRrR21rbbjAAihK6+8UomJiX2uvfvuu+ro6JAkTZgwQT/84Q9tRMMAUEgAiHhlrEhEhTiXS8cU+LY3rdvVYDkNgMF2zjnnaNeuXbZjYAAoJABEvDL/xKaxFBIRr2Skb+vD+orGQ+6pBhAd+G888lFIAIho3R6vymt822BYkYh8E/LSlOB2qb6tS7vq22zHAQAcBoUEgIi2q75N3V5HiXEuFWQk2Y6DAYp3u/SZfF/TNdubgOj25JNPKi8vz3YMDACFBICI1jOxaXiqXC7zKc9GJCgp9G1vWsf2JiCqfe1rX1NqKivJkYxCAkBE21LtO7xs7AhejKLFxLw0xbuNals6VdnQbjsOgBCorq7u83jNmjW68sorNWvWLF100UV666237ATDgMTZDgAAA7G5yldITMhLt5wkdr2wsjyk3y8xzq2JeelaX9GodRUNGpnFaeVApCsoKFBlZaVyc3O1YsUKnXrqqZo5c6ZmzZqlNWvW6Mwzz9TSpUt1yimn2I6KIFBIAIhom6ubJEkTctMsJ0EoHTsy01dI7GrUmcfkyRi2rQGRrPc2xXvuuUeXX365nn322Z5r8+bN07333qulS5faiId+YmsTgIjlOE7PisREViSiSnF+utwuo73NHapu6rAdB0AIrVu3Ttdff32fa9dff73Wrl1rKRH6i0ICQMTa3diupo5uuV1Go3NSbMdBCCXFu3tWmZjeBESHpqYmNTY2Kikp6YBTrpOSktTayon2kYZCAkDECqxGjB6eosQ4t+U0CLXA4XTrKigkgGgwceJEDRs2TNu2bdN///vfPvfWr1+vkSNHWkqG/qJHAkDE+qQq0B/BtqZodExBhlxGqmrs0J6mDo1IT/z0LwIQlpYtW9bncUFBQZ/HZWVl+vrXvz6UkRACFBIAIlZpdaA/gkbraJSc4Na4EWnaXN2s9RUNOvUzubYjAein2bNnH/b+zTffPERJEEpsbQIQsXpWJGi0jlo9h9PRJwEAYYdCAkBEchxHm6sDZ0j0XZHwOl59UPGB3ih9Qx9UfCCv47URESEwyb+9qaKhXbUtnbbjABgkH374odxuet0iDVubAESkqsYONbX7JjaNydl3qvWbZW9qwfIF2rR3kzq9nUpwJegzOZ/RHf9zh04fc7rFxOiP1MQ4jc5J1dY9LVq3q0GnTBxhOxKAQdL7rAlEBgoJABEpsK2pqNfEpjfL3tQNr96gpo4mDU8ersS4RHV0d2ht1Vrd8OoNevJ/n6SYiEAlIzN9hUQFhQQQqb70pS8d9n5DQwMHT0YgtjYBiEiBbU0T/RObvI5XC5YvUFNHkwrTC5UcnyyXcSk5PlmF6YVq6mjSguUL2OYUgY4dmSEjaWddm+pb2d4ERKK//vWvam9vV2Zm5kE/0tIYmhGJWJEAEJE29zRa+158Vleu1qa9mzQ8efgB72oZY5SdnK1NezdpdeVqTRs5bcjzov/Sk+JVNDxF22pata6iUf8zPsd2JABBOuaYY3ThhRfq2muvPej9NWvW6NVXXx3iVBgoCgkAESmwIlHd1KEXVpZr/Z5qdbecJKc7U+0HWx53HHV3NOhPq6q1aUf5EKfFQJUUZvoKiV0NFBJABJo2bZpWrVp1yEIiMTFRo0aNGuJUGCgKCQARx3Gcnh6JvPQkSVJaQprijFvd3m4luOMP+Jpub5fijFtpCSyfR6JjR2bq1bWVKq9tVUNblzKTD/x3DCB8PfHEE/J4PIe8f8wxx6isrGwIEyEU6JEAEHGqm3wTm1xGyklLkCSNyjxaeWn5aulqPmDyh+M4aulqUV5avkZlHm0jMgYoMzleo7JTJEnrKzhTAog0iYmJSklJsR0DIUYhASDiBFYjslMTFef2/Rgzcuns8WcrKS5J9R316vR0yus46vR0qr6jXklxyTp7/Nky/NiLWBxOB0SuiooKzZ8/X42NjQfca2ho0He/+11VVVVZSIaB4BUVQMT5pMrXH5GbntjnenFOsS6dfJkK049SR3eHGjoa1NHdocL0o3Tp5EtVnFNsIy5CpGRkhiRpe02rGtu7LKcBEIxHHnlEjY2NysjIOOBeZmammpqa9Mgjj1hIhoGgRwJAxCmt9vdHZCQecK84p1ifyZmo8oYdau5sVlpCmkZlHs1KRBTISknQ0cOStaOuTesrGnXy2OG2IwE4QkuWLNETTzxxyPtXXHGFrr/+ev34xz8ewlQYKAoJABFn34pE0kHvG7lUlFk0lJEwREoKM7Wjrk3rdjVQSAARpKys7LBTmY466iht27Zt6AIhJHiLDkBEcRyn5wyJ3IOsSCC6lYz09Uls29uiJrY3AREjOTn5sIXCtm3blJycPHSBEBJhUUgYY24yxmwzxrQbY1YaY2Z8yvO/bIzZ6H/+R8aYc/e7/5wxxtnvY8ng/i0ADIXqpg419kxsopCINcNSE1SYlSxH0seVBzZtAghPJ554on71q18d8v7zzz+vGTMO++sfwpD1QsIYc7GkRyTdK+kESR9KesMYk3uI58+U9FtJz0qaKullSS8bY0r2e+oSSQW9Pi4ZlL8AgCG12b+tafTwVMW7rf8IgwWTmd4ERJz58+dr8eLFmj9/fp/pTFVVVbrtttv03HPPaf78+RYToj/C4VX4VklPO46z2HGcjyV9Q1KrpGsO8fybJS1xHOf/OY6zwXGcuyStkvSt/Z7X4TjO7l4fdYP2NwAwZAKjXyfkcbBcrAqMgS3b26Lmjm7LaQAcidNOO00/+9nPtGjRIo0cOVLDhg1Tdna2Ro4cqZ/97GdauHChTj/9dNsxESSrzdbGmARJ0yQ9FLjmOI7XGPNPSScf4stOlm8Fo7c3JJ2/37VTjTHVkuokvSnp/3Mcp+YQORIl9d4jwW8oQJja7J/YNCE33XIS2JKdmqCRWUmqqG/XhopGfXZMtu1IAI7ADTfcoP/93//VSy+9pNLSUjmOo4kTJ+qiiy7SUUcdZTse+sH21KYcSW5J+59AUiXpUAPf8w/x/Pxej5dI+pOkMknjJD0o6XVjzMmO4xzsfPbvS7o7uOgAbAhsbZqQl6aWjoP954xYUDIyUxX17VpX0UAhAUSQwsJC3XLLLbZjIETCYWtTyDmO86LjOK84jvOR4zgvS/pfSZ+VdOohvuQhSZm9Pji1CghDjuPs29rEikRMC2xv2rKnWa1sbwIAK2wXEnsleSTl7Xc9T9LuQ3zN7iCfL8dxtvr/rPGHuN/hOE5j4ENS8xFkBzDE9vSa2DR2RKrtOLAoJy1RBZlJ8jpMbwIAW6wWEo7jdEr6QNKcwDVjjMv/+L1DfNl7vZ/vd+Zhni9jzFGShkuqHEheAHYFDqIrGp6qpHi35TSw7Vj/mRLrKpjeBAA22F6RkHyN09cbY640xhwj6eeSUiUtliRjzPPGmId6Pf8xSWcbY24zxhQbY+6RNF3SIv/z04wx/88Yc5IxZrQxZo6kv0gqla8pG0CE2retiXkI2DcGdkt1ixpaOZwOAIaa7WZrOY7zO2PMCEn3ydcwvUbS2Y7jBBqqR0ny9nr+CmPM1yTdL18T9WZJ5zuOs87/FI+kKZKulJQlqULS3yXd5ThOxxD8lQAMks3VvhWJiXn0R0AakZ6ovIxEVTV26B8bqnTRNKa+AJGis7NT1dXV8nq9fa6PGjXKUiL0h/VCQpIcx1kk/4rCQe6depBrv5f0+0M8v03S50OZD0B42MwZEthPychMVTVW67WPKikkgAiwefNmXXPNNVqxYkWf647jyBgjj4dpfJEkLAoJAPg0juP0rEgwsQkBJYWZWrqxWss371VTe5fSk+JtRwJwGFdddZXi4uL06quvqqCgQMYY25EwABQSACLCnqYONbR1MbEJfeSmJ2pEWqL2NHfozY3V+uLxhbYjATiMNWvW6IMPPlBxMZP2o0E4NFsDwKcKrEYwsQm9GWN0bGGGJOn1jw45BRxAmJg0aZL27t1rOwZChEICQEQITGwaz8Qm7KfEPwb2rU+q1drJ4XRAOPvxj3+s22+/XW+99ZZqamrU2NjY5wORha1NACJC4AyJiTRaYz8FmUk6OjtZO2rb9NamPTp3coHtSAAO4YwzzpAkzZnT90gwmq0jE4UEgIgQWJFg9Cv2Z4zROSUFeurtrXp93W4KCSCMLVu2zHYEhBCFBICw5/E6+rjCt+R97MgMy2kQjs4uyddTb2/Vmxuq1N7loY8GCFOzZ8+2HQEhRCEBIOxt2dOsti6PUhPcGpPD1iYc6PijspSfkaTdje1avnmvzpiUZzsSAL+1a9eqpKRELpdLa9euPexzp0yZMkSpEAoUEgDC3tqdDZKkY0dmyu1i5jgO5HIZnV2Sr+dWbNPr63ZTSABh5Pjjj9fu3buVm5ur448/XsYYOY5zwPPokYg8FBIAwt5HO+slSZOPyrScBOEsUEj8c0OVujxexbsZTAiEg7KyMo0YMaLnc0QPCgkAYe+jXb4ViSkUEjiMz47OVk5agvY2d+q9LTU6ZeII25EASCoqKjro54h8FBIAwlq3x6v1/kbrkkIKCRya22V05qR8/fY/5Xp93W4KCSBMvPLKK0f83Llz5w5iEoQahQSAsLa5ulkd3V6lJcZpzPBU23EQ5s4p8RUSf1+/W/efX0JPDRAGzj///CN6Hj0SkYcNpADCWmBbU0lhhlz8UohPcfK44cpMjldNS6f+U1ZrOw4ASV6v94g+KCIiD4UEgLD2kX9i02S2NeEIxLtdOuMY38SmJesqLacBgOjG1iYAYS2wIjH5qCzLSRApzinJ1x9X7dSS9bt19xeOZSULsOzxxx/X17/+dSUlJenxxx8/7HO/853vDFEqhAKFBICw1eXx6uNKX6M1KxI4Uv8zIUdpiXGqauzQ6h31mlY0zHYkIKY9+uijuvTSS5WUlKRHH330kM8zxlBIRBgKCQBh65OqJnV2e5WeFKei7BTbcRAhkuLdOr04V698WKEl6yopJADLep8dwTkS0YUeCQBha92uff0RbE9BMM4pyZckvb5u90FP0AVgn+M4/PcZ4SgkAISttTRao59mf2aEkuJd2lnXpnW7Gm3HAdDLs88+q5KSEiUlJSkpKUklJSV65plnbMdCP1BIAAhb+xqtKSQQnJSEOJ06Me72Dj8AACAASURBVFeS9DrTm4Cw8cMf/lA333yzvvCFL+j3v/+9fv/73+sLX/iCbrnlFv3whz+0HQ9BokcCQFjq7PZqY2WTJGlKIRObELxzJudryfrden3dbn3385+RMWyPA2z7+c9/rqefflqXXHJJz7W5c+dqypQp+va3v6377rvPYjoEixUJAGHpk6omdXq8ykyO19HZybbjIAKdXpyrhDiXyva2aFNVk+04ACR1dXVp+vTpB1yfNm2auru7LSTCQFBIAAhLvfsjeCcZ/ZGeFK9TJoyQJL320W7LaQBI0uWXX66f//znB1x/6qmndOmll1pIhIFgaxOAsER/BELh3Mn5+ueGKi1ZV6lbz5xoOw4Qk2699daez40xeuaZZ/T3v/9dJ510kiRp5cqVKi8v1xVXXGErIvqJQgJAWPpoV70kJjZhYOYck6d4t9EnVc0qrW7S+Nx025GAmLN69eo+j6dNmyZJ2rJliyQpJydHOTk5Wr9+/ZBnw8BQSAAIOx3dHm3a7dvTTiGBgchMjtes8Tl6a9Mevf7Rbn17DoUEMNSWLVtmOwIGCT0SAMLOpt1N6vI4ykqJ11HDaLTGwJxbUiBJem0dfRJAONm5c6d27txpOwYGgEICQNih0RqhdOakPLldRhsqG7Vtb4vtOEBM83q9uu+++5SZmamioiIVFRUpKytLP/rRj+T1em3HQ5AoJACEnXX+RuspNFojBIalJujkscMlSa+zKgFYdeedd2rRokVasGCBVq9erdWrV+vBBx/UwoULddddd9mOhyDRIwEg7PRekQBC4ZzJ+Vpeulevr6vUN08dZzsOELN++ctf6plnntHcuXN7rk2ZMkWFhYW68cYb9cADD1hMh2CxIgEgrLR3efSJ//CwyUdxojVC46xJ+XIZX5G6s67VdhwgZtXW1qq4uPiA68XFxaqtrbWQCANBIQEgrGzc3fT/s3ff8VXX1+PHX+eu3OyQhARIwoxsGSooAnWgVlyttFpaF9U6Wler7fen7VdbtVpqxaKlfv3WOr/WqrWOugcoLoYKMmTPkBAI2Xvce9+/Pz43EEJCbsa9n4zzfHgfuXzmSe713s/5vMfBFzCkxHoYlOi1OxzVS/SPj2LqsGQA3tHuTUrZZuLEiSxatOiI5YsWLWLixIk2RKQ6Q7s2KaW6lXW5Vv2I8TrQWnWx2eMHsnxHMW+ty+cnM4fbHY5SfdL999/PueeeywcffMC0adMAWLZsGXv27OGtt96yOTrVXtoioZTqVhrHR+hAa9XVzh4/AIBVOaXsK6u1ORql+qZTTjmFLVu2cOGFF1JaWkppaSlz5sxh8+bNzJw50+7wVDtpi4RSqltZl6cDrVX7PbciJ6TthiTHsLu4mt+/uYGTR6Qetu5HJw4OR2hKqWYGDRqkg6p7CU0klFLdRm2Dn60FlQAcqy0SKgzGZySyu7ia9XnlRyQSSqnIqK2tZe3atRQUFBxRO6LpbE6q+9NEQinVbXy9pxR/wNA/PooBCTrQWnW9cYMSeHNdPruLqqiobSDe67Y7JKX6lHfeeYfLL7+cwsLCI9aJCH6/34aoVEfpGAmlVLfx+fYiAE4anqIDrVVYJMV4yOwXjQE25JfbHY5Sfc6NN97IRRddRH5+PoFA4LCHJhE9jyYSSqluY9l26w7V9BEpNkeierPxg6xuc40D+5VSkbN//35uueUW0tPT7Q5FdQFNJJRS3UJ1vY/VOdbUr9p3XYVT44xguwqrKKtpsDkapfqW73//+3z00Ud2h6G6iI6RUEp1C1/sKsEXMGQkRZOVHG13OKoXS4rxHJy9aV1eGTOyNXFVKlIWLVrERRddxCeffMKxxx6L2334OKWbbrrJpshUR2gioZTqFj7fZnVrOnmEjo9Q4Tch05q9aW1uqSYSSkXQP//5T9577z28Xi8fffTRYZ/3IqKJRA+jXZuUUt1C40Drk7N1fIQKv/EZiQiQW1JDUWWd3eEo1Wf85je/4a677qKsrIxdu3axc+fOg48dO3bYHZ5qJ00klFK2K6tuYP1ea+Crjo9QkRDvdTMiLQ6AtXk66FqpSKmvr+cHP/gBDodegvYG+ioqpWy3fGcRxsCI/rGka/0IFSETg4Ou1+wptTkSpfqOK664ghdeeMHuMFQX0TESSinbLWvs1qStESqCxg5M5FXHXgoq6thXVmt3OEr1CX6/n/vvv593332XCRMmHDHY+sEHH7QpMtURmkgopWz3WZOB1kpFSrTHyaj0eDbkl7MmV1sllIqEdevWMXnyZADWr19/2DqdaKPn0URCKWWrgopathZUImJVtFYqkiZkJrIhv5y1uaUYY/RCRqkw+/DDD+0OQXUhHSOhlLJVY7emsQMT6BfrsTka1deMHpCAx+WgpLqB1TpWQqmIys3NJTc31+4wVCdoIqGUstWh8RHaGqEiz+NyMHZgAgD/+XqvzdEo1fsFAgHuvvtuEhMTGTJkCEOGDCEpKYl77rmHQCBgd3iqnTSRUErZ6rPtjeMjdKC1sseE4OxNb67Lxx8wNkejVO/2m9/8hkWLFjF//nxWr17N6tWrue+++/jLX/7CHXfcYXd4qp10jIRSyjZ7iqvZU1yD0yFMGZZsdziqj8pOiyPa7eRARR3LdxQxXStdKxU2Tz/9NH//+9+54IILDi6bMGECGRkZ/OxnP+Pee++1MTrVXtoioZSyTWO3pomZicRF6X0NZQ+Xw8H4DKtVQrs3KRVexcXFjB49+ojlo0ePpri42IaIVGdoIqGUss3n2q1JdRONxeneXp9Pnc9vczRK9V4TJ05k0aJFRyxftGgREydOtCEi1Rl6C1ApZQtjDJ83DrTO1oHWyl5DU2NJT4hif3kdH28p5Myx6XaHpFSvdP/993PuuefywQcfMG3aNACWLVvGnj17eOutt2yOTrWXtkgopWyx/UAlBRV1eFwOjhvcz+5wVB/nEOG8CYMA+M8a7d6kVLiccsopbNmyhQsvvJDS0lJKS0uZM2cOmzdvZubMmXaHp9pJWySUUrZobI04YUg/vG6nzdEoBRdMHMTjn+7kgw37qazz6bgdpbqYz+fjvvvu48orr9RB1b2EtkgopWzx+TatH6G6lwmZiQzvH0tNg5/XtVVCqS7ncrm4//778fl8doeiuogmEkqpiAsEDMt2WInENB1orboJEWHulCwAnl+ZY3M0SvVOs2bNYunSpXaHobqIttsqpSJuQ345ZTUNxEW5Ds6Wo1R3MOe4TP707mbW5JaxYW85Ywcl2B2SUr3K7Nmzue2221i3bh3HH388sbGxh61vWl9CdX+aSCilIu6zbda0r1OHJeNyasOo6j5S46I4c2w6b63bxwtf5HDXd8bbHZJSvcrPfvYzAB588MEj1okIfr9Ov9yT6De4Uiri3tuwH4AZWkFYdUNzpwwG4JXVedQ26EWNUl0pEAi0+tAkoufRREIpFVF5pTV8tbsEETjn2IF2h6PUEWZkp5KRFE15rY+31+fbHY5SSnVb2rVJKRVRb661ZsOZMjSZAYlem6NR6kgOh/CDKVk8+P4W/rlyDxdOzrQ7JKV6lcWLF7N48WIKCgoIBAKHrXviiSdsikp1hLZIKKUi6vU11h3e8ycOsjkSpVp30QmZOARW7ixmx4FKu8NRqte46667OOuss1i8eDGFhYWUlJQc9lA9i7ZIKKUiZldhFevyynAIzB4/wO5wlGrVwMRoTh2VxpJNBbzwxR5uP2eM3SEp1Ss8+uijPPXUU1x22WV2h6K6gLZIKKUi5o1gt6bp2amkxkXZHI1SR9dYU+Lfq3Kp9wXa2FopFYr6+npOPvlku8NQXUQTCaVUxLyx1urWdN4EHWStur/TRqfRPz6Kwsp6Fm/cb3c4SvUKP/nJT3juuefsDkN1Ee3apJSKiK37K9i0rwK3U/j2OO3WpLo/t9PBRcdn8shH2/nnF3uYrbOMKdUht9xyy8HngUCAv/3tb3zwwQdMmDABt9t92LYt1ZdQ3ZcmEkqpiHg92Box85j+JMV4bI5GqdD8YEoWj3y0nU+2HiC3pJrMfjF2h6RUj7N69erD/j1p0iQA1q9ff9hyEYlYTKpraCKhlAo7YwxvrLHGR5w/Ue/qqp5jSEosJ49I4fPtRbz4ZS63nDnS7pCU6nE+/PBDu0NQYaJjJJRSYbchv5wdhVV4XA7OGJNudzhKtcvcqVal6399uQd/wNgcjVI9W1lZGcXFxUcsLy4upry83IaIVGdoIqGUCrvG2hGnj0oj3utuY2ulupezxqaTFOMmv6yWjzYX2B2OUj3a3Llzef75549Y/uKLLzJ37lwbIlKdoYmEUiqsjDEHp309T7s1qR7I63by/eOs6taPfbLD5miU6tlWrFjBaaeddsTyU089lRUrVtgQkeoMTSSUUmG1JreM3JIaYjxOTh+dZnc4SnXIlTOG4XYKy3cUsypHq+8q1VF1dXX4fL4jljc0NFBTU2NDRKozNJFQSoXV68FB1rPGpBPj0fkdVM80KCma707KAOCRD7fbHI1SPdfUqVP529/+dsTyRx99lOOPP96GiFRn6Le6UipsAgHDm8FpX8/XInSqh7vu1BG8tCqXDzbuZ/O+CkYNiLc7JKV6nN///vecccYZrFmzhlmzZgGwePFivvjiC9577z2bo1PtpS0SSqmw+XJ3CfvKa4mPcnHKqP52h6NUp4zoH8fZwWKKjy7VVgmlOmL69OksW7aMzMxMXnzxRV5//XWys7NZu3YtM2fOtDs81U7aIqGUCpvGQdZnjRtAlMtpczRKdd5PTx3B2+v38Z81e7nlzJFkJWuBOqXaa9KkSTz33HN2h6G6gCYSSqmwqPP5D3Zr0tmaVG8xITOJGdmpfLqtkMc+2cHd3xlvd0hK9Th+v59XX32VjRs3AjBu3DguuOACnE694dTTaNcmpVRYvPb1Xoqq6hmQ4GVGdqrd4SjVZX526ggAXvhiDwcq6myORqmeZdu2bYwdO5bLL7+cl19+mZdffplLL72UcePGsX27dhnsaTSRUEp1OWMMj3+yE4AfTx+K26kfNar3mDYihYlZSdT5Ajz52U67w1GqR7npppsYPnw4e/bsYdWqVaxatYqcnByGDRvGTTfdZHd4qp30210p1eU+3lrI5v0VxHqczJ062O5wlOpSInKwVeL/lu2mvLbB5oiU6jmWLl3K/fffT3Jy8sFlKSkpzJ8/n6VLl9oYmeoITSSUUl3usY+t6r8npQ1m2wY3gUD79vcFfDy75lnu/fhenl3zLL7AkcWLlLLTmWPSyU6Lo6LOx7PLd9sdjlI9RlRUFBUVFUcsr6ysxOPx2BCR6gxNJJRSXerp18r5dFshJgBvLRzKnDlw9tmwZElo+y/4fAHpD6Qz77V53PnRncx7bR7pD6Sz4PMF4Q1cqXZwOITrTrFaJZ74dBe1DX6bI1KqZzjvvPO45pprWLFiBcYYjDEsX76c6667jgsuuMDu8FQ7aSKhlOoyS5bA7/5p9Rl35Q9kYEIMcXGwdi1ce23bycSCzxdw++LbKakpwelw4nF4cDqclNSUcPvi2zWZUN3KdyYNIiMpmsLKOv71Va7d4SjVIzz88MOMGDGCadOm4fV68Xq9TJ8+nezsbBYuXGh3eKqdNJFQSnWJQAB+v6CWQFYeAHF5w3E4IDoaMjKgogLmz6fVbk6+gI/7Pr0PX8CH1+nF5XDhcDhwOVx4nd7D1ivVHbidDq6eOQyARz7cRnW9vjeVaktSUhKvvfYaW7Zs4aWXXuKll15i8+bNvPLKKyQlJdkdnmonTSSUUl1i9WrY7tiFOA2ukn64yw99IYhAcjJs3mxt15Ln1z1PWW0Zbqcbcchh68QhuJ1uymrLeH7d8+H8NZRql7lTB5PZL5r8sloWLdlmdzhKdXt333031dXVZGdnc/7553P++eeTnZ1NTU0Nd999t93hqXYSY4zdMXQ7IpIB5O7Zs4fMzEy7w1GqW3puRc5h//56vZ8XNmxG3H68ewbjqkw8bH0gAGVlMO/HMG7skcd7a+tb/GfLf3CJExE5Yr0xBp/xc8HICzjnmHO69HdRqjM27C3n2RW7cTuFd3/+LYb3j7M7JKW6LafTSX5+PmlpaYctLyoqIi0tDb9fxxuFW25uLllZWQCZxpi8zhxLWySUUl0ir7YEcfuhzoOzMuGI9T4fuFwQ18o1Vkp0MgIEaPnmRgCDBLdTqjsZMzCekelxNPgNv3t9A3qDTqnWGWNavFm0Zs2aw6aEVT2DJhJKqU4LGMPGoiIA/HmpYA7/kjAGqqogPR0GZ7V8jCkZU4h2ReMP+Gl+HWYM+AN+ol3RTMmYEo5fQakOExHOnzAIj9PBx1sO8O43++0OSalup1+/fiQnJyMijBw5kuTk5IOPxMREzjzzTC6++GK7w1Tt5LI7AKVUz7dhbznF1fV4nE58Zf0orYHYWKsFwuezkgivF86ebY2XaIlDnMzOns0rm16hIdCA0+HEgRDA4A/4cYqD2dmzcYgzsr+cUiFIiYvimm8NZ9GH27jnjQ2cMrI/0R59ryrVaOHChRhjuPLKK7nrrrtITDzU/dXj8TB06FCmTZtmY4SqIzSRUEp12qfbCgE4OTuZwaMcvPM27N9vJRAulzVr09mzYfSoox/nzBFnAfD2trep8dXgAwSIdccwO3v2wfVKdUfXn5bNK6vzyCut4ZGPtnHrWW284ZXqQ6644goAhg0bxvTp03G59BK0N9BXUSnVKbuLqsgprsbpEKYNTyHeC6NGQs4eqKy0xkQMzmq9JaK5M0ecxazhs/gi7wuKaopJiU5mSsYUbYlQ3V60x8kd543lume/4n+X7mDOcZkMS421OyylupU777yTq666iosuuojo6Gi7w1GdpGMklFIdZozh7fX7AJiclUS81w1YScOQwdbsTEMGh55ENHKIkxMzT+KcY87hxMyTNIlQPca3x6XzrZH9qfcHuOv1b3TgtVLNTJ48mV/+8pcMGDCAq6++muXLl9sdkuoETSSUUh22Nq+MnOJqPE4HZ4xJtzscpWwnIvzu/LG4ncJHmw/w/gYdeK1UUwsXLmTv3r08+eSTFBQU8K1vfYuxY8fywAMPsH+//v/S02gioZTqkAZ/gHeDrRHfGplKQrTb5oiU6h6G94/j6pnDAbjr9Q1a8VqpZlwuF3PmzOG1114jNzeXH/3oR9xxxx1kZWXx3e9+lyVLltgdogqRJhJKqQ75bFshpTUNJEa7mZHd3+5wlOpWbjg9m0GJXvJKa/j1y+u0i5NSLVi5ciW//e1vWbBgAWlpadx+++2kpqZy3nnn8ctf/tLu8FQINJFQSrVbQXktH20+AMC3xw3A49KPEqWaivG4WDh3Mk6H8OrXe3n68112h6RUt1BQUMCCBQsYP348M2fO5MCBA/zzn/9k165d3HXXXfz973/nvffe49FHH7U7VBUCnbVJKdVuD7y3mXp/gKx+0UzMTGx7B6X6oKnDkvn1OWO4540N/P7NjYzLSGTKUK3cq/q2zMxMRowYwZVXXsm8efPo3//IFu0JEyYwZYoWH+0JNJFQSrXL+rwy/vVVLgDnHjsQae+UTEr1IVdOH8qaPaX8Z81efvaPVbxx4wzSE7x2h6WUbRYvXszMmTOPuk1CQgIffvhhhCJSnaH9EZRSITPGcM8bGzAGJmQmMjhF58hX6mhEhPnfO5bRA+I5UFHHz/6xinpfwO6wlLJNW0mE6lk0kVBKhezdb/azYmcxUS4HZ48bYHc4SvUIMR4Xj156PPFeF1/tLuH3b26wOySlbLN//34uu+wyBg0ahMvlwul0HvZQPYt2bVJKhaTO5+cPb28E4OqZw0mK8dgckVI9x9DUWBb+YBJXPf0lzyzbzcTMJL53fKbdYSkVcfPmzSMnJ4c77riDgQO1e2xPp4mEUiokz3y+m91F1fSPj+Knp47gta/32h2SUj3KrDHp3DzrGB5avJVfv7KOUQPiGZ+hkxWovuXTTz/lk08+YdKkSXaHorqAdm1SSrVpZ2EVD76/BYBffXsUsVF6D0Kpjrh51jGcNqo/db4Alz2+gvV5ZXaHpFREZWVlaV2VXkQTCaXUUfn8AW558WtqGvxMz07h+8dpdwylOsrhEBbOnczErCRKqhv44WPL+Wp3id1hKRUxCxcu5LbbbmPXrl12h6K6gN5WVEod1f9+vIPVOaXEe1386fsTcTi0P6tSnZEY7ebZq6Zy1VNfsnJXMZc9voLHr5jCtBEpdoemVFj069fvsLEQVVVVjBgxgpiYGNxu92HbFhcXRzo81QmaSCilWrU+r4w/B7s03XXBOAYlRdsckVK9Q7zXzVNXTuGaZ77i022FzHtyJX+7/AROGXlkcS6lerqFCxfaHYIKE00klFItqm3wc+uLa/AFDGePG8CFkzPsDkmpXiXG4+LvV5zA9f9YxeJNBVz99Jcs+tFkztKplVUvc8UVV9gdggoTHSOhVBO1vlp++sZPOfOZM/npGz+l1ldrd0i2+fP7W9i8v4LUOA/3Xjhep+hTKgy8bif/c+nxnHvsQOr9AX76j1W89nXeYdsEAvDVV/Duu9bPgNazUz1QIBDgj3/8I9OnT2fKlCncdttt1NTU2B2W6iRtkVAq6PznzueNrW8c/PcHOz/g0a8e5bxjzuP1H71uY2SRt2JHEX/7ZAcAf5gzgZS4KJsjUqr38rgcPDR3ElEuBy+vzuPm579mQ345vzxrFJ8sdTB/PmzeDPX14PHAqFFw221w+ul2R65U6O69915+97vfccYZZxAdHc1DDz1EQUEBTzzxhN2hqU7QFgmlODKJaOqNrW9w/nPnRzgi+1TW+bj1X2swBi4+IZMzx6bbHZJSvZ7L6eCBiyZy1YxhAPzv0h2c86flXHNzLWvXQlwcDBxo/Vy7Fq69FpYssTlopdrhmWee4ZFHHuHdd9/l1Vdf5fXXX+cf//gHAW1i69E0kVB9Xq2vttUkotEbW9/oM92cfv/GBnJLashIiuaO88baHY5SfYbDIdxx3lgeueQ44qJcbC0toWHWJ/Q/9gDR0eBwQHQ0ZGRARQXMn6/dnFTPkZOTwznnnHPw32eccQYiwt69Wty0J9NEQvV5v3jnF126XU/2yupcnv9iDyKw4OKJxHvdbe+klOpS5xw7kPmnz8CUJCDeeiqOW0nV8M0YrCJeIpCcbHV3Wr3a5mCVCpHP58Pr9R62zO1209DQYFNEqivoGAnVJz23Iufg86+2e4nzfbvNfb7a7j24349OHBy22OyyOqeE//fvdQD87NQRnDRc57RXqj2afq501jc7wLcpi+hR+fiSi6kZvo369Hyi9mbh8LkhAL4yeHktbPYd2q83fjap3sEYw7x584iKOjTmrra2luuuu47Y2NiDy15++WU7wlMdpImE6vP6x6axsXBjSNv1VvllNVzzf19R7wtwxph0bj1zlN0hKdWnxcVZ4yYcezKIqomlbmAe/tgqqodvIapgIIGCfrhcQlyc3ZEqFZqWpoC99NJLbYhEdSVNJFSfd/G4i/l499KQtuuNaur9XPPMVxyoqGNUejwL507S6tVK2WxwFqSnQ14eJLmTcNZ6qR2USyC6hrqBeQRiSkmtzGBwls6opnqGJ5980u4QVBjoGAnV57kdbiakTTjqNhPSJuB29L7xAsYYfvXSGtbllZEc6+HvV5xAXJTeX1DKbiJw9mzweqG0FHyVXqJ2jMCZNxDjFxyJVZRlbuWTrQfwB4zd4Sql+ihNJJQCrp96Q6vJxIS0CVw/9YYIRxQZi5Zs4421+bgcwiOXHEdWcozdISmlgkaPgksutWZpqquD8jLBl5dK6r6RDIyNw28M73yzj0eXbmdvqRb2UkpFnt56VCro+qk30BBo4MVvXuRAVQH9Y9O4eNzFvbIlAuCd9ftY8P4WAO7+zngdXK1UNzR6FIwaCTl7oLLSGjsxOMsDDGVVTglvrssnr7SGv364jZOGp3DuhIEkRvfOzyylVPejiYRSTbgdbi459hK7wwi7b/aWccuLXwMw7+ShOtOLUt2YCAw54n9R4fghyYxMj+eNtfmsyytj2Y4iZi34iNtnj2HOcRmI6FgnpVR4adcmpfqY9XllXPr3FVTX+5mRncp/nzvG7pCUUh0U73Xzw6mDuXL6MFLjoiisrOfWf63hokeXsWFvud3hKaV6OW2RUN2GL+Dj+XXPs7tsN0MShzD32Lm4HPoW7Upr9pRy2eMrKK/1MTErib9echwup95PUKqny06L46ZZ2VTX+3l48Va+3F3CeX/5hMunDeUXZ4wkMUa7O6nuI2ACrM5fTWF1IakxqUweOBmH6HdRT6RXaapbWPD5Au779D7KasswGATh5ndv5tczfs2tJ99qd3i9wle7i5n3xBdU1Pk4fkg/nvzxFBK0crVSvYbL4eC6U4ZywcRB3PvmRt5cl89Tn+/ita/zuOXMkfxw6mC9caBst2TnEuZ/Op/NhZupD9TjcXgYlTqK22bcxunDTrc7PNVO+omibLfg8wXcvvh2SmpKcDqceBwenA4nJTUl3L74dhZ8vsDuEHu8FTuKuPzxlVTU+Zg6LJmnr5yqSYRSvdSgpGj+eslxPHvViRyTFkdJdQN3vPYN5z78KZ9tK7Q7PNWHLdm5hGvfuJa1+9cS54ljYNxA4jxxrN2/lmvfuJYlO5fYHaJqJ00klK18AR/3fXofvoAPr9OLy+HC4XDgcrjwOr2HrVcd89m2QuY9+QVV9X6mZ6fw1I+naK0IpfqAGcek8vbNM7n7O+NIinGzeX8Fl/x9BVc/8yW7CqvsDk/1MQETYP6n86moqyAjPoNodzQOcRDtjiYjPoOKugrmfzqfgAnYHapqB00klK2eX/c8ZbVluJ1upFk1ZXEIbqebstoynl/3vE0R9mwfbS7gyqe+oKbBzykj+/P4FVOI8WgSoVRf4XI6uHzaUD765anMO3koTofw/ob9nPXnj7n3zQ2UVNXbHaLqI1bnjdG8LgAAIABJREFUr2Zz4WZSolOOmFFMREiOTmZz4WZW56+2KULVEXpFoSLuuRU5B5+/s7WSGN9ZuMTZ4lSFxhh8xs876ypx1Fr76VSlbfMHDH/9cBsLP9hCwMAZY9L46yXHEeVyHtym6euglOodjvb/9cj0eG44LZu31uWztaCSxz7ZyTPLdnPKyP6cPCIVj8vRKz5fO/vZ1hv+Bt1B89fhmwMF+KpOwvgSqW1pamJj8NWV8fKqAjbv0e/7nkITCWWrlOhkBAhgcHLkB0sAgwS3a68Gf4CS6noa/Aavy4HX7cTrduJ09O651feV1fLzF1azfEcxAHOOy2D+nAl4XNoAqVRfl57gZd7JQ9laUMm73+wjv6yW9zbsZ9mOIk4fncZFJ2Ti1gHZKgziPHG4xIkv4MPjPHKMni/QgEucxHnibIhOdZQmEspWUzKm8MI3L1DVUI3D4aDpTQpjwB/wE+uOYUrGlMP2q6rzsauoil2F1ewqqiKnqJrCyjqKq+spqaqnqKqeitqWx1W4nYJDhCiXg9T4KNLjvaQneElPiCIt3ku0x9nifj3B+xv286uX1lBa3UCMx8k93xnP947PtDsspVQ3IiKMTI8nOy2OtbmlvL9hPyXVDbz29V7W5ZZxy1kjmT1+YK+/6aIia3BiFulxA8iryMXtSDqsF4IxhqqGKjLiMxmcmGVjlKq9NJFQtnKIk9nZs3ll0ys0BBpwOpw4EAIY/H4/LonlxPQLWL6jhILyOg5U1rHwgy0UVNSFeHyrj3C979DgrQa/AQx1vgDltT52HDh80GGC10VWcgzZaXEckxZPcqynK3/lsKht8DP/7U089fkuAMZnJPDw3MkM7693dpRSLXOIMCmrH+MHJbJyVzFLNhWwo7CKG55bzfDULVx7ynC+OznjsC6RSnWU4ODs7LP5x7pnKa0rJdYdi8vhxhdooKqhCq8rmrOzz0Z0+G6PoomEst2ZI86i3ufgw+1f4fPF4TDJOE0yLpOCEMWanbCG/CP26xfjZmhqLMNSYhmSEktaQhTJsZ5DjxgPidFuHA4hELASh5oGP7UNfl76MpfqBj8HKmrZX15HQfBnWU0D5bU+vtlbzjfBqrApsZ5gUhHH8P5xeN3d50vVGMOy7UXc8+ZGNuZb8f5kxjB+dfYo/fJXSoXE5XRw8ohUjhvcj7KaBp78bCc7Cqv4f/9ex4Pvb+EnM4bzwxMH62xvqtNGp47mkmMv5Z1t77C/ch9VphqXOMmIz+Ts7LMZnTra7hBVO+mngoqoqjofOcXV7C+rZV95LfvLa9lfUUdVXToezqH5vX8BkmM9pCV4SY+Pon98FJecNIRhKbHtqtTqcAjRHufBbkup8VEADE6OOWy72gY/+8pq2VFYybaCSnKKqymqqqdoZzErdhbjEBiaGkttg58zxqQzOCXmiHNFgjGGJZsKWPThNlbnlAJWwvPARRM5bXSaLTEppXo2r9vJlTOGcfW3hvP8yhwe+2QH+8vruPetjfxlyVYunzaUH544mIykaLtDVT3Y6NTRjEodSU7ZHirrK4nzxDE4MUtbInooTSRUWAQChj0l1Xyzt5xN+eVs3FfB5n0V5BRXt7i9AP1iPaTHR1lJQ4KXtGDi0Hzg36SspLDF7XU7GZoay9DUWE4fnU5dg58dhVVsLahkW0EFhZX17DhQxd1vbODuNzYwMj2OWWPSOWNMOpOyksLep9gfMLyzfh9//XAbG4ItEFEuB3OnZHH96dmkxXvDen6lVO8XF+XiJzOHc9m0Iby2ei+PLt3OjsIqFn24jb9+tI1pw1OYc1wms8cPIFZbKVQHCA6GJA6xOwzVBfQTQHVavS/A1oIKvtlbzobGR345lXUtD3aO97oYEEwWBiR4SQsOcu6OswpFuZ2MGZjAmIEJABRV1rFpXwXFVfWs3FXMlv2VbNlfyf98tJ34KBdThyVz0vAUThqewthBCV2SWPj8ATbkl7NsexEvfrmH7cExHbEeJ5eeNISrZg7TBEIp1eWiXE4unpLF947P5P0N+3jq810s31HM59uL+Hx7EXe8up7Z4wcw57hMpo1I6faDswPGUFvvp7LeR3WdH78xGGOtMxiC/7FsexHJsR76xbrpF+PRWazCzB8wVNf7qK73U13vp8EfQLAmBfh8eyEOsSZIcTqEfjFu+sdHERflanHKeBV5mkiodqmu97Exv4Jv9pbxTV453+SXsWVfJfX+IytRelwORqXHM2ZgPKMHJDA6+POd9ftsiLxrpMRFMT07ih+dOJiy6gY+2lLABxsLWLq5gPJaH4s3FbB4UwHAwcRiYlYSWcnRZPWLISs5hv5xUTiO8oXbmDgs31HE8h3FfLGzmIomSVmC18WPpw/jx9OHkhTT/QeCK6V6NqdDOHv8QM4eP5DckmpeWZXHy6vz2FlYxcurreeJ0e4mN1KSGTMg4aifc10tEDAcqKxjT3E1q3NKgjP4NVBWU09VnZ/KOh/V9T4Cpu1jNU5a0SjB6zo49i6zXwxDUmIYnBzDkJRYhqTEkBYfpRe1rQgYQ2Wtj6KqQzMqFlfVUVLdcPA1qW1ovZL1E5/tbHF5lMtBapzVayE1LopBSV6GpMQyLNV6XbL6xXTLm5O9kRgTwv9VfYyIZAC5e/bsITOzb06dGQgYcoqr2RTskrR5fzmb8ivYVVTV4gdxgtfFuEGJjBuUwNjgY0T/uBbv5HSHYkFdHYM/YNgYbDVYvqOIlc0u/pvyuBxkJkWTnuCl3h+gut5PTb2Pqno/NfX+Fr/sErwupg5LYUZ2Ct87PpN4b+jjQ1qjBemUUs2F+vlqjGFVTikvr8rl9TV7KW823XbjZ9YJQ/sxNCWGzH4xZPWLISG6Y3eSAwFDSXU9eaU17CmuYU9JNbkl1ewprrF+ltQcNjvf0XjdDmI9LpwOQQQkWMOoMaxoj5OSqnpKaxoI5RLJ63YwNCWWEWlxjEgN/uwfx7DU2D7T9auqzpoBcUdhJdsLKtl+oIqvdpdQVFUXnCmxbdFuJzEeJ1EuBwZrCviEaBf+gNVy1BAIUFLV0Gpvh6acDiEjKZqhqbEMTz38tdHED3Jzc8nKygLINMbkdeZY3SKREJHrgV8BA4A1wI3GmJVH2f4i4B5gKLAV+H/GmLearBfgLuBqIAn4DPipMWZriPH0iUTCGENRVT27g/UYdhdVsavIqsuwdX8lNQ3+FvdLi49ifIaVNDQmD5n9okP+H7M3JhLN+QOGDXutVoUt+yvYE/zCyy+rCemOWLzXxYlNukmNGdg13aSa0kRCKdVcRz5fff4A6/c2tqIW8cXOYqrqW/7+iI9ykdEvmsx+0cQEL+YdIrgcgsMhOB1Wd9mS6gZKquopqa6npLqB0ur6Nj87nQ5hYKIXj9MR7JrkISnaTZzXRazHRVyUi5goJy7H0e9UN/4N/AFDWU0DxcE4DlTUkVNcze6ianKKq9hdVM3e0qN/pg9M9AZbLw61YAxJjmVwSgyJ0Z2/IRQpxhjKa33kFFWzO/i7N14z7C6qYn9561OyC5AU4w626hyaXTHB6yLa4yTWY/10tHAN0dL7sabeT2FlHQUVdRRW1nGgoo680hp2FR6Kp7qV9x9YY4CG97dmexycHM3gZKu3wODkGAYmRnf7LnpdoSsTCdtTZRH5AfAgcB2wAvg58K6IjDLGFLSw/cnAP4HbgTeAHwGvishxxpj1wc3+C7gJuALYiZV0vCsiY40xteH+nexU2+CnotZHRW1D8KePoqo6CoJTnBZUHHq+v7zuqJl9lMvBMelxVrekAfGMCj60P37bnA7h2MxEjs1MPGx5gz/AvrJa9hRXc6CyjiiXdQcmJjijVKzHRYzHSUpcVJ/4MFNK9Xwup4NJWUlMykriulNGHJZYrMsrI6/EajUorKynos7Hpn0VbNpX0aFzpcVHkZUcQ2Y/q7toZr9ospKt1o6BSV7cTkeX3SRxOuTgRW9r6n0B8kpr2FlYyfaCxjvyVWw/UElRVT35ZbXkl9WyYmfxEfvGepzWxCLBcYLpCVGkJ3hJjYsiIdpFvNdNgtd98Hmsx9lld9KNMVTX+ymvbaC8xhf82UB5bQNFlfUUVNSxv7yWfWW1B58f7eIcrJkDR/SPY0RaLMNT49hTUk1qXBT9Yjxd+n0W7XFar3lyy7MmGmM4UFHHzsIqdhZWsaOwih0HrFaSnOJqKut8rM0tY21u2RH7uhzCwCQvafFe+ge7TvWPjyIt2IUqMcZNvNd6PeK9LuI8roh24euObG+REJEVwBfGmBuC/3YAe4C/GGPmt7D9C0CsMea8JsuWA18bY64LtkbsBRYYYx4Irk8E9gPzjDHPt3DMKCCqyaKBwKaVK1cycODArvpVQ7Ipv5wXv8wlYAz+gMEfCOAPPg8EDD4/1PsD1Pn8NPit2gj1Pj91vgBVddYgpfYQgfQEL1n9osnoF0NWspdBSVY/w6x+MWG5mH1ldaeSXy6cnNErYrBbZ/8GSqneJ5yfbbUNfvLLasgvsy5Q63wBjDFNvuOsVgC3S0iIdtMv2kOC101SrJtEr5vEaDfuEPq9d5fP97KaBnKKq8grqbWSqdJqcktqyCupobiqvt3Hcwi4XQ48TgcelwO389Dz1vILY6xrhnpfgIYm1w4NvkBIrePNJcd6DrYoZSbFkJkcTUaSl6zk2CNaWLriO6ar348NvgC5pdXsKqohv7Taem1Kq9lbaiV8HbmGarwZ6HI6iHI58bgEt9NBVPA1OtjaFhww7gw+T47zcOPpx3Tp7xeq/Px8pk6dCj29a5OIeIBq4PvGmFebLH8aSDLGfKeFfXKAB40xC5ssuwv4rjFmoogMB7YDk40xXzfZZilWsnFzC8f8HfDbrvvNlFJKKaWU6taON8as6swB7O7alAo4sVoLmtoPtFbecEAr2w9osp42tmnuD1jdq5oaA+S2sr0KnzhgE9brX2lTDOnAV8DxHPk+UqHr7Gtp9/5ddYzOsPv8qvvQ94JSqiulA6s7exC7E4luwRhTBzQfKbTCjlj6OhFJCD7NN8aU2xRD49P9nW3y68s6+1ravX9XHaMz7D6/6j70vaCU6mJdcn1j9yS7hYAfKytqKh1ordjAvja239dkWajHVEoppZRSSrWDrYmEMaYeqwvJrMZlwcHWs4Blrey2rOn2QWc22X4nVsLQ9JgJwIlHOaZSSimllFKqHbpD16YHgadF5EtgJdb0r7HAkwAi8gyQZ4y5Pbj9Q8BSEbkVeBOYC5wAXANgjDEishD4bxHZyqHpX/cCBwd0q26rDqsGSOuTUodfObA0+FN1XGdfS7v376pjdIbd51fdh74XlFLdju3TvwKIyA0cKkj3NXCTMWZFcN1HwC5jzLwm218E/J5DBen+q5WCdNdgFaT7FPiZMWZLBH4dpZRSSimler1ukUgopZRSSimleha7B1srpZRSSimleiBNJJRSSimllFLtpomEUkoppZRSqt00kVBKKUBEXCJyp4hk2h2LUkop1RNoIqG6DRFxi8gxIpJow7lnisizIrJMRDKCyy4TkRmRjkV1nIgkichPROQPIpIcXHZc42t6NMYYH9bscd1hWmzVx4nI6KOs+3YkY1FKqdZoIqFsISL/JSLRwedOEXkAqAQ2AYUi8oSIuCMUy/eAd4EaYDIQFVyVCPw6EjH0BsHX8SoReU5EPhCRJU0fIexfIiLFLTyKRCRPRJaKyI+Psv8EYAvw/4BfYk39DDAH+EOIv8YS4JQQt+1yIpIuIv8nIntFxCci/qYPu+JStlglItc3XSAiUSKyCHjNppiUUuoweudN2eUPwFNYF++/AK4ErgNWYF3MPxhcfn8EYvlv4DpjzDMiMrfJ8s+C61RoHgLmYRWKXA+0d27pu4HfAG9jFacEmAqcDfwVGAb8j4i4jDGPtbD/g8BTxpj/EpGKJsvfAp4LMYa3gfkicizwFVDVdKUx5j+h/jId9BQwGKuIZj7t/xuq3mMe1vv9XODHwECs97EDmGljXEopdZDWkVC2EJEAMMAYUyAiq4BHjTF/a7L+EuB2Y8z4CMRSDYw1xuwKXoBONMbsEJHhwAZjjDfcMfQGIlIIXN60OGQ79/838L4x5tFmy68FzjLGfE9EbgSuMcYc28L+ZcBxxpjtzV7HIcDmUF7H4PuyNcYY42zXL9VOwbhnGmO+Dud5VM8QHK/zJNbNlVisRPNWY0y1nXEppVQj7dqk7NSYxQ4GPm+27nOsO9CRsA/IbmH5DGBHhGLoDeqBbZ3Y/9vABy0sXxxcB1brwvBW9q8DElpYPhI4EEoAxhjHUR5hTSKC9gASgfOonsMDOIOPfKDW3nCUUuoQTSSUna4WkZuwLkCTm62Lx7owjITHgIdE5ESs5GZQsEXkAeB/IhRDb7AAuFlEOnohXAyc38Ly84PrwLorW9HCNgD/Ae5sMrbGiMhg4I/AvzsYU6T9HKtr1VCb41A2C3azXAeUYSXD5wLXAJ8EW0uVUsp22rVJ2UJEdnF4/++HjDELm6y/GZhrjJkWgVgEa1D17UBMcHEd8IAx5o5wn7+3EJFXgNOwLvq/ARqarjfGzGlj/6uxEre3ODRGYgpwDtYYlsdF5FZgqjHmBy3snwi8BJyAlYjuBQYAy4BzjDFVzfdpJY5TsAZrjwku2gD8yRjzSSj7d4aIlGC9B11ANUf+DZsn3KqXEpEq4JfGmP9psqwf8L/A2caYllrflFIqojSRUN2SiJwE1BljVkfwnB6sLk5xWGMjKiN17t5ARJ482npjTKszLjU5xnTgBmBUcNFm4C/GmOZd39o6xkSs13GVMaal7lKt7XspVp/0l7EG2wNMBy4E5hljQh203SEicsXR1htjng7n+VX3ISKjjDGbW1l3mTHm/yIdk1JKNaeJhFJKBYnIRuBvxpg/N1t+C3C1MWZMy3sqpZRSfY8mEqrPExEvcCNWt5w0mo0dMsYcZ0dcfZGIOLBahVp6HT5uY9+HgW3GmIebLb8ByDbG/DyE89cB44wx25otzwbWR3IGr+D70tN0mTGmPFLnV/YLztp0AdaEFM3fC7fYEpRSSjWhdSSUgseBs7D6169E5+4PWXDq3lnGmBIRWc1R/nZtJWTB7mzPAUM4cuYigzVrzdF8D+uiq7nPgduwBjK3ZQ8wiyNnnzojuC6sRCQWa3D4xUBKC5tEYuYo1Q2IyCysCQR2AKOxarMMxfp/Y5V9kSml1CGaSCgF52ENxv2szS1Vc69xaHatVzt5rEeBL7Fmp+lIMbYUrBlumisHUkM8xgLgYRGZxKEpiadjFQe7uZ3xdMT9WC1jPwX+D7geyACuxUqGVN/xB6wJH34brC/yPaAA+Afwjq2RKaVUkHZtUrYRESfWRdpaY0ypjXFswJohaq1dMaiDs9RMbN6tqB37r8cqbLio2fIbgZ8aY8aGeJwLgVs5NGvTRqxZm17rSFztISI5WEX9PhKRcqwCe9tE5DLgh8aYc8Idg+oegsnDpGCBxRJghjHmGxGZCLxmjBlqb4RKKaUtEspGxhi/iLyHdcFmWyKBddH4RxG5zhiz28Y4eg0RiePIMQ5t9e9fgTU+oqNF7R4EFolIf2BJcNksrNc3lG5NABhjXgFe6WAMnZXMoSKI5Ryqr/IpWtOkr6ni0LiIfGAE1rTKEHoLm1JKhZUmEspu67EqFe+0MYYvAS+wQ0R07v4OEpFhwCLgVKy/58FVhDbG4S/AAhEZgFWIq/nrcNQWI2PMEyISBfwGaKz/sQurNeKZEH+HHcAUY0xRs+VJWFPJhrsQ2A6siu45wCassRIrsYry2Zlsq8hbDszAahF7C+v/jWOBOcF1SillO+3apGwlImdj9QW+A/gK6y7cQZGYpUZEPsCaFeVxYD/N+ubr3P2hEZHPsJKGh2j577i0jf0DLSw2wWMaY0zIA42DrRI17a0FEoxhgDGmoNnydCDHGBPVnuO1l4j8AvAbYx4WkTOA17F+fzdwizHmoXCeX3UfwerVccaYtcFB+AuAk4GtWO8FbT1VStlOEwllq2YXj03fjO2+eOxEDNXANGPMmnCfqzcTkUrg+NaKaIWw/5CjrQ/nhZOINM729CpwBYcP2nZidZE60xgzqvm+4RT8mxyPNa2tjuFRSinVrWjXJmW30+wOAKsLSbTdQfQCXwBZWNWo262ziUKw1eABrIv+NJpNIdtGUto445QBmrdANWB1kbq1M/G1l4h4g38TvfPcx3VwzJFSSoWdtkioPk9EzgJ+i9W3vqW++fqFHQIRGYE1heuzWGNf2hzjEGwJeNsY09CkVaBFxpj/tHH+t7G6qC2iheljQ5l1SUR2Yo2RKGxr23AIzmT2a+A6IB0YaYzZISL3ALuMMY/bEZeKvLbGHEWitVYppdqiiYSynYjMxJonfzhwkTEmLzjd5U5jzKcROH9j96rm/zPoF3Y7NCkoN7TJ4qOOcWg6JqGVMRIHj9PW6xCcLnOmMebrdgffTYjInVhdq+4EHgPGBxOJHwA/N8ZMszVAFTGdHXOklFKRoF2blK1E5HtYhbf+ARwHNA5mTcS6MxuJefO7Q/eq3uAJYDXwQ1q48GmJMcbR0vMO2sORFbHbLTiw9RSs1g1P03XGmIc7e/w2XA5cY4xZLCKPNlm+Bqu6seo7JtKJMUdKKRUJmkgou/03cJ0x5hkRmdtk+WfBdWGnd/a6zBDggk4UlLsceMEYU9dsuQerYGBbU7j+HJgvItcaY3Z1MIbJWFNtxgCxQDHWnP3VWFWFw51IZNByHQ0H1sxNqu/o1JgjpZSKBE0klN1GAR+3sLwMSArXSUVkArDeGBMIPm+VzpYTsiVYd1E7WlDuSeAdrAv2puKD69pKJF7ASgC2d6IeyJ+xply9Dus9eFLwOM9idTEJtw3ATI4cYP19rNYe1Xf8BHhURDIIccyRUkpFmiYSym77sKoZ72q2fAaHKvyGw9fAAKyL1q851Je/uVAKqSnL68Cfg0WzWhq0ftTB0hwqXNdcJodPx9qakKtXH8Uk4NpggukHooJjFP4Lazanl7vgHEdzN/B08OLRAcwRkVFYXZ7OC/O5VffSH6ua9ZNNlh0cc4R+LimlugFNJJTdHgMeEpErsb4cB4nINKxpPO8J43mHAQeaPFed19in/84W1rV64SMiq4PrDbBYRHxNVjuxXp932jp5FxUObAAaB30XYI2T2IiVyGR1wfGPyhjzmoicj/U3rMJKLFYB5xtj3g/3+VW30u4xR0opFWmaSCi7zce687oYq1vKx0Ad8IAx5i/hOqkxZreIPCEiN2uF2K7RicHSjTUcJgHvAk2rUddjtVb9O5QDBaeg/THWndybg7NBzcaqSv1NCIdYDUzBqh68FLhbRFKBy7C6l4SdMeYT4MxInEt1a50ac6SUUpGg07+qbiE4oDYbiAM2GGMq29ilK87pBwYaY5r3yVc2EJErsAZb13Zw/1OAt7EG6n8LGBPslnQbcIIx5vshHOMEIN4Y86GIpGGNyzgZK7G4MpLVz7UIWd8mIq8DTxljQkqilVLKDppIqG5DRDIBjDG5ETrfwRoGkTifCi8RWQb8yxjzYLCmxMRgIjEVeNkYk9nG/oLVfamgo8lMZ2kRMtVIRK7BmrnuCTo25kgppcJOEwllKxFxYH1Z3orVGgFQASwA7jXGHK1IWWfPHQCO4dBYiRbpXeDwEZFirOrNhSJSwlH6gbc165KIVALHGmN2NkskhgKbjDHeNvZ3ALXAOGPM1nb+Kl1Ci5CpRp0t0KiUUpGgYySU3e4FrgJuw+qSAtaMTb/DuiP7mzCff8tR1unsKOH3C6zEETo/61IpMBDY2Wz5ZCCvrZ2DMzVtBVKwujLZQYuQKaBLCjQqpVTYaSKh7HYF8JNmzfRrRSQPeITwJxLfxyo6pmzQONOSiLiwkrZ3jTH7O3i454E/ishFwWM5RGQ61gxgbdWgaHQb8CcR+akxJiKDq5vRImRKKaV6DO3apGwlIrXABGPMlmbLRwFfG2Oiw3huHSPRxYLdg7KBNI4cKNxS4cGm+1ZjDZDu0CxawQH7fwXmYbUi+YI/nwPmGWP8IRyjBGv2MBfWjFE1TdeHWNSuw4KzTj2KVQBPi5AppZTq1rRFQtltDXADcFOz5TcE16keQkROwrpoH8KRxf1C6SK2EqsbUocSCWNMPXC1iNwDjMcac7O6neMduqKoXWdoETKllFI9hrZIKFsFp+x8E8gBlgUXT8Pq3nFOcE79cJ17J9a0oEXhOkdfIiJfY405+S2Qz5EDhY9anVpELgb+APwZ+AqrIFvT/Xv93XgR2YBVAO9+Wh5srTVPlFJKdRuaSCjbicgg4HpgdHDRRuARY8xe+6JS7SUiVVgzJXWogFYrs9QcvBvf0iw1IvIgcIcxpir4vFXGmFtCjKOzRe06rLN/Q6WUUiqStGuTsl0wYQj3oGoVfiuwxkd09CJ4WAf2mQy4mzxvTUh3TFooavcboABrNqWrsAbnh9OS4Lk0kVCdGnOklFKRoC0SylYiMqGVVQZrTv8cY0xdBENSHSQiFwK/B/5EywW0WuyaJCJR3eU17mxRuy44vxYhU0DbY460joRSqjvQRELZKtidpfFN2Phl2fRN2QC8AFxrV7VhFZqOdE0K7leLNT7mw+BjuTGmoaVt2zh/IuA0xhQ3W54M+EIpLNjZonadpUXIVKPOjjlSSqlI0II3ym4XYhX/ugarS8fE4PPNwI+wupOcjnWnu8uJiFtEFovIMeE4fh8zrIXH8CY/W3Md1kxNVwJLgVIReV9EbheRk0Qk1Ivn54G5LSy/OLguFI1F7ZoLqahdZxljHEd5aBLRtxwD/NoYs9EYU2qMKWv6sDs4pZQCbZFQNhORlViDZd9ttvzbwD3GmKki8l1ggTFmRJhiOACc3M5pQlUYiMhw4FTglODPTKzZmz4xxpzbxr7FwHRjzMZmy0cDnxljUkI4/wPAicBFWHeDjwPSsQraPWOMuaudv5JSHSLWn+olAAAgAElEQVQiS4D7jTHv2B2LUkq1RhMJZSsRqQEmG2M2NVs+GqsGQHSwW8kGY0xMmGL4M1BnjLktHMfvzUTkAuBtY0xD8Hmr2tu/X0SGYbVI3QjEtXVHPjjj0UnGmHXNlh8LrAjl/dMVRe2U6godHXOklFKRpImEspWIrMYqPHdNsKAYIuIGHsPqnz5ZRKYDzxpjOjKrTygx/AW4HKuLVUv1C0KaNrQvalodvLP9+0VkMHAaVkvEqUAqsBz4GFgaQmXsD4H1xpgbmy3/K1b19Jlt/DrNY+loUTulOq2jY46UUiqSdPpXZbfrgf8AuSLSeIftWKy7wOcF/z0ceCSMMYwHVgWfj2y2TjPtozDGOFp63h4i8gRW4pCMNe3qJ8DfgC+MMb52HOq/gQ9EZCKwOLhsFjAFOKs9MRljcrCKJCpll7DcOFFKqa6kLRLKdiISD1zCoYv4zcBzxpgK+6JS7SUimcaY3FbWnWSMWd7KugDWRftfsRKA1aaDH0wiMgn4FTAJqAHWAn8ItUUhOLB7HlYC0tLc/ad3JC6llFKqN9JEQqkgEcnGqmb8sTGmRkSkoxe0fZGIbABmtDD96nTgTWNMUiv7jeLwLk1RwKdYMzh9BKwyxhyt21SXEZFFWInEm7Q85eYvIhCDFiHro8I55kgppcJBEwllu+CF5I3AmOCijcCi5gOww3j+FOBFrItZAxwTrB3wBFBijLk1EnH0dMG/1wTgtMbWJBH5FvA68DtjzJ9DPM5YrFmbTsOqLu0FPjXGnNfK9i6s+hF1TZalY00rGwv8xxjzaYjnLgQuN8a8Fcr2XU2LkPVtXTnmSCmlIkHrSChbicj3gPXA8ViDrtdgTbm5LrguEv6MNSPKYKC6yfIXgLMjFENv8BOsLkqvi0iUiJyGdWf/zlCTCABjzAbg5eDjNawL6tlH2eUx4OHGfwS7yn2BNf7m28CHInJOiKevB7aFGmsYPAp8iTVuJxno1+SRbGNcKgKC9UIKmjzXmiJKqW5NWySUrURkO/APY8ydzZbfBVwartoRzc61D/i2MWZNs2rGw4G1xpi4cMfQWwSnT30TiMFqnbjdGLMohP3SsLo1NXZxGol1Ub+SYMVrY8zSVvbdAtxgjHkv+O/rgV8DY40xZSLyR2CqMea0EOK4FWtw/w12dGsLTmE70RhjZzKjuoGOjjlSSqlI0lmblN0GYhX7au5ZrEGzkRDL4S0RjZKBuhaWqyARmdDC4t8B/8R6DT9u3Ka1ee9FZCNW4uDDakl4CWtsxGfGmNoQwsjAmrq30Szg302q/z4N/DiE4wDMwEpmZovINxw5d/+cEI/TUSuwxkdoIqHeE5FWxxwBLY45UkqpSNJEQtntI2AmR144zcCaBjQSPsGqI3FH8N8mOOD1v7DuhqvWfc2hue0bNf77WuCa4HODNaVvS17F+jt/aoxpKaFrSy0Q3eTfJ3F4ElqLVQ8iFKXAKx2Ioav8BVggIgPQImR93XKsZKLFMUd2BqaUUo20a5OylYhcB9yNNdi5san+JOAi4LfA3sZtwzVLiYiMx5p2dBVwOlZdi3FYLRLTjTHbw3He3kBEhoS6rTFmd5hiWAysNMbcLiIz/3979x3ueFWtcfz7zlAFAQFRpCNVpYr0DmJBvIpcAblSbBeVSxUVRaoFBFEQFQtVsCIgSFOqBRARkA5D7wx9GDrMe//YvzCZcEpOyclJ8n6eZx5+2b+SdRg5ZmXvtRclOV3Y9kPV+fcCP7G9VCvefzSlCVnUVF9mnEr5PfQ+YG3K76Z9bR/ZztgiImqSSERbDbIzSb2WfoiSNDewC7AS5dvrq4Ef1T6MxsCqbuQ/BQ62fdcYv/cGwLmU7VoXBH5t+9N1538MzGF7hyafNxOlTuPtVP1MJL0NmGJ76mjH3/DeAyZmrUrGYnwabs1RRMRYSSIREaNC0tPAymOdSFTvvTyle/XDwO/r+05I+hxlxuLaJp6zGHAeZQevWYFlqsL7I4FZbe/ckh8ggn5rjt5IqTk6G/hJbTDL3CJiPEgiET1P0u2UwuBTmu2AHK8n6UTg2qFs9TreSDoDeAb4NPA403fw2hD4ue2lW/CeaUIWwGsztP3VHNUfZ5lbRIwLKbaOtpK030DnbR80BmH8CPgEsJ+kf1OSit/afngM3rubTKL8O1wH+DfwbP1J20c13iDpNGBH21MkbU/5997OnbLWA9a2/ZI0Qz+4uym7Q7XCGcBbgcnVcX8GKliP7rBEuwOIiBiKzEhEW0m6pmFoZsr/mb4C3GF71TGMZRlgO2DbKoaLgZNt97U9bTSQNNCSJtteso97XgIWs/2QpFeBBWsNudpB0pOUAvubGnqKrEvZUvYt7Yotekc7a44iIoYiiUSMO5LmAk4ATrf9yzbFsCZlPfKKWULQOpKuoxS2XwwcD+wKTOnr2rFI6CT9Fnja9ueqRGJF4FFKh+17bTfbj2K4758mZAG0t+YoIqJZSSRiXJK0AnCW7cXH+H1Xpyxz2hqYq4phm7GModNVO80sQZlRemWQa9cGjqDskDQvpT6hr19Ktj3vaMfaRzwLA+dT1qEvDVxV/fMxYP1Wz5ZIugnotwmZ7TQh6xHdUHMUEd0vNRIxXs1d/Wm5PpY0XQR8BTit1dt9dhNJb6A0VKtts7oMcKekHwIP2D6k8R7bl1H6htQKTZdp59Im2/dLWgnYhjIbMSdwLKUQ//kxCCFNyKJmyDVHERFjLTMS0VaSdm0covQC+CRwqe1PjEEM0yjfPJ8C/Mb2I61+z25UbZG6DrA7ZQvVFav6gv8CDrC9yiD3L0ZZPtT0L6WqpqGp68diRmOk0oQsaoZTcxQRMdaSSERb9fF/ltMoa9IvAr5T+1a2xTEsnW1fR07SPcDWtq9oKFReCrja9lxNPGMeytary1dDNwHH2n66n+ubajIHYPvEAd53AvBO29dXr3cGZqm75FVKd+xmGygOW5qQRUREp0giET1P0uzAeylLcQBuA/4yRktZuoak54B3VclDfSKxEvBX2wMuVZO0GqU+4Xngymr4PcDswGa2r25h7J8Adra9fvX6GeApyu5hAPMDu9s+tgXvnSZk0a+h1BxFRIy1JBLR06oGYL+gfFCs9xjwadtnjX1UnUnSXyldpX9Y2/HI9l1VjcTStt8/yP1/A24HPlv7wCRpJsrfz5K1D/lNxjIbM84oYLvP3aCq6/8C/ML2b6vXryVC1eudKbMtGzUbwxBiTROyeJ2+ao6qxLzfmqOIiLGWYuvoWdWOQadS1qB/D7i5OvUOYC/gVEkbZMvNpn0NOFfSOyi/W3arjtcGNmji/tWoSyIAbL8i6buUGpYBSZoDOBT4ODBfH5cM9CF8uUHe41Lg24PFMExpQhZ9+Q6wErAhpeao5gJK4X0SiYhouwntDiCijfYFjre9le3LbT9V/bnM9scovSwG7Lwd09n+O7AyJYm4HtiM0q15Ldv/buIRU4BF+xhfhLIt7GC+C2wMfB54EfgMsD/wILD9IPe+ueH1kpRu1jUvA3M0EcOQ2b7H9j2UOPcHJtTGGv+04v1j3PoIsEv131X90oEbKdslR0S0XWYkopetSdnmtT8/onwTHU2yfQfw2WHe/lvgWElfAi6rxtYBDqPUCwxmC2B725dIOh74m+3bqyLw7Si7cvXnEWBZ4A4A2482nF8eeLjpn2QYbL8s6WPAwa18n+gYb6Yk4o3moMmdyiIiWi2JRPSy2emni3LlaWC2MYqla0h6JzMuI3rV9o1N3Polygekk5j+u+llSrHxV5u4f17gzup4SvUa4O/UFSz340Lg68A5jSckCdinuqbVzqB8E50mZHEVsDmlTgKmJw+fAS5vS0QREQ2SSEQvm0RZCnN8P+c3qa6JAUhaDzjC9nuqoSsoW5e+Viws6X22LxjoObZfotRV7MP0pRt32H6uyVDupNQb3AvcQqmVuJIyU/HUIPd+C7ha0j+Bwyk7d0GZpfhS9c/BlkeNhjQhi5qR1hxFRLRcdm2KniVpD0qdxCdtn9NwbnPgRODbto9oR3ydQtKvgctrH3KrHY82B+6hJBO7AotVdSetjGMPyuzHUZI2pXSDFjAzsOdgDd0krU6pi1mO6d/+ipKU7GT7n62KvS6GNCGL10h6O2U2biVKl/WrgUNr/U4iItotiUT0rKoJ2W+BjwG3UnZtEmU9/NKUZSb/PRZNyDqZpEnAR23fUL1u3Dp1FeBs228b47gWA94N3D6U/guSVmZ6T5FJtq9pRXwRERGdLolE9DxJWwPbMmNDut/Y/k37ouockp6n7HF/X/V6S+C82pKk6gP9bbZnbWOYHSVNyKJmBDVHEREtl0QiIkZE0mTg47Yv6ef8hpRGdY1brI52HEdRZh+OahjfBVjK9u6tfP/RkCZk0VhzVM3wzVBzBAxacxQRMRbSRyIiRuqfDFyIvGN1Tat9DPhHH+OXAVuNwfuPhvomZC/UjV8AbN2OgGLMfQH4ZcPYRpQZqiWBIym9UiIi2i6JRESM1BHADpIOk7RAbVDSApK+B/xPdc2gJH1S0j8kPVgtiULS7pL+q4nb56Ns2dtoCjB/M+8/DqQJWawGXNQwdn/VlPBuSpKx1phHFRHRhyQSETEiti8G/o+yO9NDkp6U9ATwELALsLvtxg9GryPp85SE4xxgHqavC38KaGZZ0u3A+/sY/wDT+0uMd2lCFgszY0K8AzM2Q3yCkjRHRLRd+khExIjZ/rGksyhLiJauhicBp9aKsJvwf8BnbZ8hqb4B3VWU3g6DOQI4WtKbmf6N7ibAXjSXiCDpbuA44ATb9zYZ92hKE7J4hjL7dB+A7dMazi/BwI00IyLGTBKJiBgVVcIwko7MSwB9bbX6IuUb+cHe/zhJs1I6VH+jGr4b+Lztk5qM4QeUmo79JF0MHAucbvvFJu8fqTQhi1rN0SX9nN+Rsak5iogYVHZtip4n6XT6XjZiSsHr7cCvbN86poH1GEk3AfvY/mN9LwpJ/0dpCLfqEJ71ZuB521OHGcuqlA9s21KWWP0KOM721cN53hDfO03IepikjSjF9UcAh9meXI0vAHwF2A3YrJnlghERrZZEInqepBMoRa5PAf+uhlelrNP/M+UD3eLAJrb72hUoRoGkzwAHUJYiHUtZzvN2YB/gM+3o6yFpZsouOodSOmRfDxwFHO/88owWkfQFyuzeTJRlTAbmBl4B9rJ9dBvDi4h4TRKJ6HmSDgHmouyWM60am0DZZvEZylKZY4B32l63bYH2AEnbUZKJ2g5FDwL72z62n+uvpiR4T0q6hgEKkoc4ozEz8FFgJ+C9wBWU5GZh4IvARbY/0ezzhipNyELSIoys5igiouWSSETPk/QosI7t2xrGlwEusz2/pBWAv9mepy1BdjhJGso3+FVjtjlryzoGuG5/yvKP56rjftk+sIn3XZWSPGwLTANOAn5h+5a6a94F/Mv27IP/JM1JE7KIiOhEKbaOKP8dLAfc1jC+HNO/FX6BbL85IEl72z6sj/GJwMmUD+cD3b8EMJPtSbafA56rxpcGXq720J9BfXLQTKLQhH8Bf6E0/DrD9st9XHMXMNrLrPprQnYPJZnYtYopiURERIwbSSQiyge4YyV9m/JBEuA9lB10arv9bEBpChb921vSE/XLkKok4jfAu5q4/wTK1quTGsbXoNRLbDg6YQ5oSdv3DHSB7WcpsxajaTXgWw1j99dikfRL4OxRfs+IiIgRSSIRAXsAjwBfBt5SjT1CKXY8tHr9Z+C8sQ+to2wO/FnS07ZPlTQT8DvKzM5GTdy/CtBXMfsVwKDFpZKeZPDdt06wfXx/zxgsiWihNCGLiIiOk0Qiep7tVynfBn9L0lzV2JSGa9rRnKyj2P6XpI8BZ0h6Cfg0sBSwke1HmnkE8MY+xudmxsLj/hxEKYw/F7iyGlud0u36R5Q+FT+RNJPtn/f1gGoGZQ/g48CiwCwzBGjP20Qcw5EmZNG0odYcRUS0yoR2BxAxntie0phERPOqve23B/5A+fC7QZNJBMBfgX2qD/PAax/s9wH+3sT96wL72v6k7R9Wfz4J7Au82/Zngb0p9Qb92R/YE/gtJYE5AjiNUnh9QJM/x3DUmpD1Z0fShKynSNq7n/FaX5OIiLbLrk3R8yS9BTgc2ARYgOk75QBgu5lvw3uSpMZvzmvWpCwleqw2YHvLQZ71Dkoy8RTwt2p4PcrWvBvbvmGQ+6cCK9u+vWF8KeBa23NWzd6us91np2xJdwC72j672jlpZdt3SNoVWLNVW76mCVk0kjSZ0qCxz5oj28u3LbiIiEqWNkWUIt9FgYOBh8juTEPxdD/j5w/1QbZvkrQisAulCeDzlGL3o20/0cQjngC2oNS21NuiOgcwB2UZUX/eSmk6BzCVMisB8CfK/z5awvbFVQfv7wN7SmpsQrZ7koieM9Kao4iIlksiEVGWxKxn+9p2B9JpbI/q7kW2H6TsljUcB1NqIDZieo3Ee4APAjtXr98LXDrAM+4HFgTuBe4ANgOurp7z4jDjaortH0s6izQhC0al5igiouWytCl6nqSbgO1sX9PuWDpZfR+IhvF++0D08Yx5KAXSC9BQw2X7pD5vmvH+dSgzGstWQ7cCP7R9WZM/wyHAFNvflrQ1pf/F3ZQZq+/b/mozz4kYLZI+AvweuJmyxO+xQW6JiBgzSSSi50naDNgL+N9mPuxG3yRdChxn+8SG8f8BPmN7w0Hu3wI4BZiTskNR/S8nt3DHpIFiWgtYC5hk+6yxfv/oLaNZcxQRMRaSSETPq/oPvIGy1O85YIZuxu34ANuJqnX9q/ZT7HyV7XkGuf824Bzga1Vn6+HEMBH4CFArRL0ROLPa4jdiXJPUb4+TRqO9rDAiYjhSIxEBu7c7gC4x0j4QCwFHjSCJWIqSiCxEWdIEZevY+yRtbvuOJp6xA/CY7bOr198FPgfcBGzbxoZ10QOSHEREp8mMRESMiqpQ+HnKB+5Xq7GJlJ4Mc9j+wCD3nwb8xvbvhvn+51C27t2utsuTpPkodQ7TbG/exDNuBT5v+6JqWdOFlETzQ8Ar7VxOkiZkvWU0ao4iIlotMxLRkyTNVWs8V+tm3Z80qGvaVyh9IG6V9Lo+EE3cfzZwWNVP4npev8TszEHu34DS6+G1rWJtPy7pq8A/mvsRWISyFh3KEqlTbf9M0j+AS5p8xrBJ2tv2YX2MT6QkRNu2OoYYN04AjqPs3FVvDeAzwIZjHE9ExOskkYhe9aSkBavGX0/Rd+8IVeNpSNeEUegD8fPqn/v19XgG/3t4kb6XVs0JvNTE+0PpHTEfZfvXzSgN4gBeAGZv8hkjsbekJ/prQjYG7x/jxyr0nQBfARw9xrFERPQpiUT0qo2Z3qQszZ1GyUj6QNieMPhVA/oT8DNJn2Z6H4k1gGOAwWYzav4C/ELSNcAylJoLgHdStoFttTQhi5qR1hxFRLRcaiQiYtiqGYgbbE+rjvtl+7ohPHc22y8MMZZ5gBMpnaxry6JmoiQRO9rurwt34zO+SVni9BPb51XjBwIv2f7WUGIaDkkbA2cA/8P0JmQbpwlZbxlpzVFExFhIIhHByBuh9SpJ04C32p5cHZuyJKyRbQ/4LWr1IelrlC7UbwGWsX2npIOBu+uX+wzynKUp3+AD3Ny4HW0nSBOyqGqF/kpZevm6miPbN7QrtoiImiQS0fPGYyO0TiFpMeBe266O+zXY1qmS9gN2oNRI/Bx4V5VIbA3sbnut0Yp7gBjeD0y1/ffq9ReBz1K2f/2i7Sdb8J5pQhZ9kvQ2Zqw5uo7ma44iIlouiUT0vNFohBYDkzS77ecHueZ2SnfxCyU9A6xUJRLLAZfbflMf9xzxugf1w/aeTcR5PfAV2+dIWgH4F6XgeiPgllbs858mZBER0alSbB0xwkZo0T9Js1K+Ud0beOsgly/E9K1X600AZu7nnlWaDKXZb0yWoMw+AHwM+JPtr0lalemF16MqyUHUtKrmKCKiVZJIRMD5wGrAne0OpBNVycIBwHsp26x+1/YZknYCvgW8Cny/iUfdRFkD3rgEaivgmr5usD3aOxm9BLyhOt6Usn0tlB2+Buw3MhrShKznXUtJuCdXx/3WHJGdmyJiHEgiETHyRmi97iDgf4ELgLWB31fLddYE9gR+X9t1ponnnChpIcosxJaSlgW2p3SWbpqkhQFs3z+U+4C/A0dUDehWB7auxpcBhvqs4TiBNCHrZUsAj9YdR0SMa6mRiJ5X7TbUn0F3G+p1ku6kFEOfKeldlILQE4BPe4i/YCStRym2XolS/H41cJDtPzdx7wRgX2Cv6l6AZ4DvAd+yPdDfc+0ZiwI/pmz/elRtpyhJ3wcm2t51KD/PUEmaAqzauNOUpKWAq2zP08r3j87QTM1RRMRYSCIRESMi6SVgCdsPVK+fB1a3ff0Yx/EdSt+F/ZneEXhdyrKrn9v++ljGMxySngY2tH1Nw/i7gUts99WgLHpEfc2R7cFqjiIiWm6knWQjIiZSagtqXgGmtiGOHYDP2P6J7euqPz+mbN+640A3Svq4pFnqXi9czXDUXr9B0pdbFXidvwL7VD01au89EdiHsuwqupykWSV9R9JVki6reopQ1RzdBexOczVHEREtlxmJ6EmSdgV+ZvuF6rhfto8ao7A6UrU07FzgxWpoC+Ai4Nn66/rqgSDpCUrjucckPckAuysN1s9D0gvAirZvaxhfFrjW9uwD3PsqsKDtydXrKcDKtu+sXr8FeLDVy9zShCwkHcqMNUdvBmo1R9+m+ZqjiIiWS7F19Ko9KE3oXqiO+2MgicTATmx4ffIQ7t2DUsdQOx7JNxv/oSz7aEwMd6nODaRxZ5y+dsppOds3Vdt+1jchO4k0Iesl/w1s31BzNBOlr0q++YuIcSUzEhHRFSRtQNmB617g8mp4LUrh9Adt/22Ae6cBb62bkXitIV71ekxmJCLGS81RREQzMiMREeOCpA8Cr9o+v2F8M8qOSecOdL/tSyUtA3wRWK4aPg34se0HWxHzaEgTsmgwXmqOIiIGlUQiepKkI5q91vaerYwlXnMI8NU+xidU5wZMJACqhGG4uzO9r9o1qfaem1RLSwBaue1qmpBFPQEnSKrVHM0GHCNp0JqjiIixlqVN0ZMkXdzkpba9cUuDCeC1JRzLN3ZvlrQ4cKPtOfq4Z1S+zR+kl0jdI0Z/aZOkxYB7bbs6HiiAxq7f0WWqZo6Dsr1Tq2OJiBhMEomIGBckPQx8wvZFDeObAr+yvUAf97xW21Ad9/ttfqfXN6QJWUREjDdZ2hQ9T9LclDX4TzSMzwu8YntKeyLrOX8EfiDpo7bvgNc6On8POLOfe5YAHq077jr1TcgoS6AiIiLGhcxIRM+TdC5wVtW8rH58Z+DDtj/Ynsh6S5XQnQesBtxfDS9M6aewpe2n2hVbq1XJwgHAeymFtt+1fUbVhOxbwKuULWAPbV+UERERM0oiET2vaoq2ju2bG8aXA/5he772RNZ7JInyYbrWQ+E6239t8t75bD9eHS9C6Wg9O3DmQFu/jgdpQhYREZ0oS5siYFb6/m9hZsoH0RgjVcOtP1d/miJpBeAsYBFJk4BtKDMbcwDTgD0kbWX7jBaEPFrShCwiIjrOhHYHEDEOXAl8ro/xnYF/j3EsPUfSWpI+1DC2vaS7JE2W9LNq6U9/vgtcD6wPXAL8idKYbm7gTcBP6Xtb2fFkYar/rdm+AXgR+H6SiIiIGM+ytCl6nqR1KEtK/gVcWA1vArwH2Gy8L4vpdFWNyiW19f/VDMPVwAnAzZQi45/aPqCf+x8DNrZ9naQ5gSnAe2z/uzq/HHCF7aZ7QUiaBViAhi9bbN87tJ+u6fd7lbL71KPV62eAFW3f1Yr3i4iIGA1JJCIASSsDX6ZubT7wHduT2hpYD5D0ELCF7auq198CNrC9bvX6v4EDbb+jn/tf2wK2ev0MZUnQndXrtwAPNrP9q6SlgeModQoznKKFW8hWP8O5lJkIgC2Ai4A0IYuIiHErNRIRgO1rgU+0O44e9SbgkbrXGzBjF+t/AYsM8ozGb0SG+w3JCcArwIeAh0bwnKE6seH1yWP0vhEREcOWRCICkPR2YCdgSWD3qsHZBygdh29sb3Rd7xFKD4j7qiVFqwL7151/I/DyIM84QVLt2/zZgGMk1b7NH6i+otHKwLtt3zKEe0YsXYojIqITpdg6ep6kDSjFumsAHwPmrE6tBBzYrrh6yDnAIZLWA74DPEfpHVGzInDHAPefCEwGnq7+nAw8WPd6MnBSk7HcBMw/lOAjIiJ6VWokoudJupyyT/8R9evrJa0OnGZ74TaH2NUkzQ+cBqwLTAV2sH163fkLKcXSXx+DWDYGvgl8jZJczjATki7nERER0yWRiJ4naSqwgu27GhKJxYFbbM/W1gB7RNXZempj4zVJ81bjL41BDNOqw8ZfjC0tto6IiOhEqZGIgKeABYHGrTZXAR4Y+3B6k+2n+xl/YgzD2GgM3ysiIqKjJZGIgN8Ah1bbjBqYUPWWOJzm19ZHh5M0E2XHqONs39/ueCIiIsa7LG2KnlftFPQjYEdgImX7z4nAr4AdG5faRPeqlratYPvudscSEREx3iWRiKhIWhR4F2XXpmvSjK73SPojpcC+sa9DRERENMjSpoiK7XuBe9sdR4yMpHcAiwKz1I/bPrOJ28+lbEW7AvBvXt9ZuplnRERE9ITMSERPkzQH8BVgS2BxSo3EXcCpwOG2n2tfdDEUkpYETgdWoPw9qjplgGZ2XKrbtakv2bUpIiKiThKJ6FlVbcRllOVM5wK3UD58Lg+8H7gaWN/2YF2VYxyQdBbwKvAZSjK4OjAf8D3gS7b/NsDtERERMURZ2hS97PPAwpS+EbfWn5C0HHAJsDPww7EPLYZhLWBj249VMwvTbP9d0j7AUZTtfJsmaTbbL7Qi0IiIiG4wod0BRLTRlsDBjUkEgO1bgG8BW415VDFcEzTXKm0AABXVSURBVIFnquPHgLdVx/cAyzbzAEkTJX1D0gPA1Gq5FJIOlvTp0Q44IiKikyWRiF72DsqsQ38urq6JznADsFJ1/E/gy1U/kP2AO5t8xtcp2wB/GajvpH0DZclUREREVJJIRC+bB3h8gPOPA3OPUSwxct9k+u+0/YAlgL8BHwR2bfIZ2wOfs30Kpd6i5j/AcqMUZ0RERFdIjUT0sgnM+GGx0TTKcpnoALbPrzu+HVhO0rzAk25+V4mFgNv7GJ8AzDzyKCMiIrpHEonoZQIulPRKP+fz30eHs/3EEG+5CViPUldRbyvgmlEJKiIiokvkg1L0sgObuOYPLY8ihk3SacCOtqdUx/2yvWUTjzwIOFHSQpRZiC0lLUtZ8vShEQccERHRRZJIRM+y3UwiEePb01QN56rjEbH9R0lbUGosnqUkFlcDW9j+y0ifHxER0U3SkC4iIiIiIoYsuzZFRERERMSQZWlTRHQsSdcwfWnTgGyv2s8znhzCM+ZtPrqIiIjulkQiIjrZGXXHswFfoOy8dHk1tibwTuDHAzxj97rj+YB9gfPrnrEW8D7g4FGINyIiomukRiJ6nqQlbTfb+TjGKUm/AB6y/Y2G8QOBRWx/qoln/AG42PbRDeO7AJva/shoxhwREdHJkkhEz5M0DbgUOBY41fYLbQ4phkHS08Bqtic1jC8NXGV70C7lkqYCK1cN7erHlwKutT3naMYcERHRyVJsHQGrAtcBRwAPS/qppNXbHFMM3fPAOn2MrwM0mxw+DvxXH+P/VZ2LiIiISmokoufZvhbYTdJewIeBHYG/S7oNOA74pe1H2xhiNOcHwE8krQpcWY2tAXyK5usb9gd+IWlD4J91z3g/8NnRCzUiIqLzZWlTRANJs1KKdr8DzAK8BPwO+Irth9oZWwxM0seB3YDlq6GbgSNt/24Iz1gD2LXhGUfZ/mf/d0VERPSeJBIRFUmrUb693obS1fhESt3EwpRvqueynSVPERERESSRiEDSnsBOwLLAOcAvgHNsT6u7ZmHgbttZDjiOSZoH2ApYEjjc9hPVUqdHbD/Q5DMmAh9h+ozEjcCZtl9tRcwRERGdKolE9DxJkyi1ECf0t3RJ0izAtrZPHNPgommSVgQuAJ4GFgeWtX2npG8Ci9revolnLAWcTZmFurUaXha4D9jc9h2tiD0iIqITJZGInidpceDe+hmIalyU/gP3tiOuGBpJFwBX2/6ypGeAlapEYm3gV7YXb+IZ5wACtrP9RDU2H3AyMM325q37CSIiIjpLEonoeZJeBRa0PblhfD5gsu2J7YkshqLqI7Gq7TsaEonFgFttz9bEM54F1rR9fcP4SsA/0kciIiJiuvSRiCjfQPdlTprvPxDt9yIwVx/jywDNbt/7IvDGPsbnpOzeFREREZUUjkbPknREdWjgIEnP1Z2eSOkfcO2YBxbDdSawX7UFLIAlLQocCvyhyWf8CfiZpE8zYy+KY6rnR0RERCVLm6JnSbq4OtwAuJwZv3F+CbibsvPPpDEOLYZB0tzAqcBqlFmFB4G3Uv5uP2j72SaeMQ9l298tgJer4ZkoScSOtp9uQegREREdKYlE9DxJxwO72Z7S7lhi5CStC6xIWY50te0LhvGMpYHlqpc32759FEOMiIjoCkkkIiIiIiJiyFIjET1J0mmUpSpTquN+2d5yjMKKEZK0CbAH05vJ3Qz8YLBZCUn7NfN82weNLMKIiIjukUQietXTlCLr2nF0OElfAI6k1EkcWQ2vCZwjaQ/bPxrg9gMoNRWT6X8XLwNJJCIiIipZ2hQRXUHS/cAhto9uGP8i8DXbCw1w79nAxsD5lC7nf2psUBgREREzSh+JiOgW8wDn9TH+Z2DugW6sOla/HfgncBjwgKRDJS076lFGRER0icxIRE+SdA3TlzYNyPaqLQ4nRoGkXwHX2D6sYfxLwGq2txnCs9YHdgI+BlwPbGr7+dGMNyIiotOlRiJ61RntDiBG3U3A1yVtSOkdAaVGYh3ge5J2rV1o+6hBnvUvYHHgHcAqwMxAEomIiIg6mZGIiK4g6a4mL7XtJft5xlrAp4CPA7cBxwO/sv3U6EQZERHRPTIjERFdwfYSw71X0peBHYH5gVOA9WxfN0qhRUREdKXMSERPkvQEsIztxyQ9yQD1ErbnHbvIoh0kTQPuBf4EvNTfdbb3HLOgIiIixrnMSESv2gN4pjrevZ2BxPBJOgL4hu1nq+N+DZIE/JWSTL5zoEcMI8SIiIiulRmJiOhYki4GPmr7qeq4X7Y3GqOwIiIiekISiQhA0kTgo8Dy1dBNwB9tv9K+qCIiIiLGrzSki54n6Z2UHXpOpCQTH62OJ0l6Vztji+ZJ6nfGoepuHREREaMoMxLR8yRdDjwK7GD7yWrsTcAJwJttr93G8KJJVdH8prb/3TC+G3Cw7bnaE1lERER3yoxEBKwM7FNLIgCq469TmpFFZ9gbOFfScrUBSXsBBwGbty2qiIiILpVdmyLKsqa3ADc2jC8A3D724cRw2P6FpHmBCyStC2wNfA34oO1/NPMMSYsC97lhqlaSgEVs3zvacUdERHSqJBLRkyTVL3PZBzhK0gHAFdXYmsB+wFfGOLQYAdvflTQfcBUwEXif7SsGua3eXcCCwOSG8XmrcxNHJdCIiIgukBqJ6ElVA7L6//Gr+qcbX9vOh8dxStKu/Zz6EqU3xJW1AdtHNfG8acBbbD/aML4YcJPtOUYQbkRERFdJIhE9SdIGzV5r+9JWxhLDJ+muJi+17SUHeE6tmd1uwM+B5+pOTwTWAF61vc6wAo2IiOhCWdoUPSnJQXewvcQoPapWVC9gBeClunMvAf8BDh+l94qIiOgKmZGIniRpReAG29Oq437Zvm6Mwoo2k3Q8sJvtKe2OJSIiYrxLIhE9qVoL/1bbk+vqJdTHpamRGMeqJUnfsP1s3fKkPtnecxjPnwvYGLjF9i3DDDMiIqIrZWlT9KolKE3oasfRmVYBZq477k9T35hI+h3wV9tHS5qdsvvT4uWUtrH9h5EEGxER0U0yIxERUZH0MGXL2P9I+gRwILASsAPwOdtpUBgREVHJjET0JEkfbvZa22e2MpYYGUk7ARfZvmcUHjc38ER1/H7gD7afk3Q2cNgoPD8iIqJrJJGIXnVGw+vGGon6qbrUSIxvPwZmkXQPcHHtj+0HhvGs+4C1JD1BSSS2qcbfBLwwGsFGRER0iwntDiCiHWxPqP0BNgOuBT4AzFP9+SBwNeXDZIxv8wCbAicBS1H6QNwr6VZJx0jaWtJbmnzWD4BTgPuBB4FLqvH1getHNeqIiIgOlxqJ6HmSbgB2tv33hvH1gJ/ZXr49kcVwSJoNWAvYCNgQeA8ws+2mZmAlrQYsAvzF9tRqbHPgKdv/aEnQERERHShLmyLg7cBTfYw/TdmxJzrLtOqPmb5k7d5mb7Z9FXCVKi7Obk2oERERnStLmyLgX8AR9ctfquPDgCvbFlU0RdIsktaXtJ+kSygJ4E+BBSnLnJa2veQQnre9pOuB54HnJV0n6ZOtiD0iIqKTZUYiAj4FnE5ZV39fNbYIMAn4SNuiimY9DUwGzgJ+BGxj++HhPEjSnsDBwNFAbRnTusAxkua3/f1RiDciIqIrpEYigtJtDHgvsFw1dDNwgfMfyLgn6QpKM7pbKcXRlwKX2H58GM+6C9jf9kkN4zsAB9hO88KIiIhKEomI6HiS5qTMHNQKrFcBbmN6YnGp7clNPOcF4F22b28YXxq43vZsoxt5RERE50oiEQFImgPYAFgUmKX+nO2j2hJUDJukNwLrUWaZdgLmbGbXpmoHr1/Z/nbD+L7A1rZXaEW8ERERnSg1EtHzJK0CnAO8AZiD0tl4fuA5ytr7JBIdQtIEynavG1JmJ9ah/J022/V6f+C3ktZneo3EOsAmwMdHNdiIiIgOlxmJ6HnVTj+3ATtTCndXAl4GTgaOtH1a+6KLwUhanZI4bEhZ3jQnpaHcJUzvcn33EJ73bmAPoNY/5Gbge7avGa2YIyIiukESieh5kp4C1rB9a3W8lu2bJa0BnGh7uUEeEW0kaRrwMFXSQEkc7mhvVBEREd0vS5siyuzDtOp4MqVO4mbK7MQi7Qoqmra87VtH8oBqSdTewIcpNTIXAgfafn4U4ouIiOhKaUgXAddQ1tVD2eHnIEnbAT8AbmhbVNGUkSYRla8D3wamAg8Au1F6UkREREQ/srQpep6k1YA32r5Y0gLAScDalIZ0n7L9n7YGGC0naRJwuO2fVq83Bc4GZrc9bcCbIyIielQSiYjoeZJeBJayfV/d2AvV2P3tiywiImL8ytKmCEDSTJI2lfS/VQ8CJL2tanQW3W8m4IWGsZeBmdsQS0REREfIjET0PEmLAedRiqxnBZaxfaekI4FZbe/c1gCj5aqdn84FXqwb3gK4CHi2NmB7yzEOLSIiYtzKrk0RcCRwFaV/xON146cDP29LRDFkkiYCO1Kaxy1Aw4yr7Y0HuP3EPsZOHrXgIiIiulASiQhYD1jb9kuS6sfvBhZqS0QxHEdSEomzKbttNT3danunFsUUERHRtZJIRJRvrif2Mb4w8MwYxxLDtw3wcdvntDuQiIiIXpBi6wj4M7B73WtXRdYHAvlQ2jleAm5vdxARERG9IsXW0fMkLQycDwhYmlIvsTTwGLC+7cltDC+aJGkvYElgF+cXW0RERMslkYigbP8KbE0puJ4TuBo4xfbzbQ0smibpdGAj4AngRsr2ra/JjksRERGjK4lExAAkzZ5kojNIOn6g8ymojoiIGF1JJCL6IGlWYBdgb9tvbXc8EREREeNNiq2jZ0maVdJ3JF0l6TJJH6nGdwLuohRgf7+tQUZERESMU5mRiJ4l6VDgf4ELgLWBNwPHA2sC3wZ+b/vV9kUYQyVpK+DjlC7ls9Sfs71qW4KKiIjoUpmRiF7238D2trcCNqP0kpgJWMn2b5JEdBZJu1ISwUeAVYArKZ3KlwTObWNoERERXSkzEtGzJL0ELGH7ger188Dqtq9vb2QxHJJuAQ60/WtJz1ASwjslHQTMa3uXNocYERHRVTIjEb1sIqWJWc0rwNQ2xRIjtyhwWXX8PPDG6viXwLZtiSgiIqKLzdTuACLaSMAJkl6sXs8GHCPp2fqL0n+gYzwMzAvcA9xLqXX5D7AE5e86IiIiRlESiehlJza8PrktUcRouQj4MHANpVbi+1Xx9WrAae0MLCIiohulRiIiuoKkCcAE269Ur7eh7MY1Cfip7ZcGuj8iIiKGJolEREREREQMWYqtI6JrSFpP0smSLpe0UDX2SUnrtju2iIiIbpNEIiK6gqSPAedTdmxaBZi1OjU38LV2xRUREdGtkkhERLfYF9jZ9meBl+vG/wGkq3VERMQoSyIREd1iWeCvfYw/DcwzxrFERER0vSQSEdEtHgaW6mN8XeDOMY4lIiKi6yWRiIhu8XPgSElrAAbeJmk74HDgJ22NLCIiogulIV1EdItDKF+OXAi8gbLM6UXgcNs/bGdgERER3Sh9JCKiq0iahbLEaU7gJttT2xxSREREV0oiERERERERQ5alTRHR0SQd18x1tj/V6lgiIiJ6SWYkIqKjSZoG3ANcA6i/62x/dMyCioiI6AGZkYiITvcTYFtgCeB44GTbT7Q3pIiIiO6XGYmI6HiSZgW2BD4FrA2cDRwL/Nn5JRcREdESSSQioqtIWgzYEdieMuv6zuzcFBERMfrSkC4ius00SkM6ARPbHEtERETXSiIRER1P0qyStpX0F+A2YAVgF2DRzEZERES0RoqtI6KjSfoxsA1wH3AcsK3tx9obVURERPdLjUREdLRq+9d7Kdu/9vsLzfaWYxZURERED8iMRER0upMYIIGIiIiI1siMREREREREDFmKrSMiIiIiYsiSSERERERExJAlkYiIiIiIiCFLIhEREREREUOWRCIiIiIiIoYsiURERBeTdImkH7Q5Bkv6SDtjqCdpR0lPtTuOiIhOl0QiIiIiIiKGLIlERET0DEkztzuGiIhukUQiIqL7zSTpaElPS3pM0sGSBCBpVkmHS3pA0rOS/ilpw9qNtWVAkt4n6WZJUyWdJ2nB+jeQ9ClJN0p6UdJDko5uiGF+SadLek7SJEkfrrt3w2r50/skXSPpeUkXSVpA0geq950i6VeS3lB33/sl/b2K73FJf5L09rrzi1fP3VrSpZJeALZr/Jcj6c2Srqrim1XSmySdIunRKpZJknYa8d9CRESXSSIREdH9dgBeAVYHdgP2BD5TnTsaWAvYBlgR+D1wnqSl6+5/A/Al4JPA+sCiwOG1k5I+D/wI+BmwAvBh4PaGGPYHfle9xznAKZLmbbjmAGAXYG1gker63YFPAJsDmwH/V3f9HMARwGrAJsA04HRJjf/fdghwJLA8cH79CUmLAH8DbgC2sv0icDDwDuAD1T2fBx4jIiJmINvtjiEiIlpE0iXAAsA7Xf3Cl3QI5cP++4E7gUVtP1h3zwXAlba/JmlH4HhgKdt3VOe/AOxn+63V6weA423v208MBr5p+xvV6zmAqcAHbJ9XzYBcDGxq+8Lqmq8C3wHebvvOauwYYHHb7+/nfeYHHgVWsH2DpMWBu4DdbR9Zd92OwA+ANYC/AKdX19T+/ZwJPGb7U4P+C46I6GGZkYiI6H5XeMZvjS4HlqbMHkwEbquWLE2VNBXYAHh73fXP1ZKIykOU5ARJCwBvAy4cJIbrage2nwWm1J7R1zXAI9X73tkw9to9kpaW9GtJd0qaAtxdnVq04blX9RHP7JSZiNNs79bw7+cnwDaSrpX0XUlrD/KzRUT0pJnaHUBERLTNnMCrwLurf9abWnf8csM5A6qOn2/yvfp6RuOXWS83nB/snrOAe4DPAg9W524AZmm479k+4nkRuAD4kKTDbD/w2pvY50paDPgg8F7gQkk/sv2lfn62iIielBmJiIjut0bD6zWBScA1lBmJBWzf3vDn4WYebPsZykzAJqMZ8GAkzQcsS1kydaHtm4E3DeER0yg1H/8GLpb0tvqTth+1faLt/6HUaXxulEKPiOgamZGIiOh+i0o6AvgpsCqlYHkv27dJOgU4SdJelMTizZSk4DrbZzf5/AOAYyRNBs4F3gisY/uHo/xz1HsSeBz4nKSHKMuZDhnKA2y/Kmk74NfARZI2tP2wpIMoCcaNwKzAh4CbRzX6iIgukEQiIqL7nUSpCbiSsoTpSMoOSwA7AfsC3wMWouxOdAXwp2YfbvtESbMBe1B2c3oMOHW0gu/nPadJ2gY4irKc6VZgV+CSIT7nFUnbAr+lSiaAlyiF3otTlm79jbKrVURE1MmuTRERERERMWSpkYiIiIiIiCFLIhEREREREUOWRCIiIiIiIoYsiURERERERAxZEomIiIiIiBiyJBIRERERETFkSSQiIiIiImLIkkhERERERMSQJZGIiIiIiIghSyIRERERERFDlkQiIiIiIiKG7P8BJHQ3txMn7BQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAP3CAYAAAC4TXj6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXxU1f3/8fcnISwhhCiEfQuIKJsbUNEqIIJSXKgg1qVCbd2t1hW3apCKG0VEq61YxTUW0bq0VX6IIOrXfUURRE0EZEe2sIbk8/tjFidhEnKzJ7yej8d9ZOaun3vmzGQ+c86519xdAAAAABBEQnUHAAAAAKD2IZEAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAA1HpmNtDM3MwGlmLdTuF1x1Z+ZABQd5FIAABqDTO7pLQJgJmdZWZ/quSQAGCfRSIBAKhNLpE0Ns78+ZIahf9GnCWJRAIAKkm96g4AAIDycvcCSTuqOw4A2JfQIgEAdZyZNTGzKWaWY2Y7zWyNmc02s8OLrHe6mX1sZtvNbJ2ZPWVmbYusM93Mcs2sg5n9J/z4RzO7NLy8l5m9YWZbzewHMzsrTjxp4XiWheP51szGmVmJ/5PMLEdSD0kDwmMc3MzmhZcVGiMRnj9cUseYdXP2sv+DzGymmf1kZjvM7CMzO6XEwgWAfRgtEgBQ9/1d0ihJD0haKKmZpF9KOljSJ5IUHnfwmKQPJd0gqaWkKyQdbWaHufvGmP0lSnpVoW5E10k6W9IDZrZV0u2Snpb0gqSLJD1hZu+6e3b4OMmS3pTUVtI/JC2VdJSkOyS1Vsldkf4k6X5JueHjSNLqYta9XVJTSe0kXRmel1vcjs2sh6R3JP0o6U5JWyWNlvSimY1093+XEBcA7JPM3as7BgBAJTKzjZKecvfLilmeJGm5pDWS+rr7jvD84ZL+I+k2d781PG+6pDGSbnT3O8Lz0iStkNRQ0pnu/q/w/G6SFkka7+6Z4Xk3S7pe0mHuviQmhjskXSspw92XlXAuX0pa5+4Di8wfKGmupEHuPi887z+Serp7pyLrdpKULel37j49PO91SS3C578zPM8kvS0p3d0PLC4mANhX0bUJAOq+jZJ+YWZtilneR6Ev0Q9GkghJcvf/KpQIDI+zzSMx622UtFihX/FnxMxfHD5255jtTpf0lqQNZtY8Mkl6XaGWjmODn175mNn+ko5TKPYmMTE1kzRLUteiXbwAAHRtAoB9wXWSHpe0zMw+lvQ/SU+4+/fh5R3DfxfH2XaRQt2gYu1w97VF5m2StNz3bObeJGm/mOddJfWWVHT7iBbFnkXlOUCSSZoQnuJpoVC3JwBAGIkEANRx7j7DzN6S9GtJQxXqQjTOzE5z91fLsMv8gPMt5nGCpNmS7i5m3W/KEE95RVrnJynUAhHPt1UUCwDUGiQSALAPcPeVkh6U9KCZtVBokPVNCg2a/iG8WjdJbxTZtFvM8orwnaQUd3+9jNsHGdhX2nUjLTN55YgLAPY5jJEAgDrMzBLNrGnsPHdfo9Dg6AbhWR8pNND6IjNrELPtMIWu7PTfCgxphqT+ZnZCnFjTzGxvP3BtlZRWymNtVejKTSUKl8c8SReaWes4caWX8ngAsE+hRQIA6rYmkpab2UxJnyt0CdTjJfWVdLUkuXuemY1T6PKvb5pZln6+/GuOpHsrMJ57JJ0i6T/hK0B9LKmxpF4KXaK2k6R1JWz/saSLw1d/+lbSGncv2ooSu+4ZZjZZocva5rr7K8Wse6lCV2haYGbTFGqlaCmpv0KXkD2ktCcIAPsKEgkAqNu2KdSlaaik0xRqif5W0iXu/lBkJXefbmbbFLo0610K/Zr/b0njitxDolzcfZuZDZB0o0JXcDpX0maFxkbcqtDg7JLcptDg8OsUSpLe1J7dsSIelHSopN8pdC+JHyTFTSTcfaGZ9QnHMFahKzatkfRp+JgAgCK4jwQAAACAwBgjAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJAAAAAAERiIRh5ldamY5ZrbDzN43s37VHVNtZ2aZZuZFpkXVHVdtZGbHmtkrZrYiXI4jiiw3M7vNzFaa2XYze93MulZXvLVJKcp2epx6/Fp1xVubmNkNZvahmW0xszVm9qKZdSuyTkMz+5uZrTezXDN73sxaVlfMtUUpy3ZenLr79+qKubYws4vN7Asz2xye3jWzYTHLqbPlUIrypd5WADO7Plx2U2LmVUjdJZEowszOkDRZ0nhJh0v6XNIsM2tRrYHVDV9Jah0z/bJ6w6m1GitULy8tZvl1ki6XdJGkX0jaqlAdblg14dVqeytbSXpNhevxmVUQV10wQNLfJB0paYikJEn/z8wax6xzr6STJZ0eXr+NpBeqOM7aqDRlK0nTVLjuXleVQdZSyyVdL+kISX0kvSHpJTPrEV5OnS2fvZWvRL0tFzPrK+lCSV8UWVQhddfcvbwx1ilm9r6kD939svDzBEnLJN3v7ndWa3C1mJllShrh7odWdyx1iZm5pF+7+4vh5yZphaS/uvuk8LymklZLGuvuz1ZbsLVM0bINz5suKc3dRxS7IUrFzNIlrZE0wN3nh+vpWklnufvM8DoHSfpaUn93f6/6oq1dipZteN48SZ+5+5+qM7a6wMx+knStpJmizla4SPm6+z+pt+VjZimSPpF0iaSbFS7Livy8pUUihpnVVygrfj0yz90Lws/7V1dcdUjXcJeR783saTPrUN0B1UEZklqpcB3eJOl9UYcrysBw95HFZvaQmTWr7oBqqabhvz+F/x6h0C/psXV3kaSlou4GVbRsI842s3Vm9qWZ3WFmyVUdWG1mZolm9huFWi7fFXW2QsUp3wjqbdn9TdJ/3f31IvMrrO7WK2+EdUxzSYkK/Xoba7Wkg6o+nDrlfUljJS1WqGnyVklvmVlPd99SnYHVMa3Cf+PV4VZCeb2mUNNvtqQukiZKetXM+rt7frVGVouEW3qnSHrH3b8Mz24laZe7byyyOnU3gGLKVpKekfSDQi2WvSXdJambpNOqPMhaxsx6KfTFtqGkXIVaKhea2aGizpZbceUbXky9LaNwUna4pL5xFlfY5y2JBKqEu78a8/SLcBeyHySNlvTP6okKCKZI17AFZvaFpO8kDZQ0p1qCqp3+JqmnGCdVGeKWrbs/HPN0gZmtlDTHzLq4+3dVGWAttFjSoQq19IyS9LiZDajekOqUuOXr7gupt2VjZu0l3SdpiLvvqMxj0bWpsHWS8iUVHbXeUtKqqg+n7gpnwd9IOqC6Y6ljIvWUOlwF3P17hT43qMelZGYPSDpJ0iB3Xx6zaJWk+maWVmQT6m4plVC28bwf/kvd3Qt33+Xu37r7x+5+g0IXZLhC1NkKUUL5xkO9LZ0jJLWQ9ImZ7Taz3QoNqL48/Hi1KqjukkjEcPddkj6WNDgyL9xMPFiF++uhnMIDgLpIWlndsdQx2Qp9CMTW4VSFrt5EHa5gZtZOUjNRj/fKQh6Q9GtJx7l7dpFVPpaUp8J1t5ukDqLulqgUZRtP5MIX1N3gEiQ1EHW2skTKNx7qbenMkdRLofKKTB9JejrmcYXUXbo27WmyQs1qH0n6QNKfFBr481i1RlXLmdkkSa8o1J2pjUKX182XlFWdcdVG4SQs9teYjHBf3Z/cfWn4OtE3m9kShRKLCQr1L31xz70hVkllG55ulfS8QslaF0l3S/pW0qwqDrU2+puksySdKmmLmUX64W5y9+3uvsnM/ilpcviqLZsl3S/pXa5+s1cllq2ZdQkv/5+k9Qr1Nb9X0nx3L3pJSMQwszskvarQINQmCpXjQEknUGfLr6Typd6WXXjsaewYKZnZVknrI2OnKqzuujtTkUnSZQp94d2pUDPaL6o7pto+SXpWoS+zOxW6bvSzkrpUd1y1cVLoQ9bjTNPDy03SbQp92d2h0FUZDqzuuGvDVFLZSmqkUMKwRtIuSTmSHpbUsrrjrg1TMeXqCl2WOLJOQ4W+FP+k0P1PXpDUqrpjr+nT3spWUntJbyr0ZWyHpCUKJcGp1R17TZ8UGsOXE/7ftSb8eTokZjl1tpLKl3pb4WU9T9KUmOcVUne5jwQAAACAwBgjAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJOIwswZmlmlmxd2iHWVE2VYeyrZyUb6Vh7KtPJRt5aFsKw9lW7kqsny5IV0cZpYqaZOkpu6+ubrjqUso28pD2VYuyrfyULaVh7KtPJRt5aFsK1dFli8tEgAAAAACI5EAAAAAEFi96g6ghmttZk2qO4g6JiX8l7KteJRt5aJ8Kw9lW3ko28pD2VYeyrZypex9ldJhjEQcZnakpHerOw4AAACgkvR39/fKswNaJOJbJkkffPCBWrduXd2xAAAAABVi5cqV6tevnxT+vlseJBIlaN26tdq1a1fdYQAAAAA1DoOtAQAAAARGIgEAAAAgMLo2lUF+fr7y8vKqOwwAAFABkpKSlJiYWN1hALUOiURAubm5Wr58ubjaFQAAdYOZqV27dkpJqbCrYgL7BBKJAPLz87V8+XIlJycrPT1dZlbdIQEAgHJwd61du1bLly9X165daZkAAiCRCCAvL0/urvT0dDVq1Ki6wwEAABUgPT1dOTk5ysvLI5EAAmCwdRnQEgEAQN3B/3WgbEgkyumZ95dWylRa+fn5mjJlig477DAlJycrJSVFBx10kC699NJKPOufderUSWamnJycKjleZmamzEyZmZll2t7MatQ/jOnTpyszM7NQ+Q0cOFBmpnnz5lVbXPEEea0/++wzZWZm6sUXX4zOmz59usxMY8eOrfDY4pVjWcybNy9aR/7whz8UWhape2amhIQEtWzZUmeddZY2bNgg6efyiTcVd845OTkaM2aM2rRpo/r166t9+/YaM2ZMuc6hurRq1SpaP3JycmRm6tSp0163mzdvnjIzM0tV32Pfv5HXauDAgWWKNycnR5mZmZo+fXqhWMqzzyDGjh1bbH0pTbl9//33yszM1BNPPFHqY/7yl7+Umentt9/e67q5ubkyM9WrV30dFwoKCjR69Gh16tRJDRs2VJs2bXTppZdq+/btkqT169erT58+Sk1NVYMGDdS5c2dNmDAhOoYxJydHAwcOVGpqqsxMxx9/fLWdC1BX0bWplvvNb36jmTNnKiMjQ5mZmUpLS9Pnn3+u559/Xn/729+qO7w6Zffu3RX+T3X69Ol68803NXDgwFJ9eSiL0sRd0ef22Wefafz48RozZoxGjBghSRowYICysrKUkZFRYceJqKhyjHypTExM1HPPPaepU6cqOTm50DqnnHKKRo0apYcfflhZWVlq0aKFpkyZovvvv19bt27VihUrdPXVV6t58+a6//77JSnuOWdnZ6tv375av369Ro8erSFDhmj16tV66qmnyhR7ZdTPskpPT1dWVpYaN26813XnzZun8ePHS1KxX+Aj55aVlVVhMebk5Gj8+PEaMGBANNHr3r179DWtbBdffLFOPPFESdJFF12kTZs2aerUqUpPTy9VuX3//fcaP368Bg8erHPPPbeyw60WBQUF+r//+z+NHTtWnTp10pQpU/Tggw8qJSVFd911lyRp0KBBuuSSS7R9+3ZNmDBBt9xyi/r166cTTjhBO3bsUOvWrTVixAg9+eST1Xw2QB3l7kxFJkltJfmyZcs81vbt233hwoW+ffv26Lyn3/uhUqbSeOutt1ySp6Wl+Zo1awot27x5c/TxZ5995kOHDvW0tDRv3ry5jxgxwr/99tvo8oceesgPPvhgb9SokXfu3NkzMzM9Ly/P3d2XLFniRx99tDdq1MhPOukkP+GEE1ySP/bYY+7u3rFjR5fk2dnZ7u4+f/58P+aYYzw1NdVbtWrlf/jDH3zDhg1x458+fbofcMABXr9+fW/atKn/4he/iJ7Hu+++64MHD/b99tvPk5OT/dRTT3V391tvvdUl+TnnnOODBg3ylJQUHzhwYHS73Nxcv/LKK71Dhw6enJzshxxyiM+YMSN6TEkeqvahMurXr583bdrU69ev7506dfLbb789uu6AAQNckv/xj3/0Aw880AcNGrTHOXz77bd+6KGHekpKijds2NC7devmjzzySHR5pHy+/vrrQvucO3du9HHslJ2dHZ0/btw479Gjhzdp0sTPP//86D6///57HzlypKenp3vTpk198ODB/sknn7i7+9y5c12SH3HEET5q1Chv0qSJz507d4+4I3Fde+213rFjRx87dqy7u0+bNs179OgRrQt33XXXHttEXushQ4b4/vvv70lJSd62bVu/4oorfPfu3f7YY4/tcV633nprdP6YMWP8u+++czPzvn37Rvd/zTXXuCSfNm3aXmOJVVw5rlmzxn/3u99569atPSUlxY888kifM2dO3H24u2/ZssUbN27s6enpfskll7gkf+KJJ6LLI3Vv3Lhx7u7+73//2yX5sGHDCu3n66+/dknesWPHYo/l7n7eeee5JD/77LMLzc/Pz48+Lum9Ga9+Rl7/Pn36+JlnnulpaWneq1cvf++999zdo6/BGWec4e4/15cBAwa4u/sHH3zgffv29eTkZG/UqJF379692DL73//+5wcccIA3adLEr732Wm/RokW07LOzswuVwXfffecDBgzwJk2aeIMGDfyAAw7wp59+OlqmsdNjjz0WnT969Gjv37+/JyUluXvh928k9n79+vnZZ5/tycnJpT7XyOPYacyYMXuUx+7du33ChAnepUsXb9SokR900EH+wAMPRMsg8p644YYbPCMjw9PS0jwzM7PE1z2eli1bFnpvRcyZM8f79+/vKSkp3rp1ax87dqyvWbPGZ8+evUf8v//9733Dhg3et2/f6GdaRkaG33nnndH9HX300S7J33rrrbhxTJs2zdu0aePNmzf322+/3SV5YmJidPmMGTP80EMP9eTkZO/QoYNfeeWVnpub6+7u27Zt8xtvvNE7d+7s9evX9/bt2/ucOXM8Pz/fr7jiCm/ZsqXXq1fPW7Ro4eecc467u+fl5UXjj9Tronbs2BF9PHPmTJfkQ4cOjc4rKCjwtWvX+sKFC71Xr14uyWfNmlVoH6+88opL8sGDBxf7GsT7/w7UVcuWLYu899p6Ob8z07WpFnvvvfckScccc4zS09MlSevWrdO6deu0c+dO5eXlaePGjTrhhBM0Z84cXXPNNTr//PP14osvavjw4crLy1NWVpYuvvhiubumTp2qdu3aKTMzUxMnTpQknXvuuXrnnXd01lln6eijj9brr79ebDzZ2dkaNmyYVqxYoWuuuUajR4/WI488oksuuSTu+ldccYW2bt2qhx56SH/5y1/UrVs37d69Wzk5ORoyZIjefPNNXXzxxbrvvvvUpUuXQtu+9NJLGjFihHr37q158+ZFW1+uuuoq3Xvvverdu7fuvfderV+/XmeccUbcbhNmphNOOEGTJk3S3XffrdatW+umm27S7Nmz9zjWVVddpQsuuGCPfdSrV08jR47UlClTNGHCBCUkJOiCCy7Q4sWLiy2niFtuuUUHH3ywJOnPf/6zsrKyoq+jJL3yyiu67LLLlJycrGnTpmnevHnKz8/XSSedpOeff17nnnuubrjhBs2fP18nnHCC1q9fH932448/VlpamiZPnqwOHToUG8OsWbN08803a9SoUZoxY4bOP/98paen65ZbblH37t01btw4Pfzww3G37d+/v+68805NnjxZvXv31n333adHH31UAwYM0EUXXSRJOvbYY5WVlaVRo0YV2rZz584aPHiwPvzwQy1atEj5+fl65plnlJqaqjPPPDNQLMWV4znnnKPHHntMQ4cO1cSJE/X1119r+PDhxb42M2fO1NatW3XmmWfqd7/7nSQV6vYSsX37dq1cuVKvvfaaJOmoo44qtnxLEnn/nnbaaYXmJySEPpb39t6MiFc/P/roI3Xp0kWXXXaZFixYoJEjR2rHjh17jen222/Xhx9+qNtuu01Tp07V0KFD494zZ926dTrjjDP0ww8/6Oabb9bGjRu1Zs2aYvc7depUvfnmm7r00kv10EMPaeTIkcrPz9eoUaM0cuRISdLIkSOVlZWlAQMGFDq3k046SZMmTSp23x988IEyMjJ01VVXlfpcu3fvrj//+c+SpIMPPjha1kXdfffd+vOf/6yWLVtq6tSpqlevni677LI9uhO99dZbuuqqq7Rz506NHz9e2dnZJR6/NJYsWaLhw4frq6++0u23365hw4Zp+vTpOvvss9WrVy/ddNNNkqSePXsqKytLF154oRISEjRs2DBNmjRJd911l1q0aKHrr79ec+fO3evxFixYoAsvvFDbtm1TZmamPvjgg0LL58+frzPOOENr1qzR5MmTddhhh+nee+/VlVdeKSn02Ttx4kSlp6frwQcf1Pnnn6+CggJ98sknuu+++9StWzc9+uijuuaaa5SamlrqcmjQoEH08csvvyxJhboobdq0Senp6erevbsWLFig66+/XkOGDCn1/gGUU3kzkbo4qZa0SNxzzz0uyU8++eRofIr5herVV1/1//73vy7JhwwZEt2uZ8+eLsk/+eQTP/30012SP/300+7u/tFHH7kk7927t2/evNkleaNGjaK/Fh1//PHFtkg8+OCDe/xKJslTU1Pjxn/kkUd6UlKSjxw50m+99VafP3++u3t0P7/97W/32CbyS+Ull1zi7u4PP/xwoV9109PTXZL/+OOP7u4+adIkl+SXX365uxf+RXP16tU+ZMgQT0xMLBRv5Be8yC++sb9KF7Vo0SI/8sgjPSEhodA+nn322ULlE69FIt7z2HmRlpSzzjor+kv9V1995ZL8gAMOiK5/0kknuSR/4YUXor+odunSpdiYY+OKlLm7++jRo+O+fqecckqhbbKzs33r1q0+evRob9CgQaF1L7roInf3Qq0PEUXnzZgxI/pr7muvvVZo+73FUlTRcszNzXUzK1R3L7vsMpfkkydPLnEfL7zwgmdnZ3uHDh3czDwnJ8fdPe6v56eccorv3r270H5K2yLRvXt3l+TPP/983OUlvTdj442tn5HXv1evXtF5kV9pP/zww722SFx//fUuyQcOHOjXXHONz5w5M+4vxS+//HKhX4Z3797tycnJxbZI/P3vf3dJ3rdvX7/88sv9iSee8G3bthUq11tvvTW6/8i88847r9BxY9+/5T3Xos/jzevbt69L8nfeecfdf/5FvOh74oMPPnB396OOOsol+ezZs+O+psWJ1yJx3333uSS/+OKLo2WckpLiZuabNm2KtkrE/sq+cuVKP/744/f4TJs0aZK7l9wiMXny5EKfrUuXLi3UInHllVe6pGjL4KpVq1ySN2vWzN3dmzVr5pL8hx8K//9auXKlp6SkeMuWLX3MmDE+adIk/+6776LL8/Lyim2NiMjPz/fLL7/cJfnpp59e6D2Xl5fns2fP9scff9w7d+7sjRs3jrZKRdAiARRGiwQkhX4RlqS3335b69evV/369TV79mz17t27xO1KGmwcb1nQAconn3yyZs+eHZ2ee+65uOvNmTNHjz/+uA444ADNnDlTxx57bPQXp72J/HKflJQkKdSHOp6S4p4yZYpmz56tE044Qa+++mp0cG1kIF9E+/bti93H+PHj9d577+ncc8/VrFmzdPLJJxfaR6TPeiS+n376qdTxlXSOsdvF20e7du2K3W+seOd28803F3r9br755j3WeeqppzRjxgz17t1b//nPf6LrRM67NPVlxIgRatGihZ5++mk9/vjjkqQLL7wwcCx7O15kWUnrZGdna/78+ZJCLQQZGRlaunSp3D0aW8RvfvMbPfXUU+rUqZNefvnlMve9jrx/YwekS6F+4SWdR1El1c+i9lYfJ06cqFmzZmnQoEH6/PPPNWrUKF133XWl2reHfoSJ68ILL9Tbb7+tX//611qxYoXOPfdcnX322ZJKfl2CnFtR5XnvFae4bYp7r+7atUs7duwo9jUtj3ixTJ48Wa+//rqGDRum1157Teedd56kPT/TKuv48bRq1UqLFi1SZmamUlNTNXHiRPXu3Vtr166VFCqr4j6/JWnHjh06/fTTNXXqVF1wwQXKysoqdHnWevXq6fjjj9e5556r3//+99q6daueffbZ8p0cgFKrGSPzUCZHH320Tj/9dD333HPq37+/LrroIjVv3ly5ubnRdY466ii1bNlSc+fO1R133KGtW7dqwYIF6tatm3r27KnTTjtNzz33nP7yl79o27ZtevrppyWFuhk0adJE/fv317vvvqtLLrlEGRkZJTaRn3jiiWrcuLHmzJmj/v37Kz09XZ9//rmWLVumoUOH7rH+hRdeqCOOOEI9evTQwoUL9dVXX2np0qU66aSTlJKSoqysLHXo0EEZGRlauHCh/vrXv+61TE477TT94x//0MUXX6zhw4drypQpMrM9uo/Eys3NVU5OjmbNmrXX/Rdn06ZNWrRokd56661C87t06aLvvvtO06ZNU/v27bVgwYJCy/fff39J0nPPPae1a9fq9NNPL/E43bp1U48ePfTVV1/puuuuU/PmzTVr1iylp6fr2GOP3WP/QYwcOVIzZsxQVlaW2rZtq/z8fM2fP1+9e/dW3759426zfft2rVixYo8vw5Hz+uSTT5SVlaWjjz56j22TkpI0duxY3X333Vq2bJn69eunQw89tEyxxCvHoUOHatasWTr//PN1+OGH68knn1TDhg01fPjwPbZ//PHH5e4677zzosngpk2bNHbsWD3++OPRbjCS1LFjR5199tlq06aNjjvuOF177bXR90sQN910k1588UU9+eSTysvL0/HHH6+1a9fqySef1FdffVXie3NvFixYEI15wYIFatu2rXr27BntpvTOO+/o+eefjw5YjZgwYYISExPVqVMn5ebmavbs2Vq6dM+ryPXv319NmjTR3Llzdc8992jJkiUlfll98MEHtXr1amVkZKhfv36aOXNmdL+R127+/Pl69tlnA3dLKeu5Ro67ZMkSPeHChhoAACAASURBVPXUUzriiCP22Pdpp52mDz/8UNddd53Gjh0bHTxfmtdAkoYOHao333xTr776anRgdWkNGzZM48aN0zPPPKODDz5YX3zxhXJzczVkyBClpqZG41+8eLGefvpp9enTJ7ptbm6usrOzA32mDRkyRAkJCXrmmWfUvXv3Pbp4jhgxInpRgaZNm0a79kU+W0eNGqV//OMfGj16tM4//3ytWrVK/fr1U7t27XTvvffq8MMP1+GHH65Zs2bpm2++0fr167XffvtF78mUl5e3x8UC3F3HH3+83nnnHfXt21eDBg3Sc889pyZNmmj48OGaNm2aPv30Ux1xxBHKzc2NdnE95JBDJEmbN2/WjBkz9MUXX0iSVqxYoUceeUR9+vSJftYAKKfyNmnUxUm1pGuTe6hZ95577vGePXt6/fr1PTU11Xv06OF//OMfo917PvvsMx8yZIinpaV5s2bN/NRTTy12sHVGRobfeuuthQZbH3XUUZ6amuonn3yyH3PMMS7JX3rpJXePP9h6wIABnpaW5ikpKX7YYYf5/fffHzf2UaNGeatWrTwpKcmbN2/u55xzjm/ZssXd3d9++20fNGiQp6WleXJycrQrQdFuEEW7L0QGW7dv3z462Ppf//pX9Jgq0rVp4MCB3qBBA+/Tp0+060tk3/G6HRW1ePFiP+KII7xBgwZ+3HHH+TnnnFOo69fHH3/sBx10kKempvqZZ57phx56aKF9zps3zzt16uRm5g0aNIh73DFjxrgkf+ihh9w9NNj6tNNO8+bNm0cHW3/88cfuHr+7RjxFX7eIadOmec+ePb1Ro0berFkzHzRokL/++ut7bLNt2zYfMWJEdADqjTfeWKjb0vbt2/3444+Pdn3KysqK291pyZIlbmYuqdAg9b3FUlS8cow32Dre9gUFBZ6RkeGS/LPPPiu0LNINcN68eXsMtnZ3P/XUU12S33zzzdF5pe3a5B56LX/7299GB6K2bt06OhDVveT3Zrz6WXQActHB1u7ul156qTdp0sS7du3qV1xxRaH6MnHiRO/cubM3aNDAmzRp4gMHDvSFCxfGjf1///ufd+nSxZs1a+aXXXZZtFthvK5Njz76qHfr1s0bNWrkycnJ3q9fv2j3mlWrVnnfvn29Xr16LsnffffduN2d3ON3bSrruRYUFPiZZ54Z7ZJ1xx13FDvYunPnzt6oUSPv1q1boc+zou+jyGvy6quvxn1enNIMtm7VqlV0sHUk/tGjR0fjv+eee3zVqlV+7LHHeoMGDbxv377RiwZMmDDB3Us/2Lp169Z+0003Fera5B7qjnjIIYd4cnKyt2/f3v/0pz9FB1tv3brVx40b5xkZGV6/fn1v166dz5kzx7Ozs/3oo4/2tLQ0T0pK8o4dO0YvarG3wdaxy2OnSNfNl156Kfr+aNy4sffo0cP/+te/RrdfsmRJ3O0j5RGLrk3Yl1Rk1ybzEpqj91Vm1lbS8mXLlhXqIrJjxw5lZ2crIyNDDRs2rL4Aq9D777+vr7/+Wh06dNCiRYt09dVXKzk5WYsWLSo0MBhA9Zs3b54GDRqkAQMG1Lj7kAA12b74/x37ruXLl0e6jrZz9x/Lsy+6NqFEubm5mjBhgpYvX67U1FQNHDhQt912G0kEAADAPo5EAiUaPHiwvvvuu+oOA0ApDBw4sMRBzwAAVCSu2gQAAAAgMBKJMuAXPwAA6g7+rwNlQ9emAJKSkmRmWrt2rdLT08t0HXIAAFBzuLvWrl0rM4veCwRA6ZBIBJCYmKh27dpp+fLlysnJqe5wAABABTAztWvXrtDN7gDsHYlEQCkpKeratWv0ZkcAAKB2S0pKIokAyoBEogwSExP5wAEAAMA+jcHWAAAAAAIjkQAAAAAQGIkEAAAAgMAYIwEANVDB7gItfvZTbf1hnRp3bK5uvzlMCfX47QcAUHOQSABADfPpX99Q/sQ71XrTYu3vu7Tb6uuTK7op8cbrddjVx1V3eAAASKJrEwDUKJ/+9Q3td8OF6rDhC21LTNFP9VtrW2KK2m/4QvvdcKE+/esb1R0iAACSSCQAoMYo2F2g/Il3Knn3Fq1r2FZ59RrJExKUV6+R1jdsq0a7tyh/4p0q2F1Q3aECAEAiAQA1xeJnP1XrTYu1KamZZFZ4oZk2J+2v1psWa/Gzn1ZPgAAAxGCMBABUo2feXxp9/MOSNdqv15HaWq/pnomEJLmr8e5N2rBkjT6N2e6sX3SoilABACiEFgkAqCHqN0tRgSUq0XfHXZ7oeSqwRNVvllLFkQEAsCcSCQCoIVr1ba9NjVqpYX6u5F54obsa5m/Vpkat1Kpv++oJEACAGCQSAFBDWEKCEoadqLyEhmq8e6MSC3ZJ7kos2KXGuzcqL6GREoadKEvgoxsAUP34bwQANUj7IQdp26/P0YbkdqpfsFONd29S/YKd2pDcTtt+fbbaDzmoukMEAEASg60BoMZpP+Qg+eADterDZdq1Plf1m6WoQ9/2tEQAAGoUEgkAqIEsIUGtf9GxusMAAKBY/LwFAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARGIgEAAAAgMBIJAAAAAIGRSAAAAAAIjEQCAAAAQGAkEgAAAAACI5EAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJAAAAAAERiIBAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARWIxIJM7vUzHLMbIeZvW9m/UpY93wze8vMNoSn14uubyG3mdlKM9seXqdr5Z8JAAAAsG+o9kTCzM6QNFnSeEmHS/pc0iwza1HMJgMlZUkaJKm/pGWS/p+ZtY1Z5zpJl0u6SNIvJG0N77NhZZwDAAAAsK+p9kRC0lWSprn7Y+6+UKEv/9sknRdvZXc/290fdPfP3H2RpD8odB6DpVBrhKQ/SfqLu7/k7l9IOldSG0kjKv90AAAAgLqvWhMJM6sv6QhJr0fmuXtB+Hn/Uu4mWVKSpJ/CzzMktSqyz02S3g+wTwAAAAAlqFfNx28uKVHS6iLzV0s6qJT7uEvSCv2cOLSK2UfRfbZSHGbWQFKDmFkppTw2AAAAsE+qCV2byszMrpf0G0m/dvcd5djVDZI2xUyLKiA8AAAAoM6q7kRinaR8SS2LzG8paVVJG5rZNZKulzQ0PA4iIrJdkH3eIalpzFTa1hAAAABgn1StiYS775L0scIDpSXJzCIDp98tbjszu07SnyWd6O4fFVmcrVDCELvPVIWu3hR3n+6+0903RyZJuWU7IwAAAGDfUN1jJKTQpV8fN7OPJH2g0BWXGkt6TJLM7AlJP7r7DeHn4yTdJuksSTlmFhn3kOvuue7uZjZF0s1mtkShxGKCQuMoXqzC8wIAAADqrGpPJNz9X2aWrlBy0ErSZwq1NEQGS3eQVBCzycWS6kuaWWRX4yVlhh/frVAy8rCkNElvh/dZnnEUAAAAAMKqPZGQJHd/QNIDxSwbWOR5p1LszyXdEp4AAAAAVLDqHmwNAAAAoBYikQAAAAAQGIkEAAAAgMBIJAAAAAAERiIBAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARGIgEAAAAgMBIJAAAAAIGRSAAAAAAIjEQCAAAAQGAkEgAAAAACI5EAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJAAAAAAERiIBAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARGIgEAAAAgMBIJAAAAAIGRSAAAAAAIjEQCAAAAQGAkEgAAAAACI5EAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJAAAAAAERiIBAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARGIgEAAAAgMBIJAAAAAIGRSAAAAAAIjEQCAAAAQGAkEgAAAAACI5EAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACAwEgkAAAAAgZFIAAAAAAiMRAIAAABAYCQSAAAAAAIjkQAAAAAQGIkEAAAAgMBIJAAAAAAERiIBAAAAIDASCQAAAACBkUgAAAAACIxEAgAAAEBgJBIAAAAAAiORAAAAABAYiQQAAACAwEgkAAAAAARGIgEAAAAgMBIJAAAAAIGRSAAAAAAIjEQCAAAAQGAkEgAAAAACI5EAAAAAEBiJBAAAAIDASCQAAAAABEYiAQAAACCwMiUSZtbBzG42s8fMLD08b7CZdavY8AAAAADURIETCTM7StJCSSdIOktSk/CiIyVNqLjQAAAAANRUZWmRuFvSX9z9GEm7Yua/Lql/hUQFAAAAoEYrSyJxiKR/xZm/WlJ6+cIBAAAAUBuUJZHYLKlFnPm9Ja0oXzgAAAAAaoOyJBLPSbrTzPaX5JLczI6QNEnSMxUZHAAAAICaqSyJxPWSlktaJamxpK8kfSDpc0njKy40AAAAADVVvaAbuPsOSb81s9sk9ZKUIukTd/+yooMDAAAAUDMFTiQi3H2JpCUVGAsAAACAWqJUiYSZTSztDt39xrKHAwAAAKA2KG2LxKAiz3tIqi/p+/DzzpJ2KjReAgAAAEAdV6pEwt2jN5ozs8sknSTpXHdfE57XQtJjkl6rjCABAAAA1CxluWrTOEnXRJIISQo/vkGhKzoBAAAAqOPKkkjsJ2n/OPPTJDUtXzgAAAAAaoOyJBIvS/qnmf3KzJqHp+GSHgkvAwAAAFDHleXyrxdImirpJf2ciBRIelLSFRUUFwAAAIAarCw3pMuVdJ6ZXS2pa3j2EnffUKGRAQAAAKixynNDug2SPqjAWAAAAADUEmVKJMyst6RRkjoodD+JKHc/qwLiAgAAAFCDBR5sbWanSfpIUn9JZ0pqHn78q4oNDQAAAEBNVZarNt0i6Tp3HyJpl6SLFBor8aK4szUAAACwTyhLItFVoSs2SaFEorG775Z0t6RLKiowAAAAADVXWRKJDZIahx+vkHRw+HGKpCYVERQAAACAmq0sg63fkXScpC8l/VvSfWZ2jKQTJc2ruNAAAAAA1FRlSST+KKlR+PFtCt2M7ihJ/0/SrRUUFwAAAIAaLFAiYWb1JA1UuOUhPDYis6KDAgAAAFCzBRojEU4cHtfPLRIAAAAA9kFlGWz9kaReFR0IAAAAgNqjLGMkpkiabGatJH0saWvsQnf/piICAwAAAFBzlSWReC789+HwXw//tfDjxPIGBQAAAKBmK0sicfDeVwEAAABQlwVOJNx9cWUEAgAAAKD2KHUiYWYmqWtkDISZ/U5SUswq+ZIedXePtz0AAACAuiNIi8Tpkq6QdHT4+VRJ2xVKICQpVVLk8rAAAAAA6rAgl3/9vaQHisw70t1bu3trSeMknVthkQEAAACosYIkEgdL+rCE5W9IOrR84QDAvmtHXr6eeu8H/fvT5covoJcoAKBmC9K1qYWkgpjn3SWtiHm+U1JKRQQFAPuaAnfN+GiZFq3aIklKTEjQKYe0qeaoAAAoXpAWiTWSukWeuPsyd8+PWX5QeB0AQECvL1ytRau2KDHBJEnvfb9e72evr+aoAAAoXpBEYq6k60tYPk6h7k0AgAC+WL5R875ZK0kaeXhbDe3eUpL0yucr9N3a3OoMDQCAYgVJJG6XdLiZzTezk82sW3g6xczeknSYpImVEyYA1E0/btyu5z9ZLkk6pmtzHdp+Pw04MF292zVVgUvPvL9U63N3VnOUAADsqdSJRPj+EcMktZH0kqSF4elFSa0l/Yqb1QFA6a3dslNPvfeD8vJdB7ZM0Qk9WkmSzEwjD2+ndvs10va8fD3x3g/akZe/l70BAFC1grRIyN3flnSgpKMk/S48HS3pQHd/q+LDA4C6adfuAl381MfatD1PzVMa6Iw+HZRgFl2elJigc47sqNSG9bR2y049++FSFXC/TwBADRIokZAkdy9w9/fc/Ynw9K67F+x9SwCAJLm7bn35S330wwY1TErQb4/sqEb1E/dYL7Vhkn57ZCclJZq+WZ2r175cVQ3RAgAQX+BEAgBQPq98sVJZHyyTmXRGnw5Kb9Kg2HXb7tdIIw9vJ0l6+9t1+nYNg68BADUDiQQAVLEXwoOrLxrQRd1aNdnr+r3bpalPx/0kSQt+3FipsQEAUFokEgBQhbbvyte734XuD/Hrw9qWeruebZtKkhav2iJnrAQAoAYgkQCAKvR/363Tzt0FapvWSF1bpJR6u4zmjZWUaNq8Y7dWbd5RiRECAFA6gRMJMzuwmKmrmbU3s0D7NLNLzSzHzHaY2ftm1q+EdXuY2fPh9d3M/hRnnczwsthpUdDzBIDKMHfxGknSoIPSZTFXadqbpMQEdUkPJR6LV22plNgAAAiiLC0SiyR9HWdaJClH0hYz+4eZ1d/bjszsDEmTJY2XdLikzyXNMrMWxWySLOl7he6wXdLlS75S6N4WkemXez0rAKhk7q65i0J3sD7uoOI+5ooXGU9BIgEAqAnKkkiMUujL/OWSjgxPl0v6VtJvw49PlnRbKfZ1laRp7v6Yuy+UdJGkbZLOi7eyu3/o7te6+7OSSrrV6253XxUzrSvluQFApflmda5+3LhdDeolqH/n5oG379YylEgs/Wmbtu3cXdHhAQAQSL0ybHOtpCvc/X8x8z40sxxJN7t7fzPbKOkuhVoO4gq3WBwh6Y7IPHcvMLPXJfUvQ1yxuprZCkk7JL0r6QZ3X1pCLA0kxV5/sfQdlwGglN5YFOrWdFSXZnHvG7E3acn11TK1gVZv3qkla3J1SPu0ig4RAIBSK0uLxKGSvosz/9vwMkn6WNLeLkfSXFKipNVF5q+W1KoMcUW8L2mspBMlXSwpQ9JbZlbSNRZvkLQpZmJMBYAKNzecSJSlW1NEpFVi8Wq6NwEAqldZEoklkq42s+jPaeHHV4eXSVIbSWvKH15w7v6quz/n7l+4+yxJv5KUJml0CZvdIalpzHRQ5UcKYF+yaVuePl66QZI0qDyJRKtUSdI3q7eogMvAAgCqUVm6Nl0m6WVJvzKzz8LzDpXUWNIp4efdJE3by37WScqX1LLI/JYqeSB1IO6+0cy+kXRACevsVMyYi720XgBAYG8uWav8AteBLVPUbr/kMu+nw/7JapiUoG278rX8p23q0KxxBUYJAEDpBW6RcPf5CnUXmiRpaXi6R1Jnd38rvM5j7v6Xvexnl0JdoAZH5oUvHTtYoXENFcLMUiR1kbSyovYJAEFFujWVpzVCkhITTF1b0L0JAFD9ytIiIXffIGlKBRx/sqTHzewjSR9I+pNCLRuPSZKZPSHpR3e/Ify8vqTu4W3rS2prZodKynX3b8PrTJL0iqQfFOpiNV6hlo+sCogXAALLL3DNC98/4rhu5UskpNA4iQU/btLiVVs0pHt5hpQBAFB2ZUokzKyjpAGSWqhIq4a7313a/bj7v8wsXaFLxbaS9JmkE909MgC7g6SCmE3aSPo05vk14elNSQPD89oplDQ0k7RW0tuSjnT3taWNCwAq0mfLNmrDtjylNqynIzruV+79HRi+n8SKTTu0eXteufcHAEBZBE4kzGyMQuMftip0haXY0X4uqdSJhCS5+wOSHihm2cAiz3MklXgrWHf/TZDjA0Bli3RrOvbAdNVLLMs1LgpLaVBP7fZrpOUbtusbujcBAKpJWVokMiVNkPQXdy4ZAgB7E7l/xKAK6NYU0a1lEy3fsJ1xEgCAalOWn8aaS3qaJAIA9m7Vph1auHKzzKSB3dIrbL/dwt2bvl2Tq127C/ayNgAAFa8sicQL+nk8AgCgBHPDg6wPaZemZikNKmy/bdIaqXGDetq5u0Af5fxUYfsFAKC0ytK16QtJd5hZP0kLJBUa6efuD1dEYABQF7xRAXezjifBTN1apuiTpRv1xqI1OuqA5hW6fwAA9qYsicQ1Cl1J6dTwFMslkUgAgKSdu/P1zrfrJFV8IiGF7nL9ydKNemPxGt18Uve9bwAAQAUKnEi4e+vKCAQA6poPsn/Stl35atGkgXq0Sa3w/R+QnqIEk75fu1U/rN+qjtzlGgBQhcp/HUIAQFyxV2syK/HK1WXSqH5iNHmIXGIWAICqUqoWCTObqNDlXreFHxfL3W+skMgAoJZ7c3HoPpiDKqFbU0S3lk2UvW6r5n2zVmOPzqi04wAAUFRpuzYNUuhGc9vCj4vDJWEBQNKmbXn6ft1WSVL/zs0q7Tid00MtEp8v2yh3r5SWDwAA4ilVIuHu/eM9BgDE9+WKTZKkDvsnq2lyUqUdp1VqQ9VLMG3YlqcfN25Xu/2SK+1YAADEYowEAFSCL38MJRI921b8IOtY9RITdGDLJuFjbq7UYwEAEKu0YySeKe0O3f2ssocDAHXDlytCX+p7tGla6cfq1bapFq7crC9/3KQTe7aq9OMBACCVvkXCikzDJR0nKS08DZL0q8oIEABqo6/CLRK92lZ+IhFp9Yh0pwIAoCqUdozEmZHHZjZB0ouSznf3XeF59SX9Q9KKyggSAGqTLTt+HmhdGfePKKpnOFn58sdNDLgGAFSZsoyRuFDSHZEkQpLCj++SdEFFBQYAtdXXK7dIkto0bahmKQ0q/XgHt05VYoJpXe4urd68s9KPBwCAVLZEor6kLnHmd5FUeZcmAYBaIjLQukcVdGuSpIZJieraIkWStOBHujcBAKpGWRKJJyU9amaXmFmf8HSppH+GlwHAPi16xaYqGGgdERnU/SWJBACgipT2hnSxrpS0VtJtkvYPz9sg6T5JJd71GgD2BZFBz5V96ddYvdqm6vlPSCQAAFUncCLh7rsVSiJuM7MW4XlrKjowAKiNtu/K17drciX9PAi6KkSORdcmAEBVKdcN6dx9DUkEAPzs61WbVeBSepMGapnasMqO271NqsykNVt2as3mHVV2XADAvqssXZtkZidJGi2pg0KDr6Pc/agKiAsAaqWvouMjqq5bkyQl16+nLukp+nZNrr5csUnHVWESAwDYNwVukTCziyX9S9JOSf0lLZaUL6m7pHcqNDoAqGW+/DF0R+uq7NYU0St6P4nNVX5sAMC+pyxdmy6XdJG7ny9pl6QJ7n6MpL+Ly78C2MdFBlr3qMIrNkVEbn7HOAkAQFUoSyLRUdL88OMdkpqEH/9T0tkVERQA1EY7d+frm9Whm9FV5RWbIiItEl+RSAAAqkBZEok1kvYLP14qqU/4cXuVccwFANQF36zKVV6+Ky05SW3TGlX58buHWyRWbNqh9bnc4RoAULnKkkjMlXRS+PGTku4zs1ckzZD0SkUFBgC1TfT+EW2aysyq/PhNGiapc/PG4VgYJwEAqFxlSSQulDRZktx9iqTLJK2UdJekCyouNACoXSI3g+tRDd2aInq05Q7XAICqUZYb0u1SaJB15Pl0SdMrLiQAqD2eeX9p9PGb36yVJG3alldoflXq1TZVr3y+gkQCAFDpynRDOjPrZ2aPmNnc/8/evcfJfdeF/n99ZvZ+zWWzm3uaNmnTpi3QUqBcpFIuLRY5iAKCCCKIFziKR4+Ho0dFUervSFEOR/CKqFTUgyIWKFrKxdJSSlvapJc0SXNrbpvdZDd7v83n98fMbLbpptmZndnvzO7r+XjMI7Pf+e70vQ94JPue9+f9focQ1uauvSWE8KLShidJ1WEqEznWn10El0R/RN7la91wLUlaGMXskfhh4JtAPdk9EvmtR53Ab5QuNEmqHicGxpjMROprUixvrjv/N5RJ/mjTU6dG6BseP8/dkiQVr5iKxG8B74sxvh2YmHH9LuDqkkQlSVXmSN8IAGuXNZJKoNE6r72xlo0rmgAX00mSyquYRGIb8LVZrvdxZiysJC0ph/tziUR7w3nuLL/pDddHPN4kSSqfYvdIbJ7l+rXAvvmFI0nV6cipMxWJpOWnRtknIUkqp2ISiU8DfxRCeA4QgZUhhDcCfwj8WSmDk6RqkImRo7lG60pIJNxwLUlaCMVsov4wUAvcQ7bR+jvAJPDxGOPHShibJFWFnsExxqcy1KYDq1rrkw5nenLT/t5hTo9O0NZQm3BEkqTFqOCKRIwxE2P8X8Aq4PnADwKrY4y/WurgJKkaHOnLViPWtCfbaJ23vLluegTtIzZcS5LKpKg9EgAxxqEY4wMxxm/FGE8BhBBuKl1oklQdZk5sqhRXuOFaklRmBSUSIWtLCGHjWddfE0L4LvAvJY1OkqpAPpFYtyz5iU15l9twLUkqszknEiGEbcATwC5gXwjh1hDCyhDCV4F/BO4GLilPmJJUmWKMHOmvvIrE5Y6AlSSVWSHN1n8AHAE+CLwFeDPwHODvgR+NMQ6UPjxJqmwnh8YZnciQTgU6WyupIpFNJPb1DDE4NklLfTGzNSRJOrdCjja9CPhAjPH/Ae8GAvDRGOOHTSIkLVX5sa+r2xpIp5JvtM7raKlndVsDMcLjR224liSVXiGJxCrgMECMsQ8YAv6zHEFJUrXoHsgmEl1tyY99PdvFq1sBeOL4YMKRSJIWo0ISiQjUhhDqQgj1ua9Tua+nH+UJU5IqU/fAGACrKuhYU97FnS0APHHcorEkqfQKOTQbgANnff3oLPel5xWRJFWRE7lEorMCFtGd7eKubEVid7eJhCSp9ApJJG4sWxSSVIUymUjPYL4iUXmJxNaufEXCo02SpNKb/2tc5gAAIABJREFUcyIRY/xqOQORpGpzuG+EialIOhVY3lR5Jzu35ioSJwbG6BseZ1kFxihJql5Fb7aWpKVuz4nsJ/0dLXUVNbEpr6W+hnW53RZWJSRJpWYiIUlF2tud/eV8VUvlHWvKuzh3vGmXDdeSpBIzkZCkIu3JJxIVOLEpb7rh2kRCklRiJhKSVKR8IlGJE5vy8n0SjoCVJJVawYlECOFPQggts1xvCiH8SWnCkqTKFmOc7pGoxIlNefmjTbvtkZAklVgxFYn3Ak2zXG8CfmZ+4UhSdegdGqdveIJAZScSW3JL6XqHxunNjaqVJKkU5pxIzNhoHYC6szZaNwKvAHrKFagkVZL8saZlTbXUpiv3lGhTXQ0bVji5SZJUeoX86zcKDAOR7IbrkRmPQeDvgT8rdYCSVIn2nsj3R1Ruo3XexZ1uuJYklV6hm60D8GXgrcCpGa+NA/tjjPtKGJskVawzE5uSP9Z0670Hn/X1iakIwJcePkpN6pmfH731hRvLEpckaXEreLN1COFSYHeMMVO2qCSpwlVSInE+XW3ZGI+ftkdCklQ6hVQkAIgx7gIIIdQA64G6s15/ojShSVLl2lsFo1/zutqyx6+Onx4lxkgIlbeFW5JUfQpOJEIIK4E/BV7P7D0W6fkGJUmVbGhskiP9o0B1VCRWtdYTgJGJKQbHJmltqE06JEnSIlDMqJFbgA3AD5JttH492ZGwTwJvKF1oklSZ8o3WHS11NNUV/HnMgqtNp1jRnC0ee7xJklQqxSQSrwJ+McZ4F5ABdsUY/wL4NeCXSxmcJFWifH/ERauesZuzYnXmjjd1D4wmHIkkabEoJpFoBY7mnp8CVuWePwC8oBRBSVIlyycS+WVv1aCr1YZrSVJpFZNIPAFszT3fAbwr1zfxLuB4qQKTpEqVP9pUTYnEdEXitBUJSVJpFHO49xPABbnnvwt8BfgpYBJ4d2nCkqTKNbMicejkSMLRzM30CNgBJzdJkkqjmPGvn57x/N4QwmZgO9mFdEdKGZwkJWV0cpQP3P4B9pzcw5YVW/jYDR+joaaBiakMB3qHgWyPRLUkEqta6kkFGJ3IMDA6SVujk5skSfMz73EjMcZ+4O4SxCJJFeF1t76O23bfNv31Hfvu4FP3f4qbtt7Ex155K5OZSHNdmjXtDQlGWZiadIoVzfX0DI5xfGDUREKSNG/F9EhI0qJ1dhIx0227b+Ndn/91AC7qbKm640FuuJYklZKJhCTljE6OnjOJyHvocHamxJYqGv2a19lqw7UkqXRMJCQp5wO3f+C899TGDUC2IlFtzlQkTCQkSfNX+StZJamMbr334PTz+/c20DL5mme9v2FqOwBH+0ae9r3V4MxSujEnN0mS5q3gikQI4RUhhGtnfP3uEMJ3Qgh/FUJoK214krRwVjV3PvsNEdIsz97bWj2N1nkdLXWkAoxNZugfmUg6HElSlSvmaNPHgJUAIYTLyO6VuBu4ErildKFJ0sJ60/Y3PevrKVoI1JIOsKK5boGiKp2aVIqOluzxpu4BG64lSfNTTCJxEfBI7vmPArfHGH8Z+Fngh0oVmCQttNpULVd2XnnO19NxBQArWupJp6rzWFD+eJN9EpKk+SomkZgA8jX9VwK35573AO2lCEqSkvILL3jfOZOJDS3Z/ojO1vqFDKmkunKxdzsCVpI0T8U0W98N/EEI4T+BFwFvy13fArjZWlLV+4UXvI+JzAT/+Mg/cmKom1XNnbxp+5u47aFu7us/yaoqTiSmKxIDViQkSfNTTCLxfuDPgHcDvxhjPJS7/nrgjlIFJklJqk3V8rYr3va0aydyv3wvlopEJkZSTm6SJBWp4EQixvgk2SNNZ19/f0kikqQKlW9QrsaJTXkrW+pJh8D4VIb+4QmWV2HTuCSpMhQz/nU4hLBqlusrQgjDpQlLkirL0Ngkw+NTAKxqqd6KRDoV6GjNJg8eb5IkzUcxzdYNwGy18Poi30+SKt6JXDViWVMtdTXV/VddZ66iYsO1JGk+5ny0KYTwM7mnEXh7CGFgxstp4DrgidKFJkmVI59IVHN/RF5XWz07DjsCVpI0P4X0SHwo92cA/juQmfHaOLAf+PnShCVJlaU7dwyomo815eUrEicGrUhIkoo350QixrgGIIRwD/DaGOOpskUlSRUm/0t3NTda53W2nZncFGNMOBpJUrUq5qDvD5wriZitCVuSFoOewXGA6UblarayecbkppGJpMORJFWpYhKJ+0IIl519MYRwE7Bj/iFJUmWZykT6hrOJxMrm6j/alE4FVrZkE6L8SFtJkgpVTCLxAPC9EMIvAoQQGkIInwL+H/DHpQxOkirBqeFxMhFq04G2hmL2eFaezunFdDZcS5KKU8xCuneFEL4EfCqE8DpgHdnG6xfHGB8odYCSlLTewTPViLBINkF3tjXAkdNWJCRJRSv2o7V/Bn4AeD8wCdxoEiFpseodyv6ynT8OtBhMVyRMJCRJRSpms/VG4FvAjwGvBz4OfDmE8DshhHSJ45OkxJ2pSCymRCK3lG5g1MlNkqSiFNMj8TDQA1wZY/y3GOOvADcA7wDuLmVwklQJzlQkqr/ROq+jpY4AjE5kppftSZJUiGISiV+NMb4hxtiTvxBj/DrwHGBPySKTpAqxGCsSNenU9FGt3d2DCUcjSapGBScSMcY/P8f1vhjj2+YfkiRVjqlM5FR+9OsiqkjAmeV6u48PJByJJKkaFVORIITwYyGEr4UQnsz1TBBC+IUQwmtLG54kJWsxjn7NyzdcW5GQJBWjmGbrdwN/SrYfYjVnJj+NAv+tdKFJUvIW4+jXPBMJSdJ8FFOR+ADwnhjj/wKmZlz/LnBlSaKSpAqxGEe/5nW2ZY827TGRkCQVoZhE4kLge7NcHwVa5heOJFWWxdhonbeqpZ4AnBwap3fQyU2SpMIUk0gcAK6Y5forgcfnF44kVZbFOPo1r64mxbKmWsCqhCSpcMUkEn8MfCKE8Prc188JIfw34GbglpJFJkkVYDFXJODMYjr7JCRJhSp4BEmM8ZMhhHHgE0Az8HmyC+r+Z4zxb0scnyQlZjGPfs3rbKtn1/EBKxKSpILNOZHIjXk9FLP+EvjLEMIKsn0Rh2KMsVxBSlIS+maMfm1dZKNf885MbnKXhCSpMIUcbdoHrJp5IcZ4MsZ40CRC0mLUM2P0a2qRjX7Nmz7adNyKhCSpMIUkEovzX1FJOod8o/WKRdofAbAqV5HoHhijf2Qi4WgkSdWk0GZrKw+Slox8o3XHItwhkddQm2ZNu/skJEmFK/TQ7++GEIaf7YYY4y/PIx5JqhiLefTrTFs6WzjaP8qe7gGu3rQ86XAkSVWi0ETiCmD8WV63YiFp0Vjso1/ztna28p+7e+yTkCQVpNBE4g0xxu6yRCJJFWQpjH7N29rVArhLQpJUmEJ6JKw2SFoylsLo17wtndlEwh4JSVIhnNokSbNYCqNf87asyiYSh/tGGBybTDgaSVK1KCSR+Cmgv1yBSFIlWQqjX/OWN9fRkTu+tdeqhCRpjuacSMQYPxNjHCtnMJJUKZbC6NeZtnbaJyFJKkyheyQkaUmYHv3avLgbrfPyDdf2SUiS5spEQpJmMT36dYlVJPZ0DyQciSSpWswpkQgh/NcQQkPu+cYQFnnnoaQlbSmNfs3b0tkKeLRJkjR3c61I3AK05Z7vA1aVJxxJSt5SGv2alz/adPDkMKMTUwlHI0mqBnNNJI4AbwwhbCI7BnZ9rjLxjEf5QpWkhbGURr/mrWyuY1lTLTHC3hNWJSRJ5zfXROLDwB8BT5JdTHcf2crEzMf+3J+SVNWW0ujXvBDCjD4JEwlJ0vnNqWYfY/yzEMLfA5uAh4FXAr3lDEySkrLURr/mbels5b79p9h93ERCknR+cz78G2McAHaGEH4K+LY7JSQtVktt9GvemV0STm6SJJ1fwV2EMcbPAIQQrgYuzV1+NMb4QCkDk6SkLLXRr3nukpAkFaLgRCKE0Al8DrgO6MtdXhZC+DrwlhjjidKFJ0kLaymOfs3bmhsBu793mLHJKepr0glHJEmqZMUspPs/QCuwPca4Isa4Aric7HjYj5cyOElaaEtx9GteV1s9rQ01TGUiT54YSjocSVKFKyaRuAH4+RjjY/kLMcZHgV8AbixVYJKUhN6hbDViRXPdkhn9mhdCYNvqbFXiieP2SUiSnl0xiUQKmJjl+kSR7ydJFaNncGk2Wudd3JVNJHYdM5GQJD27Yur2dwJ/HEL48RjjEYAQwjrgY8DXShmcJC20fEViKTVa33rvwennp0cnAbjz8W7WL2+a0/e/9YXuIpWkpaiYCsL7yPZD7A8h7A0h7CW7iK4NeH8pg5Okhdabq0h0LNGKRFdb9uc+fno04UgkSZWumPGvh0IIV5FdSrctd/mxGOMdJY1MkhKwVEe/5nW1NgBwanjCyU2SpGdV1EiSGGME/iP3kKRFYSmPfs1rrq+htb6GgbFJuk+PsWHF3I43SZKWHpujJSknP/q1JrX0Rr/O1NWWrUp4vEmS9GxMJCQp5+QSHv06k30SkqS5MJGQpJyZOySWsjMVibGEI5EkVbKCEokQQk0I4SdDCF3lCkiSknIqP/rVRAKwIiFJenYFJRIxxkngU0BDecKRpOTkKxLLl3gi0dmaPdo0MDbJ0NhkwtFIkipVMUebvgs8t9SBSFLSTlqRAKC+Ns3yploAjg9YlZAkza6YsSR/AtwSQtgA3A8MzXwxxvhwKQKTpIUUY+TkcL5HYmmOfp2pq62BU8MTHD89xoUdLUmHI0mqQMUkEp/L/fnxGdciEHJ/ur1IUtUZGp9ifDJDgOlP45eyrrYGHj82YJ+EJOmcikkkNpc8CklK2MnB7ISitsZaatIOtLPhWpJ0PgUnEjHGA+UIRJKSdOZY09Luj8ibuUsixkhYwns1JEmzK+pjtxDC20MI3w4hHAkhbMpd+6UQwutLG54kLQx3SDzdqpZ6UgFGJzKcHnVykyTpmQpOJEIIPwfcAnwZWMaZnog+4JdKF5okLRx3SDxdTTrFyhY3XEuSzq2YisT7gffEGH8PmJpx/XvAFSWJSpIWmDsknsk+CUnSsykmkdgMPDjL9TGgeX7hSFIy3CHxTDP7JCRJOlsxicQ+Zl9IdwPwWKFvFkL4hRDC/hDCaAjh3hDCC57l3u0hhM/n7o8hhFmPUhXynpI0PplhINcHYI/EGV2t+YrEWMKRSJIqUTGJxC3A/w0hvJns7ogXhBB+HfgI8P8V8ka597gF+BBwFfAQ8NUQQuc5vqUJeBL4H8CxEr2npCXuVG5iU0NtisZaV+HkrW7PJhLdA6NkYkw4GklSpSk4kYgx/gXwa8CHyf5ifyvwc8Avxhg/92zfO4tfBv48xvjpGOOjwM8Cw8C7zvHfvi/G+Ku5/865PiIr6D0l6eSMiU2OOT1jRXMdNanAxFScbkaXJCmvqPGvMcbPxhi3Ai3A6hjj+hjjXxbyHiGEOuBq4I4Z75vJfX1tMXEV+54hhPoQQlv+QfbnkrRETCcSTR5rmikVAp32SUiSzqHo9a25o0JXA5eEEFYV8RYdZEfHHj/r+nFgdZFhFfueHwT6ZzweL/K/L6kKndkhUZ9wJJUn3ydxzD4JSdJZitkj0RpC+FvgCPDN3ONICOHvQgjtpQ5wgXwEaJ/x2JZsOJIWkjskzs0RsJKkcymmIvEXwAuBHyK7kG4ZcBPwfOBPC3ifHrJ7KLrOut7FORqpy/WeMcaxGOPp/AMYLPK/L6kKuUPi3EwkJEnnUkwicRPwrhjjV2f88v1V4D3A6+b6JjHGceB+4Pr8tRBCKvf1PUXEVZb3lLS4ZWKcntpkReKZ8rskegbHmJzKJByNJKmS1BTxPb1k+wjO1g+cKvC9bgE+E0L4HvBd4JfILrX7NEAI4W+AwzHGD+a+rgMuy31vHbAuhPBcYDDGuGcu7ylJM50emWAqE0kFaGusTTqcitPeWEt9TYqxyQw9g+PTI2ElSSomkfgwcEsI4e0xxmMAIYTVwP8GfreQN4ox/kOuUft3yDZDfx+4IcaYb5beCMz8CGwtT9+q/Su5xzeB6+b4npI0LT+xaXlTHemUo1/PFkKgq62BgyeHOX561ERCkjRtTolECOFBYOY2oq3AwRDCwdzXG8nudVhFYX0SxBg/AXziHK9dd9bX+8kuwSv6PSVpppk7JDS7mYmEJEl5c61IfKGsUUhSQkwkzq/LXRKSpFnMKZGIMX6o3IFIUhJ6TSTOa3V+ctOAuyQkSWcU0yMxLYTQwlmTn3LjUyWpKjix6fw6c4nEyaFxxicz1NUUvctUkrSIFLOQbnMI4UshhCHOTGo6BfRR+NQmSUpU76A7JM6npb6Glvrs507dAx5vkiRlFVOR+DuyDc/vAo7z9CZsSaoa/SMTjExMAR5tOp+utnoGT0xyrH+U9cubkg5HklQBikkkngNcHWPcVepgJGkhHTo5DEBzfQ31NemEo6lsa9ob2XtiiCP9ViQkSVnFHHS9D9hQ6kAkaaEd6M0mEvZHnN+a3P6Io30jCUciSaoUxVQk3g18KoSwDtgJTMx8Mcb4cCkCk6RyO3ByCPBY01ysXdYIwNH+UTIxkgou75Okpa6YRGIVcBHw6RnXItm+iQh4PkBSVcgfbTKROL+OlnpqUoHxqQy9g+Osaq1POiRJUsKKSST+CngQ+HFstpZUxfJHm0wkzi+dCqxpb+DQqRGO9I+YSEiSikokNgE/HGPcU+pgJGkhTScSTSYSc7FmWSOHTo1wtG+E56xflnQ4kqSEFdNsfSfZyU2SVLXGJzMc7c82Dq9oMZGYi7Xt2T4JJzdJkqC4isS/AR8LIVwB7OCZzdZfLEVgklROh/tGyESoTQda64v5q3DpWbssO7npSN8IMUaCDdeStKQV86/np3J//uYsr9lsLakqHMw1Wi9vqvMX4jnqamsgFWB4fIr+kQmWeSRMkpa0go82xRhTz/IwiZBUFQ72Zke/ukNi7mrTKTpbc/skPN4kSUteMT0SklT1nNhUnPxiuiMuppOkJa/go00hhNmONE2LMf5O8eFI0sI46A6Joqxd1siDh/psuJYkFdUj8Yazvq4FNgOTwF7AREJSxTuTSLgPoRD5DddWJCRJBScSMcbnnX0thNAG/DXwLyWISZLKKsZoRaJI+aNN/SMTDI9N0uTEK0laskrSIxFjPA38FvC7pXg/SSqnnsFxhsenCAGWN9UmHU5VaahNTydfHm+SpKWtlM3W7bmHJFW0gyezE5vWtjdSk3bmRKHW2nAtSaK4Zuv/evYlYA3wduArpQhKksopf6xpw4rGhCOpTmuXNbLzyGmO9JtISNJSVszh1g+c9XUGOAF8BvjIvCOSpDLLj37dtKI54Uiq05mGa482SdJSVkyz9eZyBCJJC+VgLpHYuLIp4UiqU77hundwjLHJqYSjkSQlxcPBkpac/NGmjStMJIrR2lBLa0MNEThmw7UkLVlzrkiEEP5qDrfFGONPzyMeSSq7AzMSiUeOnE44muq0tr2RXaMDTm6SpCWskIrE8md5dABvAd5Z4vgkqaRGxqc4MTAGwCaPNhVt7TInN0nSUjfnikSM8eyN1gCEEF4P/D4whlutJVW4/LGmtoYaljW5jK5Ya9qzDddHTSQkackqukcihPCSEMJ/ArcCtwEXxhhvLllkklQG0/0RViPmJT+56fjpMcYnMwlHI0lKQsGJRAjhshDCvwHfAJ4ALokx/lqM8VSpg5OkUjvQm11G5+jX+VneVEtDbYqpGNndPZB0OJKkBMw5kQghbAghfBp4CJgErowx/nSM8amyRSdJJXZmGZ0VifkIIbA2d7zJhnVJWpoK2SOxC4jALcC3ga0hhK1n3xRj/GKJYpOkkssnEjZaz9/aZY082TPEI4f74fkbkg5HkrTACkkkGnJ//mruMZsIpOcVkSSV0fQyOisS85ZfTGdFQpKWpkKmNrm8TlJVm8pEnjqVnTJkIjF/+Ybrx46eJpOJpFIh4YgkSQvJ5EDSknHs9CjjUxlqUmH6l2AVr6OlnppUYGh8iv25JnZJ0tJhIiFpycgfa1q/vJG0n57PWzoVPN4kSUuYiYSkJePgyeyn5htXOvq1VNbkKjs7j/QnHIkkaaGZSEhaMg5MN1p7rKlU8iNgH7UiIUlLjomEpCVjevSry+hKZt3ybCLx/UN9ZDIx4WgkSQvJRELSkuEyutJb3dZAY22agdFJ9p4YTDocSdICmtP41xDCKbI7Is4rxrhiXhFJUpm4jK700qnAlevbuXffSR44eIqtXa1JhyRJWiBz3SPxSzOerwR+A/gqcE/u2rXAa4DfLV1oklQ6/SMT9A1PAFYkSu2qTcuzicSBPt58zcakw5EkLZA5JRIxxs/kn4cQPg/8ZozxEzNu+XgI4X3AK4GPlTZESZq/Q7lqREdLHS31c97FqTm4auNyAO4/eCrhSCRJC6mYHonXALfPcv12somEJFWcMxObrEaU2vM2LgNgT/cg/bmqjyRp8SsmkegFXj/L9dfnXpOkinMgv0PCRKLkOlrquSDXd/LgIasSkrRUFFPf/y3gL0II1wH35q69ELgBeE+J4pKkksofbXIZXXlctXE5+3uHeeBgH9dd0pl0OJKkBVBwRSLG+NfAS4DTwI/kHqeBl+Zek6SK49Gm8nrepmyfxIP2SUjSklFUx2GM8V7gbSWORZLKxtGv5XVVrk/iwYN9TGUi6VRIOCJJUrkVtZAuhHBRCOHDIYRbQwiduWs3hhC2lzY8SZq/8ckMR/pGACsS5XJJVytNdWkGxybZ3T2QdDiSpAVQcCIRQng5sINsX8QbgZbcS88BPlS60CSpNI70jZCJ0FCborO1PulwFqWadIrnbshWJR440JdwNJKkhVBMReJm4DdijK8CxmdcvxN4UUmikqQSOnDyTH9ECB65KZf8PokH7JOQpCWhmETiCuBfZrneDXTMLxxJKr2DvY5+XQhXbcpXJEwkJGkpKCaR6APWzHL9ecDh+YUjSaV3cLoi4ejXcnrehmxF4smeIU4NjZ/nbklStSsmkfgc8AchhNVABFIhhJcAfwj8TSmDk6RSODP6tTHhSBa35c11XNiRTdZcTCdJi18xicT/BB4HDpFttH4U+BZwN/Dh0oUmSaVxZvSrFYlyuyq3T8KGa0la/IpZSDceY3wPcCFwE/ATwLYY49tjjFOlDlCS5iPGOJ1IbLBHouxsuJakpaPghXQhhB8AHo8xHiJblchfrwWujTF+q4TxSdK89A6NMzw+RQiwfrlHm8ot33D9/UN9TE5lqEkXta5IklQFivkb/hvAQyGEs0e9rgC+Pu+IJKmE8v0Rq9saaKhNJxzN4re1s5WW+hqGx6fYddzFdJK0mBX7UdHngK+FEN551nUHtEuqKAdPOvp1IaVT4cxiuoP2SUjSYlZMIhGBjwBvBz4RQrglnNnwFEsWmSSVwMHeEQA2rTSRWCj5husH3SchSYtaMYlEAIgx/jPwMuBHga8Ay0oYlySVxAErEgvuqo3Zfw7ut+Fakha1eXXBxRgfBF5ANon4WkkikqQSOpRfRufo1wWTX0x3oHeYnsGxhKORJJVLMYnEZ4CR/BcxxmPAy8kmEgdLFJcklcSZZXRWJBZKe1MtWzpbAHjQPglJWrSK2SPxUzHGgbOujcUY3xFj3Fy60CRpfkbGp+geyH4ivslEYkHljze5T0KSFq857ZEIIVwJ7IwxZnLPzynG+HBJIpOkeTp0KluNaK2vYVlTbcLRLC1Xb1rOP37vKR6w4VqSFq25LqT7PrAa6M49jzx91Gv+6wg4qF1SRZg+1rSyiTPD5bQQ8huuH3qqj4mpDLUuppOkRWeuicRm4MSM55JU8Q7mGq0d/brwLlrVQltDDadHJ3n0yGmes8HBfpK02MwpkYgxHpjtuSRVsoO92dGvG+yPWHCpVOAFm1dwx2Pd3L2310RCkhahufZI/PBc3zDG+MXiw5Gk0pmuSKxw9GsSXrKlgzse6+bbe3r4uesuSjocSVKJzfVo0xfmeJ89EpIqxoGTjn5N0ku3dABw3/6TjE5M0VDrPw+StJjMqfstxpia48N/JSRVhKlM5KmT2ZU39kgkY0tnC52t9YxNZpzeJEmLkGM0JC1KR/pGGJ/KUJsOrGlvSDqcJSmEwEtyVYlv7+1JOBpJUqnN9WjT04QQmslus94I1M18Lcb48RLEJUnzkh/9umFFEzWOHk3Miy9ayb88eJi79vTyq69JOhpJUikVnEiEEJ4HfBloApqBk0AHMEx2z4SJhKTE7ctNbNq80kbrJOUrEjue6qN/ZIL2RhcDStJiUczHdB8D/g1YDowALwI2AfcDv1K60CSpeAd6sonEJhOJRK1d1siFHc1kInznyd6kw5EklVAxicRzgY/GGDPAFFAfYzwE/Hfg90sZnCQVa3++ItFho3XS8lWJu/fYJyFJi0kxicQEkMk97ybbJwHQD2woRVCSNF/7rEhUjHwicZeJhCQtKsU0Wz8IXAPsBr4J/E4IoQN4O7CzhLFJUlGmMpFDudGvmztMJJJ27YUrSQXYe2KIY/2jrHaKliQtCsVUJP4ncDT3/NeBU8AngVXAz5QoLkkq2szRr2uXNSYdzpLX3lTLFevaAfi2VQlJWjQKTiRijN+LMX4997w7xnhDjLEtxnh1jPGh0ocoSYWZOfo1nQoJRyOAF7tPQpIWHYerS1p0HP1aeV6aTyT29BBjTDgaSVIpFJxIhBBWhhD+bwjh0RBCTwjh5MxHOYKUpELszzVaX2B/RMW4etNy6mpSHD89xt4Tg0mHI0kqgWKarf8W2AL8JXAc8KMlSRXlQK4iccFKR79WiobaNNdcsJxv7+nl23t62dLZmnRIkqR5KiaReBnwUvshJFWqfVYkKtJLtnTw7T293LWnh3e8+IKkw5EkzVMxPRKPA45BkVSRZo5+vcAeiYrykouyfRLfebLpnQ/fAAAgAElEQVSXyanMee6WJFW6YhKJnwd+L4Tw8ly/RNvMR6kDlKRC5Ee/1qVTjn6tMJeva6etoYaB0Ul2HO5POhxJ0jwVk0j0AW3AnWQ3W5/KPfpyf0pSYvbn+iM2rGh09GuFSacC1160EoC79/YmHI0kab6KSSQ+C0wAbwWuB16Re/xg7k9JSsz+3A4JjzVVpvwY2Lt2u09CkqpdMc3WlwPPizHuKnUwkjRfjn6tbC/JJRL3HzjFyPgUjXXphCOSJBWrmIrE94ANpQ5EkkphOpFw9GtF2tzRzJr2BsanMnzvgKuHJKmaFZNI/B/gj0MI7wwhXB1CuHLmo9QBSlIh8j0SViQqUwhhuipx1x6PN0lSNSsmkfgH4FLgr4D7gO8DD874U5IS4ejX6vCyrdlE4uuPdycciSRpPorpkdhc8igkqQQc/Vodrru4k5pU4InjgxzoHWLTymZuvffgvN7zrS/cWKLoJElzVVBFIoRQC/wWkIoxHpjtUZ4wJen8HP1aHdqbarnmghUA3PGYVQlJqlYFJRIxxgngjWWKRZLmJd9ovdn+iIr3ysu6APjaY8cTjkSSVKxieiS+APyXUgciSfOV3yGxyf6IivfKSzsBuHffSfqHJxKORpJUjGJ6JHYDvxlCeAlwPzA088UY48dLEZgkFcodEtVj08pmLu5q4Ynjg3zjCY83SVI1KiaR+GmgD7g695gpAiYSkhKxr9cdEtXk+ku7eOL4IHc81s21F65MOhxJUoEKPtoUY9z8LI8LyxGkJJ1PdvRr9miTo1+rwysvzfZJfGNXN1OZmHA0kqRCFdMjMS3klCoYSSrWkb4RJqaio1+ryHM3LKOjpY6B0cnpiVuSpOpRVCIRQvjJEMIOYAQYCSE8HEJ4e2lDk6S5c/Rr9UmnAq/Ylm26fuzo6YSjkSQVquBEIoTwy8AngS8Db8o9bgc+FUL4QGnDk6S5cfRrdbo+d7zpsaOnidHjTZJUTYpptn4/8HMxxr+Zce2LIYRHgN8GPlaKwCSpEPt6HP1ajV62tYO6mhSnhifoHhijq60h6ZAkSXNUzNGmNcDds1y/O/eaJC24A72Ofq1GTXU1vHRLB+DxJkmqNsUkEnvIHmc625vJ7piQpAWXH/262YpE1bk+t5zu8WMDCUciSSpEMUebfgv4hxDCDwDfzl17CXA9sycYklRWM0e/bnKHRNW5flsXv85ODp0cZmB0gtaG2qRDkiTNQTF7JD4PvBDoAf5L7tEDvCDG+C+lDU+Szs/Rr9VtdXsD65Y1EoFdViUkqWoUU5Egxng/8BMljkWSirIvN7Fp48omR79WqUvXtHK4b4THjg3w/AtWJB2OJGkO5rWQTpIqwXSjtceaqta21W0A7OkeYGIqk3A0kqS5mHMiEULIhBCmzvOYLGewkjSb/OjXC2y0rlpr2htob6xlYiqy98Rg0uFIkuagkKNNb3iW164F/itWOCQlIF+R2OTo16oVQuDSNa1858mTPHZ0YLpCIUmqXHNOJGKM/3r2tRDCJcDNwOuAzwK/WbrQJGluHP26OFy6uo3vPHmSx4+dJhPXkgr2u0hSJSuqghBCWBtC+HNgB9lk5LkxxnfEGA+UNDpJOo/Jqcz06NcLOuyRqGabO5qpr0kxMDrJU7n/TSVJlaugRCKE0B5C+AOyS+m2A9fHGF8XY9xZlugk6TyO9o9Oj35d0+7o12pWk05x6ZrskaadR9xyLUmVrpBm6/8OPAncBPx4jPHFMcb/LFtkkjQHjn5dXC5fm08k+okxJhyNJOnZFNJsfTMwQrYa8Y4QwjtmuynG+COlCEyS5uLJ3IQfJzYtDlu7WqlLp+gbnuBw3wjrl3tcTZIqVSGJxN8AfjwkqaLsySUSW7taEo5EpVCbTnHJ6lZ2HO5n5+HTJhKSVMEKmdr0zjLGIUlF2X08l0h0mkgsFpeva88mEkf6ec32LoLTmySpIrn3QVJVyy8v22IisWhc3NVCTSpwcmicY6dHkw5HknQOhRxtkqSKcmponJ7BcQAuWmUikZRb7z1Y0verr0lzcVcrjx49zc7D/U7jkqQKZUVCUtXK90esW9ZIc72fiywml69rB2DH4dNOb5KkCmUiIalq5fsjPNa0+Gxb3Uo6FegZHKN7YCzpcCRJszCRkFS19nSbSCxWDbXp6Qb6nYf7E45GkjQbEwlJVWt39wDgxKbF6vK12eNNj7jlWpIqkomEpKq114rEonbpmjZSAY6dHuWEx5skqeKYSEiqSoNjkxzpz44GNZFYnBrr0tPTuB454vEmSao0JhKSqlK+GtHRUs+yprqEo1G55Kc32SchSZXHREJSVdrdfe6N1pmY4f4j9/PVPV/l/iP3k4mZhQ5PJXJZ7njTkf5RTg6NJx2OJGkGB69Lqkrnmth05747ufmum9nVs4vxzDh1qTou6biE//HS/8ErNr8iiVA1D831NWzuaGbviSF2Hu7nBy5elXRIkqQcKxKSqtKe/MSmrjOJxJ377uS9t72Xh48/TEtdC2ta1tBS18LDxx/mvbe9lzv33ZlUuJqH7bnpTTvtk5CkimIiIakqTVckcs24mZjh5rtuZmBsgHWt62isbSQVUjTWNrKudR0DYwPcfNfNHnOqQtvXthGAp06NcGrY402SVClMJCRVndGJKQ6eHAZgS64i8eDRB9nVs4uVjSsJITzt/hACKxpXsKtnFw8efXDB49X8tDbUsmllMwCP2HQtSRXDHglJVWdfzxCZCA21Kf7jkeOEEHjkRDeTQy8iTrYzelYiAUCMTI71888PdLPr0MGFD1rzcvm6Nvb3DrHzyGleutU+CUmqBFYkJFWd/MSmztaG6epDS10LNSHNZGZy1u+ZzExQE9K01Llzohrl+yQOnhymf2Qi4WgkSWAiIakK7ZlOJOqnr21s30BXy2qGJgaJMT7t/hgjQxNDdLWsZmP7hgWNVaXR3ljLphVNgMvpJKlSmEhIqjr5iU0zE4lAihu23EBDTQN9Y32MT42TiZHxqXH6xvpoqGnkhi03EPxrr2rll9PtsE9CkiqC/6JKqjr5isSq1oanXd/WsY23XfETrGtdz9jkGP1j/YxNjrGudT1vu+JtbOvYlkS4KpHta9sAONg7zGmPN0lS4my2llRVJqcy7OsZAqCzrf4Zr2/r2MYlHRdzsP8Qg+ODtNS1sLF9g5WIRWBZUx0bljdy6NQIjxzp59qLOpIOSZKWNBMJSVXlwMlhJqYijbVp2htrZ70nkGJT+6YFjkwL4Yp17Rw6NcLOI6dNJCQpYRXxEV0I4RdCCPtDCKMhhHtDCC84z/0/FkJ4PHf/jhDCa896/a9DCPGsx+3l/SkkLYTdx3OL6DpbSM025lWL2vZcn8T+niEGRj3eJElJSjyRCCG8GbgF+BBwFfAQ8NUQQuc57n8x8PfAXwLPA74AfCGEcPlZt94OrJnx+PGy/ACSFtTeE2cSCS09y5vqWL+8kQg8cuR00uFI0pKWeCIB/DLw5zHGT8cYHwV+FhgG3nWO+38RuD3G+L9jjI/FGP8X8ADwvrPuG4sxHpvxOFW2n0DSgtl9PDuxyURi6bo8t1Nip2NgJSlRiSYSIYQ64Grgjvy1GGMm9/W15/i2a2fen/PVWe6/LoTQHULYFUL4ZAhh5bPEUR9CaMs/AH9DkSrUHisSS15+DOy+E0MMjs2+gFCSVH5JVyQ6gDRw/Kzrx4HV5/ie1XO4/3bgJ4HrgV8DXg58JYSQPsd7fhDon/F4fI7xS1pAmUycHv261URiyVrRXMe6ZdnjTY96vEmSEpN0IlEWMcbPxRi/GGPcEWP8AnATcA1w3Tm+5SNA+4yHw+alCnS4b4TRiQx16RQbc1uOtTRdntspsdPldJKUmKQTiR5gCug663oXcOwc33OswPuJMT6Z+29tOcfrYzHG0/kHMDiH2CUtsHw1YnNHMzXppP/6UpLyx5ue7BlkyONNkpSIRP8ljjGOA/eTPYIEQAghlfv6nnN82z0z78951bPcTwhhPbASODqfeCUlK59IbOnyWNNSt7KlnjXtDWQiPHrU402SlIRK+EjvFuA9IYR3hBAuBT4JNAOfBggh/E0I4SMz7v9j4IYQwn8LIWwLIfw28HzgE7n7W0II/zuE8KIQwgUhhOuBfwX2kG3KllSldnfnJjatMpFQdjkdeLxJkpKSeCIRY/wH4FeA3wG+DzwXuCHGmG+o3kh2D0T+/ruBtwI/Q3bnxI8C/yXGuDN3yxRwJfBF4Amy+ybuB14WYxwr+w8kqWymG62tSIgzY2D3nhikb3g84WgkaempSToAgBjjJ8hVFGZ57bpZrv0T8E/nuH8EeE0p45OUvBgju7sd/aozOlrrWd3WwLHTo/z7o8d50/M3JB2SJC0piVckJGkuTgyMMTA6SSpkm60lgMvXZac3fXmHLXCStNBMJCRVhXw1YtPKZuprzrUSRktNfnrTt/f00D8ykXA0krS0mEhIqgp7PNakWXS2NrCqtZ6Jqcidj5+9q1SSVE4mEpKqwvTEJhMJnSW/nO4rO865TkiSVAYmEpKqwhPHcxUJR7/qLPnjTd984oTL6SRpAZlISKp4mUzksSPZpWOX5T59lvJWtzWwaWUTY5MZvr6rO+lwJGnJMJGQVPEOnhxmYGyS+poUWz3apLOEELjh8tUAfGWnx5skaaGYSEiqeDtym4u3rWmjJu1fW3qmGy/P7i39+uPdjE5MJRyNJC0N/ossqeLtPJJNJC73WJPO4Tnr21nb3sDw+BTfeuJE0uFI0pJgIiGp4u3MVSSuyDXVSmcLIfCa3PGm2z3eJEkLwkRCUkWLMbLzcLbR+nITCT2L/PGm/3jsOOOTmYSjkaTFz0RCUkV76tQI/SMT1KYDW7tstNa5Xb1pOR0t9QyMTnL33p6kw5GkRc9EQlJFyx9rumR1K/U16YSjUSVLpwKv2d4FeLxJkhaCiYSkinam0dpjTTq//PGmf3/0OJNTHm+SpHIykZBU0XbYH6ECvPDCFSxrquXk0Djf3X8y6XAkaVEzkZBUsWKMPJI72mQiobmoTad41aUeb5KkhWAiIaliHTs9Su/QOOlUYNvq1qTDUZW48YozY2AzmZhwNJK0eJlISKpYO57KViO2drbQUGujtebmJVs6aK2voXtgjAcOnko6HElatEwkJFWsnUfsj1Dh6mvSvOLSTgC+4vEmSSobEwlJFSs/+vXytW0JR6Jqc+OMLdcxerxJksrBREJSxconElestyKhwrz84k4aa9Mc7hthR+7/R5Kk0jKRkFSRuk+P0j0wRirApWusSKgwjXVpfnDbKsDjTZJULiYSkipSfhHdRataaKqrSTgaVaP8crqv7Djq8SZJKgMTCUkVaaeL6DRPP7itk7qaFPt7h3ns6EDS4UjSomMiIaki5c+1b7fRWkVqqa/h5RdnjzfdvvNowtFI0uJjIiGpIuU3Wl9hRULz8Nrccrov2ychSSVnIiGp4vQOjnGkfxSAy6xIaB6uv7SL2nRgT/cgu497vEmSSslEQlLFyS+i29zRTGtDbcLRqJq1NdTy0i0dgNObJKnUTCQkVZzpRXQea1IJ3HhFdnrTl3fYJyFJpWQiIaniuNFapfTqy7qoSQUePzbAvp6hpMORpEXDREJSxcnvkLDRWqWwrKmOay9aCcBXnN4kSSVjIiGpovQPT3Do5AgA29eaSKg0ziyns09CkkrFREJSRclXIzasaKS9yUZrlcart3eRCtn9JIdODicdjiQtCiYSkirKTvdHqAw6Wup54ebs8abbnd4kSSVhIiGpouRHv3qsSaV24/RyOvskJKkUTCQkVRRHv6pcXrN9NSHAgwf7ONo/knQ4klT1apIOQJLyBkYnpsdzOvpVhbj13oNzum/jiiYO9A7ze196jBdf1PG01976wo3lCE2SFi0rEpIqxgMH+wBYt6yRlS31CUejxejy3JG5fOVLklQ8EwlJFeM7T/YC8KILVyYciRar7blK14HeYQZGJxKORpKqm4mEpIpxz95sIpFfHiaV2rKmOjYsbyQCj+Qa+yVJxTGRkFQRBscm2ZE7bvKiC1ckHI0Ws3wj/w6PN0nSvJhISKoI9+07yVQmsmFFI+uXNyUdjhax/I6S/T1D9I94vEmSimUiIaki5PsjrrU/QmW2rKmOTSuaiFiVkKT5MJGQVBHuedL+CC2cKzcsA+Dhp/oSjkSSqpeJhKTEnR6dmB7Hee2FHee5W5q/K9a1kwrw1KkRegfHkg5HkqqSiYSkxH33yZNkImzuaGZ1e0PS4WgJaKmv4aJVLQA89JTHmySpGCYSkhJ3z/T+CKc1aeFcuf7M8aYYY8LRSFL1MZGQlDgX0SkJ29e2kU4FugfGOHZ6NOlwJKnqmEhISlTf8DiPHs0uBnNikxZSQ22aS7paAXjY402SVDATCUmJunffSWKEi1Y109lmf4QW1pXrszslPN4kSYUzkZCUqHv2OvZVydm2uo26mhSnhid48JCjYCWpECYSkhJlf4SSVFeT4rI1bQB88ftHEo5GkqqLiYSkxJwcGufxYwOAiYSSkz/e9KUdR5nKeLxJkubKREJSYu7NVSMu7mqho6U+4Wi0VG3pbKGxNs2JgbHpCpkk6fxMJCQlJr8/wmlNSlJNKsXl67JVCY83SdLcmUhISoyN1qoUz8kdb/rKzqOMTU4lHI0kVQcTCUmJ6BkcY3f3IAAv2GwioWRd0NFMV1s9p0cn+dYTPUmHI0lVwURCUiLyZ9G3rW5lRXNdwtFoqUuFwA9dsRaALz7k8SZJmgsTCUmJ8FiTKs0PPzebSNzx6HEGxyYTjkaSKp+JhKRE2GitSvOc9e1cuKqZkYkpbrMqIUnnZSIhacEdPz3KkyeGCAFeaH+EKkQIgbdcswGAv7/vUMLRSFLlM5GQtODy/RGXrWmjvak24WikM37kqvXUpgMPHerjsaOnkw5HkiqaiYSkBffNJ04AHmtS5eloqedVl3UB8A9WJSTpWZlISFpQY5NT/MejxwF49fbVCUcjPdObr9kIwD8/8BSjE+6UkKRzMZGQtKDu2t3DwOgkXW31PH/T8qTDkZ7hZVs6WLeskdOjk9y+81jS4UhSxTKRkLSgbnv4KACvvWINqVRIOBrpmVKpwJuen2u6/u7BhKORpMplIiFpwYxOnDnWdNOVaxKORjq3H3v+elIB7t13kidPDCYdjiRVJBMJSQvmW0+cYHBskjXtDTxvg8eaVLnWLmvk5RevAuAfvmfTtSTNxkRC0oL50g6PNal6vOUF2abrz9//FOOTmYSjkaTKYyIhaUGMTkxxR+5Y0w95rElV4BXbOlnVWk/P4Dh3Pn486XAkqeKYSEhaEN/YdYKh8SnWLWvkeRuWJR2OdF616RQ/evV6AP7+ux5vkqSzmUhIWhC3PXwEgNdesZoQPNak6vDm3PSmb+0+weG+kYSjkaTKYiIhqexGxqf42mPdANx05dqEo5Hm7oKOZq69cCUxwj+66VqSnsZEQlLZfX1XNyMTU6xf3siV69uTDkcqyFtekK1K/NP3DjGViQlHI0mVw0RCUtl9KbeE7oeuXOOxJlWd12xfzbKmWo70j/KtJ04kHY4kVQwTCUllNTw+yddyE29uusJjTao+DbVp3nhVtun6z771ZMLRSFLlMJGQVFZ3Pt7N6ESGjSuauHxdW9LhSEV510s3U5MK3PNkLw8ePJV0OJJUEUwkJJXVbQ95rEnVb92yRl7/3HUAfPIbexOORpIqg4mEpLIZHJvk67uy05p+6AqX0Km6/dx1FxIC/Pujx9l9fCDpcCQpcSYSksrma48dZ2wyw+aOZrav9ViTqtuWzlZefVkXAJ/8plUJSTKRkFQ209OarvBYkxaHn79uCwBf/P4Rnjo1nHA0kpQsEwlJZXFiYIxv7MqOynytx5q0SDxnwzJesmUlk5nInzvBSdISZyIhqSz+9jsHGJ/K8NwNy7h0TWvS4Uglk69KfO6+Q/QMjiUcjSQlx0RCUsmNTkzx2e8cAODdL9vssSYtKi++aCVXrm9nbDLDX397f9LhSFJiTCQkldwXHjxM79A465Y1csP21UmHI5VUCIGfv+4iAD5zz34GRieSDUiSEmIiIamkYoz8xX/uA+DalRfw0PdTZDKFvcdkZpK/e+jv+L1v/R5/99DfMZmZLEOkUvFefdlqLlrVzMDoJJ+992DS4UhSIkwkJJXUx//pBHtODBInavjs727gR34EbrgB7rxzbt//0bs/StcfdvHOf30nv/mN3+Sd//pOuv6wi4/e/dHyBi4VIJUK/OzLs1WJv7xrH6MTUwlHJEkLz0RCUsnceSf80Vey1YjagxtY01FLSws8/DC8973nTyY+evdH+eDXPsipkVOkU2nqUnWkU2lOjZzig1/7oMmEKsrrn7uOte0NnBgY4/MPPJV0OJK04EwkJJVEJgMf+qMBYlcPRGg9egGpFDQ2wrp1MDAAN9/MOY85TWYm+f27fp/JzCQN6QZqUjWkUilqUjU0pBue9rpUCepqUrznBy4E4E++vpeRcasSkpYWEwlJJfHgg7C/PjtXv657NenRpunXQoAVK2DXrux9s/ncjs/RP9pPbbqWkHr6lKeQCtSma+kf7edzOz5Xtp9BKtRbrtnIumWNHO4b4U++sSfpcCRpQdUkHYCk6nTrWQ2m33t4AjYfBiA90sTourMaUDMw2Q///DDsmqWocPvuQZomX01NSM86LjbGyGSc4vYdg6RGbW5V6Z39/+m5uu6SVXz23oP86Tef5I1XreeCjuYSRyZJlcmKhKSS2D98kpCKhKFG0iPP/EVqchJqaqClZfbvX9m4ggBkiLO+niEScvdJleSyNW1s7WxhfCrDb//bI8Q4+/+HJWmxMZGQNG8TUxke7+3NPn9qFWf/HhUjDA1BVxds3DD7e1yz7hoaaxqZykzN+v1TmSkaaxq5Zt01ZfgJpOKFEHjdlWupTQe+sesE//Ho8aRDkqQFYSIhad6+f7CP4fEpmmtrqRtqo68PxsezjdXj49DXBw0NcMON2X6J2aRCmhu33Eg6pJjITDAVM8QYmYoZJjITpEOKG7fcSCqkF/aHk+ago7We97ws23j9O7c96jhYSUuCiYSkeYkxctfeHgBevq2Dn/iJwLp1MDYG/f3ZP9etg7f9BGy75Nnf61UXvZo3bHsDzbVNxJhhMk4RY4bm2ibesO0NvOqiVy/ATyQV532v2MLa9gaeOjXCn3xjb9LhSFLZ2WwtaV4ePzbAiYEx6mtSPH/Tchpq4ZKL4eAhGBzM9kRs3HDuSsTZXnXRq7n+wuu57/B99I6cZGXjCq5Zd42VCFW8proafuOmy/j5zz7Ap765lzdetY5NK228lrR4mUhIKtpUJnL7I8cAeOHmFTTUZn/ZDwE2bSz+fVMhzQvXv6gUIUoL6sbLV/PSLR3ctaeHD/3bo/zVO+3pkbR4ebRJUtHu23+SEwNjNNWlefnFnUmHIyUuhMBv//B2atOBOx/v5g4bryUtYiYSkooyMj7FHY9lf0l65aVdNNZ59EgC2NLZwk+/NNt4/aHbHnHjtaRFy0RCUlG+vqub4fEpVrXWc80F7naQZnr/K7awpr2BQydH+PV/2eFuCUmLkomEpIId6B3inr3ZvRGvvXwN6dQcO6mlJaK5voZb3vRc0qnAPz94mL/9zoGkQ5KkkjORkFSwj3z5caZiZGtnC5esbk06HKki/f/s3Xd8W/XV+PHPkfeInTjDCdmLBEISCBASCGUVyijP00LLLKOMAmWUlpaHtP1BHyhlBlqgLX0os0Chgz3L3mEmBDIge0/H8V6yzu+P71WiKLIt25KubZ336+VYvtK992vLke/R93vOmT66LzOPGQ/Atc8u4JMVW30ekTHGJJYFEsaYdvlwWRkvzd+AAMdMHOT3cIzp0s6dMZJvTxpEMKT8+JHP2FRZ7/eQjDEmYSyQMMbELRRSfvv8QgD2H1nCwKJcn0dkTNcmItx04iR2Ly1kU1UDP37kMxqDIb+HZYwxCWGBhDEmbk/OWcsXayvolZPJN/co9Xs4xnQLBTmZ/OWM/eiVk8knK8v53QsL/R6SMcYkhAUSxpi41DYGufnlRQBcfPgYCnOsn6Ux8RrZr4DbT94bgAfeX8GTc9b4PCJjjOk8CySMMXG5+61lbKxsYGhJHmcfOMLv4RjT7Xxzz1IuO3wMADOf+IIv11b4PCJjjOkcCySMMW1asK6SP7+5BICrjt6D3CxrPmdMR/zkm7tzyO79qW8KceZ9H1kwYYzp1iyQMMa0qiHYzM/+MZemZuXIPUs5duJAv4dkTLeVERDuOGUfJg0pZmtNI6feM5vPVpX7PSxjjOkQCySMMa36/auLWbShir4F2dxwwkRErPmcMZ1RnJ/Fw+cdwH7D+1BVH+SMv37I7GVlfg/LGGPazQIJY0yLPl25lb+8tRSA6787kX6FOT6PyJieoSg3i4fOncpBY/pS09jMWfd9xFtfb/Z7WMYY0y4WSBhjYqppCPKzf3xOSOGEKYM5ei9b0mRMIuVnZ3LvWftz+PgBNARDnP/gJ/xn/ga/h2WMMXGzQMKYCPXBei567iKOfOhILnruIuqD6duF9oYXF7KyrJZBxblcc/wEv4djTI+Um5XB3T/Yl2MnDqSxOcRFj3zG03PX7vSYUAg+/RReftl9Dlk/O2NMF2GF4I3xHP/o8Ty3+LntX7+6/FXu/vRuvj322zx72rM+jiz13vp6Mw/PXgXALd+bTHFels8jMqbnys4McMcp+5CbOY8n5qzlJ4/NZcH6Sn5+1DjeeSvAjTfCV19BYyNkZ8O4cXDVVXD44X6P3BiT7mxGwhh2DSIiPbf4OY5/9PgUj8g/FbVNXPmvzwE4a/pwZozt5/OIjOn5MjMC3Pr9yZxz0EgA/vLWMo69ZTY/+kk98+ZBYSEMGuQ+z5sHF1wAr7/u86CNMWnPAgmT9uqD9S0GEWHPLX4ubZY5XfPMl7Mcct4AACAASURBVGysbGBUvwKuOmYPv4djTNoIBISrj9+TP50+hcKcTBZvK6fpiHfoP2kzeXkQCEBeHgweDFVVcOONtszJGOMvCyRM2vvpSz9N6OO6s0c/XMVTc9cRELj1pMnkZVvjOWNS7diJg7jx8BloeRGS20jVPh9RM+orFAVABEpK3HKnOXN8HqwxJq1ZjoRJS49+uGr77U+X5lIY/Fab+3y6NHf7fqcdMCxpY/PL7GVlXP30lwBccdQ4pgzr4/OIjOleIl9XOmv+MgguGkreuPUES7ZSN2oJjaXryVk3lEAwC0IQrIAn5sFXwR379cTXJmNM12UzEibt9S8YkNDHdUert9Zy0cOfEgwp3540iB8fOtrvIRmT1goLXd5EYPVgctYOheYAzQU11I76mqbeZTQFlcxM9zhjjPGLBRIm7Z004aSEPq67qW4Ict6Dn1Be28TEwcXc8r3J1r3aGJ8NGwqlpVBTA5kVvclfMYZAbT5khGgYtI6GEcvpO7iBYUP9HqkxJp1ZIGHSXlYgi0kDJrX6mEkDJpEV6HklUEMh5aePz+WrjVX075XD/525r+VFGNMFiMDRx0BuLmzbBsHqHHKWjyJj7SC0OUCguIZtQxbz9tebaA6p38M1xqQpCySMAS6eekmLwcSkAZO4eOolKR5Ratz2yte8smAj2ZkB/nLGvgwqzvN7SMYYz/hxcPoPXJWmhgaorBCCa/vRb/1YBhUUElLl5QUb+dObS1hbXuf3cI0xaciSrY3xXDz1EppCTfxj/j/YXLOJ/gUDOGnCST1yJgLgmc/XcdcbSwC48YSJllxtTBc0fhyM2x1WrYbqapcTMWxoNjCCOau38fy89ayvqOdPby5h6sgSjps4iOL8nvmaZYzpeiyQMCZCViCL0yee7vcwkm7u6m384p+u6dwF3xjFCVOG+DwiY0xLRGD4LsWYhCnD+jB2QCHPf7GeeWsq+HD5Vg6b9SZXHT2e7+07hEDAcp2MMcllS5uMSTNzVpVzxr0f0hAMcfj4AVx59Hi/h2SM6aBeuVmcsv8wzp0xkgG9ctha08iV/57HiXe/z5drK/wenjGmh7MZCdNlBENBHvviMVZWrGR48XBOmXgKmQH7FU2kT1Zs5ez7P6a6Icj+I/pwx6n7kGHvWhrT7Y3uX8ilh4+lvqmZ37/6NXNWbeP4u97l9AOGccWR4+hTkO33EI0xPZDNSJguYdb7syi9tZSznz6bq9+8mrOfPpvSW0uZ9f4sv4fWY3y4rIwz7/uI6oYg00aV8OA5UynMsUDNmJ4iIyCc/41RvP7zQ/mvybuhCg/PXsWht77JA+8tp6k55PcQjTE9jAUSxnez3p/FzNdmUl5XTkYgg+xANhmBDMrrypn52kwLJhLgvSVbOOv+j6htbGbGmH7cf/ZU8rMtiDCmJyotyuWOU/fh7+dPY/zAXlTUNfGbZxdw7B/e4e2vN/s9PGNMD2KBhPFVMBTkd+/+jmAoSG5GLpmBTAKBAJmBTHIzcne633TMW19v5pwHPqa+KcSh4/rz17P2s14RxqSB6aP78vxlB3P9d/eiT34WizdVc+Z9H3HuAx+zbHO138MzxvQAFkgYXz32xWNU1FeQlZGFRK3Vl4CQlZFFRX0Fj33xmE8j7N5eX7SR8x/8hIZgiG/uMYC/nLEvuVkWRBiTLjICwukHDOfNnx/GOQeNJDMgvLZoE9/6/dtc++wCttY0+j1EY0w3ZmsbTMo9+uGq7bdfWlxNfvAoMiUDkV2TflWVoDbz0hfVBOrdfqcdsEsdRBMl2BzijteXcNfriwkpHD1hIHecug/ZmTveO4h8HowxPUNr/6/HDCjkksPH8OIXG/hqYxX3vbecRz5cycFj+zNjTD+yMwM94vU1Ea9tPeHn4Dd7HtKDBRLGV33zShAghJLBroFECEW8x7VXfVMz5bWNBJuV3KwMcrMC5GZlkJXRsyfi1m2r4yePzeHjFeUAnLL/UK77zl49/vs2xrRtQK9czjpwBIs3VfHylxtYV1HPqws38uGyMg4bP4Dv7zfEXiuMMXGzQML4av/B+/P4/MepaaolEAgQOSmhCs2hZgqy8tl/8P477VdV38SKLbUsL6th+eYaVm2tZUt1A+W1jWytcR+1jc0xz5kREDICQm5mgH69cijtlUtpUS6lRTmUFuV266U/L8/fwJX/mkdFXROFOZlc/929+O+9B/s9LGNMFzN2QC9GH1bIF2sreGXBRrbWNPLM5+uYt2YbPztqHMdNHGSloY0xbbJAwvgqIBkcM+YYnlz0JE2hJjICGQQQQijNzc1kSi8OKP027y8tZ1NlPZurG7jtla/YUh3fut7MgJCZIdQ37Sh72BxSmkNKYzBEZX2QZZtrdtqnOC+LoX3yGDugF2NKC+mT3/Xrr9c3NXP98wv52+yVAEweUswdp+7D8L4FPo/MGNNVBUSYPKQ3E3Yr4uPlW3l90SZWlNVy2d/ncNt/vuKCQ0ZzwpTB5GR23zdXjDHJZYGE8d03Rx1JQ1OAN5fNIRgsIKAlZGoJGVqCkMPny+Fz1u+yX7/CHEb2y2dE3wJG9Cugf68c+hZk06cgm5L8bEoKs+mVk4mIoKo0BEM0NIWoDzbzj49XU9vYzOaqBjZW1rOxqp6NlQ1U1DVt//hyXaV3nmzGDOjF2AGFjOpXQE4XmrFQVd5bUsZvn1/Aog1VAFzwjVFccdS4nfIhjDGmJZmBANNH92PKsD5U1ge5773lrCirZeYTX3D7K19z3sEjOXXqMHrlZvk9VGNMF2OBhEmpyvomVmypYUNlvbuAr3QX8nVNpWRzNNHv/QcE+hbkMKAohwG9chnQK4cfTBvOiH757fqjJiJenkQGxWTRtzCHvsDQkvydHlfX2MyGynqWbalmycZqVpfXsqW6kS3VZcxeVkZGQBjVr4BgKMQRe5QyuHde538oHaCqvLZwE3e+sYTPV28DXMAz66S9OWT3/r6MyRjTveVkZfCTGSM57+CR/P2jVfz1neVsqKzndy8s4q7Xl3DG9OGcOnUYQ/rkt30wY0xasEDCJEVzSFlRVsP8dZUsWl/Jog1VfLWhirXb6mI+XoCSguydchUG9MqlX2E2mVGJfxOHFCdt3HnZGYzsV8DIfgUcMb6UusZmlm2pZvGmahZvrKK8tonFm6q5+un5XP30fPYcVMQ39yzlyD1KmbBbEYEkryluDikvfrmeP76xlIXr3YxJblaAU6cO48eHjqF/r5yknt8Y0/MV5GRy3sGjOHP6CJ6au5a731rKss01/PGNpfzxjaVMH9WXE6YM5piJgyjMscsIY9KZvQKYTqtvauarDVXMX1fJgvUVXvBQRV1T7GTn4rwsSotyGFgUTnLOpX+vnC5ZKSQvO4MJuxUzYbdiVJXN1Q0sWl9FWU0Dn64sZ8H6Shasr+SO1xbTJz+LA0b2ZdqoEqaN7svuA3olJLBoDinz11XwwdIyHv9k9facjoLsDM6YPoJzZ4y0AMIYk3DZmQFO2m8o35syhP8s2MiD76/gg2Vl2z+ufno+R+81kBOnDGH66L5dPjk7pEp9YzPVDUFqGptpDikAiqLuJqqQmSEsXF9JSUE2ffKzbZlokjWHlNrGILWNzdQ2NtMYbEZEEIH3lmxBxOXzZASEPvlZ9CvMoTgvK2bJeJN6FkiYdqmqb2Lh+iq+XFvBl+sqWLCuksWbqre/IEfKzQowfmARewwqYo9BvRhX2ovxA4t4/otd8x26AxHxllflctoBwyirbuCNrzbz2sKNvP31Zsprm3hp/gZemr8BYHtgMXlob4aW5DGkTz5D++RRUpDd6gtgc0hZuL6S2cvK+GBpGR8t30pVw47O3kW5mZwzYyRnHziC3t0gEdwY070FAsLRew3k6L0Gsqa8lqfmrOXfn61l+ZYanpyzlifnrKU4L4sDRpYwbVRfpo3qy/iBiXkjJV7hN3pWb61lzqpyr4JfExV1jdQ0uOChtjFIjD9VMd377vLtt3vlZLrcu4JshvTJY3jffIaXFDCsbz7D++ZT2is3pd9rd6KqVDcE2VrTSFnNjqqKW2satz8nkcVQot3/3oqY27MyhH6FOd5HNoN65zGi746cyWEl+d26AmN3Iqpx/q9K5iBELgZ+AQwEPgcuVdWPWnn894HrgBHAYuB/VPWFiPsF+F/gfKA38B5wkaoujnM8g4E1q1evZsiQIR36nrq78NKkReur+GqDtzRpYxUry2pjPr6kIJsJuxWx56Ai9tytiAm7FTGyX2HMd6g626QmEQ1qEj2GpuYQX6yt2H7x/8mK8hZnZPKzMxjSJ4/SolwagiHqGpupaQy6zw3uXZlg1F+7XjmZTB1ZwsFj+3HivkMSkvRoDemMMdHifX1VVeas3sa/P13Ds5+vo7I+uNP94cBivxF9GN63gCF98hhakk9RB1+7VJWKuibWlNexpryW1VvrWF1ey+qttaz2trV2QRopNytAQXYmmRmCINvLjov3T7BZCalSXtsU802yaDmZAUb0LWD0gAJG9Stk9IACRvcvZFT/wrRZ+lXf1MyyzTUs3Vy9/fMnK7aypbqRxua2nxfBrQDIz84gJzNj+yxRcV4WIVVC6hqtbq1p3OV3LebxBHYrzmNEv3z3nPQvYPQA95wMKrLAb82aNQwdOhRgiKqu7cyxfA8kRORk4CHgQuBD4HLg+8A4Vd0U4/EHAm8DM4HngNOA/wGmqOqX3mP+x7v/LGA5LuiYCOypqvVxjCktAglVZXNVAyvKallRVsPKshp3e0sNSzZV0xCM/Z9/t+JcJgwuZsJuRey1WzETBhcxsCg37mnGnhhIRGtqDjFvjQssFm+s2v6HbmNlQ1zHL/QCh2mj3Dt8E3YrTviyAQskjDHROvL62tQc4su1FcxetpXZy8r4ZMVWalro41OUm8mQPvkM7pNHQXYGgYCQIa5Md3j5SmMwRHltI+W1TZTXuM/baht3eYMlWkBgUHEe2ZkBSvJdBb8++VkU5mRSkJNJYU4m+TkZZAbaXqp02gHDCIWUqvogW73+RJur3IzHyq01rCyrZdXWWtaU17UabJQW5TC8bwHDS9zsxbC+BYzwZjSK87tXFazqhiAry2pYVVbLyq21rCxzP4eVZbWsq6ijpctJAYrzsygpyKZvQTYlBTmUFGRTlJtJfnYmBdkZ5GZnEIhxDRHr97G+qZmymka2VDWwpbqBzVUNrN1Wx/ItNawoq2HFllqqG1oONvKyMhjVv4ARfQsYWpLPsPBzU5LPoOLcXfIye6KeFkh8CHysqpd4XweA1cCdqnpjjMc/DhSo6rcjts0G5qrqhd5sxDpglqre6t1fDGwEzlbVx+IYU7cNJOqbmqmsb6KqPuh9NFFW3cimqno2VTawqaph++0NlfUtNm0D959t99JCxg8sYtzAXowf5JYmlRR0bjlNOgQSLalvambdtjrWlNexuaqBHO+dsfzsDApyMre/I9O/MCfpL2YWSBhjoiXi9TUysPhybQVryt0Fd1lNfP1/WtOvMNstEy3Jd7McffIZWuI+79bbBRGJeG2L9+fQ1Bxi3bY6lm2pYemmapZurmHZZvd5S3XrbxzlZ2d4hUVydio00q8wh6K8THrlZlGUm7X9dkF2RsLyAlSV+qYQlfVNVNY1eZ+DVNY3sbWmkY2VDWyqrN9eYXFTZcNOS2xj6Z2fxej+3rv//QtZU15Hv8Ic+hRkxRW8xdKR30dVpaymkRVbali2pYZl25+TalaW1bYakGYEhIFFuQwoyqF/YY732eVx9u/lcjN65WZ6Hy5I7eq5QbEkMpDwdc5NRLKBfYEbwttUNSQirwLTW9htOnBb1LaXge94t0filki9GnHMCi9gmQ7sEkiISA4Qma1aCLB+ferX8i9aX8k/PllDSNVrnBai2bsdCinBZmhsDtEQbKap2fVGaAw20xAMUdPQTFMcU4iRAgKlxbkM7eNelIf0yWNwn3xG9itgcO+8qP8g9dSW11Nb3rnvsWxT536ua9Z0/gLbzzFkA6Py3QeEAO+PqwIN0NwAXkuIpOrsz8AY0/Mk4vUVoH8Ajh+Tw/FjBmzfVtcUZP22etZX1LGhop6GYIiQKsGQEgqx/e9eVkaA4rxMivOzKc7Nojg/i9557nPs5ngNUN/Apg3uj1MiXtva83PIAMYWwNiR2TAyG+gDQGVdkFVbq1m7rZ615XXbl2Wt3VZHWXUjlUDlFrc+Ox4BgazMANkZAbIzA2Rl7Ljd0nW6KjQGQzQEQwSb3efG5hDBZo1r2Va04rxMBnv5fjs+5zK0TwF9ot5kfHLOFqiroSJ2sca4dOb3cWAmDBwoHDiwEO+yjmBziLXb6lhZ5p6H9dvqWbut1j1H2+poCIZYuQ1WtuM8+TkZ5GdlkJUZICczg6wMITszQI73HGUGZPvMW0bA+xChpDCbSw8f2+HvrzMSeX3r9+K9frj/gxujtm8Exrewz8AWHj8w4n7aeEy0mcA10RunTp3awsN7ltXAJ34Poh0u83sAdI0xGGNMotlrm2M/h9jWAgtSeL6e/jzc7PcAoBT3tHaY34FEV3EDu85y7AGs8WEs6a4QWIQLJKt9GkMp8Clutiw6IDXx6+xz6ff+4P/vQlf4/2C6BvtdMMYkUikwp7MH8TuQ2AI0476ZSKXAhhb22dDG4zdEbFsf9Zi5sQ6oqg1A9GLGD1sctUkaESnybq5X1UqfxhC+ubGzawfTWWefS7/3944RvunL70JX+P9gugb7XTDGJFhC/qb5mpquqo24d/uOCG/zkq2PAD5oYbcPIh/vOTLi8ctxwUTkMYuAA1o5pjHGGGOMMaYd/J6RALek6EER+QT4CFf+tQC4H0BEHgLWqupM7/F/AN4SkSuA54FTgP2AHwGoqorI74Ffi8hidpR/XQc8lbLvyhhjjDHGmB7M90BCVR8Xkf7Atbhk6LnA0aoaXo88DFfaJvz490XkNOC3wO9wBQ++E+4h4bkZF4z8H64h3bveMdvsIWF814BrJhhfw4XkqATe8j6bjuvsc+n3/uD/70JX+P9gugb7XTDGdDm+95EwxhhjjDHGdD89v32fMcYYY4wxJuEskDDGGGOMMca0mwUSxhhjjDHGmHazQMIYY4wxxhjTbhZIGGMMICKZInK1iAzxeyzGiMj4Vu77VirHYowxLbFAwnQZIpIlImNFpNiHcx8sIg+LyAciMtjbdoaIzEj1WLorEckQkXNF5FEReVVEXo/8SNEYeovIeSJyg4iUeNumhJ/T1qhqEPgFPpbFFpFSEfmbiKwTkaCINEd++DUu44vPROTiyA0ikiMidwFP+zQmY4zZie99JEx6EpErgTtVtU5EMoCbgEtxv5MhEfkbcIGqNqVgLCcCfwMeAfYBcry7ioFfAscmeww9xB+As3GNIr8E2lVbWkTKW9hHgXpgCfCAqt7fwv6TgFeBCmAEcA+wFTgB14/mzDiG8TpwCLCiPWNPoAdwY70OWE87f4amRzkb+LOIHAf8EBgEPIp7A/BgH8dljDHbWR8J4wvv3dVBqrpJRH6Ou2C/AvgQdzF/GzBLVW9OwVjmALer6kMiUgVMVtVlIrIP8KKqDkz2GHoCEdkCnKmqL3Rw/58CvwJexHW5B5gKHA3cDowEzgAuVdV7Yuz/KvCZql4Z9TweCDyqqiPiGMOFwDW4oPJToCbyflV9piPfW7y8cR+sqnOTeR7TPXjL7O7HvSYW4ALNK1S11s9xGWNMmM1IGL9IxO3TgKsi3mleICIAM3FdypNtHPB2jO0VuM7oJj6NuFmDjpoB/FpV747cKCIXAEep6okiMg+4DDfbEG1/4IIY29cC8QaDf/I+/yzGfQpkxHmcjlrNzv83jMnG/d5l4Gap6v0djjHG7GA5EsZP4emwYcD7Ufe9j3sHOhU2AGNibJ8BLEvRGHqCWcBPxIsCO+BbuKVJ0V7z7gN4ARjVwv4NQFGM7bsDm+MZgKoGWvlIdhABcDlwo4iMSMG5TBcmIqcAX+De0NgdOA74EfCOiLT0f8AYY1LKZiSMn84XkWrcO9klUff1wl0YpsI9wB9E5BxccLObiEwHbsWtVTfxmQEcBhwjIvOBnfJbVPWENvbfChyPW8YU6XjvPnDLO6pa2P8Z4GoROSl8ShEZhsu/+Xdc34H/HgfygaUiUsuuP8Po/yem57oX+Lmq/tn7+hURmQj8BZhL7KDZGGNSygIJ45dVwPne7QZgCjsvLzoM+CpFY7kRNzv3Gu4i7m1vTLeq6p0pGkNPsA14shP7X4dLLj2MHTkS++OS3S/0vj4SeKuF/a8A/gVsAvK8xw0EPsDlXsRFRA4Bfg7s4W1aANyiqu/E/Z103OUpOIfpHqao6k6vgapaDpwkImf4NCZjjNmJJVubLklEpgENqjonhefMxi1xKgQWqGp1qs5tHBE5CLgEl7cCLpi8U1Wjl761dYzJuOfxM1WNtVyqpX1/gEtufQJ4z9t8EPBd4GxVfTTeYxljjDE9nQUSxhjjEZGFwP+p6u1R238GnK+qe8TeMyljycUl2m6nqpWpOr/xn1e16b9weWTRvwuxCgIYY0xKWSBh0p53wXYpbjnVAKKKEKjqFD/G1R2IyGfAEapa7pXRbfEFJZ6fo4gEcLNCsZ6HWJW1Ive9A1iiqndEbb8EGKOqbS4bEpEGYIKqLonaPgb4UlVz2zpGZ4hIAS6n4ySgb/T9KUr4Nl2AiByBy/tZBozH9WYZgavq9ZmqHu7f6IwxxrEcCWNcUuNRuPX1H2FNwNrjaXYkxT/VmQN5y9keBYazawnUeEqvnoh79zba+8BVxJd/sBo4gl3L2H7Tuy/ZbsYFtBfhmiReDAzGlbW9KgXnN13HDbg8rWu8/iIn4vJ/HgFe8nVkxhjjsRkJk/ZEpAI4VlXfa/PBJmlEZC7wNa4h3C5dnVW1oo3964G9OjObICIXAb8H7mNHSeKDcF2Gf6Kqf4nrm+kgEVmFa+r3pohU4hJul3jJtaeqqnVZTxNe8LC3qi71ur7PUNX5IjIZeDqeBovGGJNsNiNhfCMiGbiLtHmqus3Hoayl5ZKipgNEpJBdlya1tb5/LPC96ECgHZbgumDfFbX9GOLsB6KqfxaRDbgKUOEysguBk1X16Q6Oqz1K2DHWSnaURX4X+HPMPUxPVcOOvIj1wGhgvvd1P19GZIwxUSyQML5R1WYR+Q+uzKafgcQVwE0icqGqrvRxHN2aiIzEXcQfCkS++y/EtzTpQ1x+REcDiduAu0SkP/C6t+0I3PMbd1lVVX2SzpWx7YxluEaMq4BFuGDmI1wvDT//j5jUm43rzbIQ14hxltdH4gTvPmOM8Z0FEsZvX+I6FS/3cQyf4C58l1kTsE55GBc0nANspP25JnfiLpYG4jr6Rj8P81rbWVXvE5EcXM+I/+dtXgFcpKoPxTMAEVkG7K+qZVHbe+MSXJPdUfh+XOnat3D9TZ71ksWzAKvSk15+hithDG65XyFwMrAY+10wxnQRliNhfCUiR+OSCv8f8CluOn+7VJS7FJFXceUV7yXGBbCqPpjsMfQEXpfyfaObaLVj/1CMzYo3o9GeikXerERde3uBeGMYqKqboraXAqtUNac9x+ssERkO7IurRtVqIGWMMcakms1IGL+94H1+hp0v4ONdDpMIBwLTVfXzFJyrJ/sYGErHO5KPTNRAVHVzex4vIpHVnr7lJeCHZeCWSK1IwNDaM6Zcb6mdLbdLcx3MOTLGmKSzQML47TC/B4Bbi57n9yB6gPOAu0VkMG7JWnuXJnXqgtmbNbgVd9E/gKgSsm3MaIRL1yoQPQPVhAsirujM+OLhFSD4JXAhUCoiu6vqMhG5Dlihqvcmewyma0hAzpExxiSdBRLGV6r6lt9jwNXnnyUivyL22nx75y8+/XGVZe6P2LZ9aRIxLny8mYAXVbUpalZgF6r6TBvnfwC3RO06YpSPbePYAW88y3E5Elvi3TfBfgWcBVwJ3BOx/UtcwrgFEumjszlHxhiTdJYjYXwnIgfjGm6NAr6vqmu9uvnLVfXdFJw/vDY/+j9Du9fmpzMRWYCrMHMzsXNNdplxiMxJaCFHImL31p8Hr+7+wao6t92D7yJEZAlwgaq+5n0/k70ZifHAB6rax+chmhTpbM6RMcakgs1IGF+JyIm4Dr6PAFOAcDJrMW6JRyoacHWF5VU9wXDgv9rTByI8ExB9u4NWs2tH7HYTkQLgENzsRnbkfap6R2eP34bBxC5/G8BVbjLpo7M5R8YYk3QWSBi//Rq4UFUfEpFTIra/592XdF1keVVP8DqudGmH+kCIyJnA46raELU9GzgljhKulwM3isgFqrqig2PYB1cAIB8oALbimn/VApuAZAcSC4CD2TXB+nvAnCSf23Qtnco5MsaYVLBAwvhtHPB2jO0VQO9knVREJgFfqmrIu90i+4Mdt2eB272mWbFyTdrKcbgfeAl3wR6pl3dfW4HE47gAYGkn+oHcjvs+LsT9Dk7zjvMw8Ic49u+sa4EHvYvHAHCCiIwDzgS+nYLzm66j3TlHxhiTahZIGL9twHUzXhG1fQauy2+yzAUG4i5a57LjD3Q0+4Mdv7u9z1fHuC+en2P4AinaENxFfVvi7l7dir1xOQohEWkGcrwchStx1ZyeSMA5WqSqT4vI8bifYQ0usPgMOF5VX0nmuU2Xcx9uFupULNnaGNNFWSBh/HYP8AcROQf3h3I3EZmOK+N5XRLPOxLYHHHbdFJHcxxEZA7uuVfgNREJRtydgXt+Xorj/IloHNgEhJO+N+HyJBbiApmhCTh+m1T1HeDIVJzLdGntzjkyxphUs0DC+O1G3BKO13DLUt4GGoBbVfXOZJ1UVVeKyH0i8pPO9i8wnRbu4bA38DIQ2Y26ETdb9e94DiQio4Ef4paE/MSrBnUMriv1/DgOMQfYH1gMvAVcKyL9gDNw69RTxpqQpb1O5RwZY0wqWPlX0yV4CbVjgEJggapWt7FLcV+WPAAAIABJREFUIs7ZDAxS1eg1+cYHInIWLtm6voP7HwK8iEvU/wawh7cs6SpgP1X9XhzH2A/opapviMgAXF7GgbjA4pxkdz9vqwmZlSJOHyLyI1zBifvoWM6RMcYknQUSpssQkSEAqromRefb3sMgFeczySUiHwD/VNXbonowTAWeUNUhbewvuOVLmzoazHSWiLyHCxr+QOxeHFZhLE10tq+KMcakgi1tMr4SkQDuXbcrcLMR4cZis4DrVbW1P6aJ0EtEWr1otOUkySMiW4HdVXWLiJTTSkJpHFWXJgKnxdi+CVfCtc3h4JaRTMDNQPhhMtaEzJCQvirGGJN0FkgYv10PnAtchVuSAq5i029wSzt+leTzf93KfVZmMfl+ClR5tztbdWkbMAhYHrV9H2BtWzt7lZoWA33xL5CwJmTGGGO6DVvaZHwlIutwDemeidr+38CfVHVwEs8dAk7ENR1rkS0niZ83wzQGGMCuicKx+oWE98vEzSa8rKobO3juW4EDgO/jAsQpQCkuz+EhVf3fOI5xPHAlcJGqpjS52jv/aFwZ3YexJmTGGGO6OAskjK+8ZUWTVPXrqO3jgLmqmpfEc1uORAKJyDTgUVzZyuieHG2u6faayO3R0SpaXsL+H4GzcbNIQe/zo8DZqtocxzHKcdXDMnEVo+oi74+zqV2HRfwMR0SeFku2NsYY0wXZ0ibjt8+BS4DLorZf4t1nuo+7gU+A44D1tL+B1ke4ZUgdCiRUtRE4X0SuA/bC5dzMUdX2LFNKRFO7zrAmZMYYY7oNm5EwvvJKdj4PrAI+8DZPx60TP9ZrzpWscy/HlQUtS9Y50omI1OAqJXWo7r2InATcANwOfIrr7LxdOizr6ezP0BhjjEklCySM70RkN+BiYLy3aSEuP2Kdf6My7SUirwM3q2qbXahb2D9Wha5Wl/WIyG3A/1PVGu92i1T1Z3GOo7NN7TpMRJ4FHlDVuBrwmZ6tozlHxhiTKra0yfjOCxiSXZ3JJN+dwCwRGUjsBlptzSiM7MA59wGyIm63JK53TGI0tfsVrnzsZFx1sTab2nXSs8DtIjIRa0KW1trKOcKqyRljugCbkTC+EpFJLdylQD3uXeCGFA7JdFBHZhS8/XK6ynPc2aZ2CTi/NSEzAIjIXFz1sWuIkXOkqhV+jMsYYyLZjITx21x2/IEMv+sW+QezSUQeBy7wq9uwiVtHZhQAKrwL+De8j9mq2tTGPrsQkWIgQ1W3Rm0vAYJxNhbsbFO7TrEmZCbCWOB7li9jjOnK7I+W8dt3cc2/foRbPjLZu/0V7oLuXOBw4LfJOLmIZInIayIyNhnHTyequrK1j1Z2vRBXqekc4C1gm4i8IiIzRWSaiMT7LvxjwCkxtp/k3RePcFO7aHE1tTMmgT7E5UcYY0yXZUubjK9E5CNcsuzLUdu/BVynqlNF5DvALFUdnaQxbAYObGeZUAOIyH8BL6pqk3e7RfGs7xeRUcChwCHe5yG46k3vqOpxbey7FThIVRdGbR8PvKeqfeM4f6eb2hmTCCLyXdwbKLfQsZwjY4xJOgskjK9EpA7YR1UXRW0fj+sBkCciI4AFqpqfpDHcDjSo6lXJOH5PFtnUL9Hr+0VkJG5G6lKgMI6GdjXANFX9Imr7RODDeH5/EtHUzphE6GjOkTHGpJLlSBi/LQKuEpEfeQ3FEJEs4CrvPoDBuOZcyZIJnCMi3yR2/4K4yoamo8g1/Z1d3y8iw4DDcDMRh+JyEmYDt+KWPLXlI9yyuEujtl+Ie17blKCmdsYkQkdzjowxJmVsRsL4SkQOBJ4BQkB4qn4i7l3gb6vqbBE5A/eu9y1JGsMbrdytqnp4Ms7b04jIEFVd08J901R1dgv33YcLHEpwZVffwQUOH6tqsB3nPwh4FfgYeM3bfASwP3BUMpsbGmOMMenIAgnjOxHpBZwO7O5t+gp4VFWr/BuVaS8RWQDMiFE16SDgeVXt3cJ+IVxn8z/iAoA52sEXJhHZG/gFsDdQhwtOb4h3RsFL7D4bF4DEagKW9KDSmpClr0TnHBljTLJZIGGMR0TG4LoZv62qdSIiHb2gTUfezMIk4LBwECgi38A1WfuNqt7ewn7j2HlJUw7wLm5W4k3gM1VtLf8iYUTkLlwg8Tyxa/f/NMnnb7UJma2L79mSmXNkjDHJYIGE8Z13IXkpsIe3aSFwV3QCdhLP3xf4B+5iVoGxXhOy+4ByVb0iFePo7rx30v+FW6L0LSC8bO3XqvqHdhxnT1zVpsNw3aVzgXdV9dstPD4T1z+iIWJbKS43ogB4RlXfjfPcW4AzVfWFeMebSNaEzBhjTHdifSSMr0TkROBLYF/gc+9jCvCFd18q3I4rrTgMqI3Y/jhwdIrG0O15swan4H6Wr+OCiJntCSK84ywAnvA+nsa9M39MK7vcA9wR/sJbKvcxcDEuoHlDRI6N8/SNgJ8NwMYCv1TVhaq6TVUrIj98HJdJMRFpsYu6N3NljDG+sxkJ4ysRWQo8oqpXR23/X+AHyeodEXWuDcC3VPVzEakCJnszEqOAeapamOwxdFciMinG5l7A33HLg/4c3tha3XsRGYBb1hRe4rQ77qL+I7yO16oas3KTiHwNXKKq//G+vhj4JbCnqlaIyE3AVFU9LI7v5wpglHe8lL84isjrwM2q+lKqz226lo7mHBljTCpZ+Vfjt0G4Zl/RHsYlzaZCATvPRISVAA0xtpsd5rKjtn1Y+OsLcOVYxdsWc023iCzEBQ5B3EzCv3C5Ee+pan0cYxiM644edgTw74h38B8Efhjft8MMXDBzjIjMZ9cmYCfEeZyOuhOYJSIDsSZk6W428B8RiZlz5OfAjDEmzAIJ47c3gYPZdTnJDFwZ0FR4BzgT+H/e1+qt978S9264aVkiat0/hfs5v6uqsQK6ttQDeRFfT2PnILQe1w8iHtuAJzswhkT5t/f5voht25uQ0UIwZnqk83BB9bMi0uGcI2OMSSZb2mR8JSIXAtfikp3DfQamAd/HJZyuCz82WeUORWQvXNnRz4DDcX+sJ+BmJA5S1aXJOG9P4jUR/AtwnaouT/G5XwM+UtWZInIwLjgdoqrrvfuPBP6sqmNSOa6OEJHhrd2vqitTNRbjP6/T+vNAPq4i2kxVvcvfURljzA4WSBhftVHiMFJSyx2KSDFwCTAZ9+71Z8Afwxejpm0iUgHs7UMgcQjwIq7K0SDg76p6bsT9fwIKVPWsOI+XicvTGI3Xz0REdgMqVbU60eM3JixROUfGGJMqFkgYYxJCRB4E5rbULyLJ594DOArYAPwzsu+EiPwIN2MxN47jDAdewlXwygF29xLv/wDkqOqFSRi7NSEzwPY3VlrKOYq8bX0kjDFdggUSJu2JyBJccvcj8XZANrsSkV8DV+CWiX0K1ETer6p3xNqvKxGRp4Aq4FygjB0VvA4F7lHVsUk4pzUhM0DbS9si2TI3Y0xXYIGE8ZWIXN3a/ap6bQrG8FPgNFwvi09xQcXjqroh2efuSUSktSVNqqqjYuzzBHC2qlaKyJm4n7tvlbJEpAw4UFW/iioFPAJYoKr5fo3NpA8/c46MMaY9LJAwvhKROVGbsnCVgILAUlWdksKx7A6cDpzqjeEN4GFVjVWe1iSAiDQCw1V1vYg0A4NUdZOP4ynHJdgviAokZuBKypYm+fxDVHVNC/dNU9XZse4zPY9fOUfGGNMeFkiYLkdEioAHgCdV9W8+jWEaLrFxki0naR+v0sxIXCAYbOOx83CJ7W8A9wOXAZWxHpuKgE5EHgcqVPVHXiAxCdiM67C9SlXj7UfR0fNbEzID+JtzZIwx8bJAwnRJIjIReFZVR6T4vFNxy5xOBoq8MZySyjF0VyKSj2uoFq6OFE5UvhNYq6o3xtjnQOA2XIWkElx+QqwXJVXVkuSMfKfxDAFexiW0jgU+8T5vAb6R7NkSEbkPF7zEbEJmF5XpoyfkHBljej4LJEyX5C0leVZV+6TgXNFLml4HHgGesHKf8fMqGx0EXI6rfDTJCyT+G3cRvE8b+29POk7+aFsdRyZwCu6CPlwK+BFVrUvBuQO4JmQlgDUhS2MdyTkyxphUs0DC+EpELovehOsFcAbwlqqeloIxhHDvPD8CPKaqG5N9zp5IRFYCJ6vq7Kj8gjHAZ6pa1Mb+w3HLh+J+UfJyGuJ6fCpmNBLBmpAZY4zpLjL9HoBJez+N+jqEW5P+IHBDisYwzsq+JkR/INZsQgFxXOyr6koR6S0i5wJ7eJsXAPeqakULu13eoZFG8WYCJqjqF97XFwLZEQ9pxnXHjreBYnvOHasJ2W9wTcgeBt4OP8aakKWf9uQcGWNMqtmMhEl7IpIHHAns7m36GnglFUtZehIReRvXDO7OcKKyqi73ciTGqurRbey/Hy4/oQ74yNu8P5AHHKWqnyVx7KcBF6rqN7yvq4BtuOphAP2Ay1X13iSc25qQmV10JOfIGGNSzWYkTFrzOgn/FXehGGmLiJyrqs/6MKzu6pfAiyKyJ+615Sfe7QOBQ+LY/3ZcPsD54XdevXyFvwK/B74R70BEJJedZxRQ1ZjVoDw/BP4Yte0QVV3mHe9C4AdAwgMJ3LvNxkS7AZgMHIrLOQp7FTdjZYGEMcZ3Ab8HYIxfvIpB/wLexiUJl3gfM4B3gH95ZWBNHFT1XWBvXBDxBXAUbqnTdFX9NI5D7AfcFLl8w7t9s3dfq0SkQETuEpFNuAo35VEfrRmPy5NpyVu4i7qEU9WVXpfidcA1QCC8LfojGec3XdZ3gEu8/1eRSwfm46qcGWOM72xGwqSzXwP3q+oFUdvfB94Xkb8AVwPHpnxk3ZSqLgXO7+DulcAwYFHU9qG4srBtuRk4DLgI+BtwMTAYuAC4qo19+0d9PQooi/i6CZfrkTSq2iQiJwLXJfM8ptvoVM6RMcakgs1ImHQ2DWitGs4fgekpGkuPISITRGRSxMeEOHd9HLhXRE4WkaHexym4pU1/j2P/44Efq+q/cbkN76jqb3FLrk5vY9+NwLjwF6q6OSqxeg9gQ5zfR2c8hXsn2phPgOMivg4HD+cBH6R+OMYYsyubkTDpLI8Wuih7KoDcFI2l2xKRg4HbVHV/b9NsXOnS7cnCIvItVX21jUP9HHex9BA7XpuacB3G25pRALcsbZl3u9L7GuBd7xiteQ34FfBC9B0iIsBM7zHJthi42utkbU3I0ltnc46MMSbprGqTSVsiMg+4XVXvb+H+c3CVemKV5zQeEfk78EH4ItereHQcsBIXTFwGDFfVE+M8Xj471oAvVdXaOPebB1yqqm+JyKvAXFX9uder5EpVHdLKvqNxjecWAbfiKneBm6X4ufd5X1VdEs9YOsqakJlI3u/lVbj8nHBzxJvCZYqNMcZvFkiYtCUiP8XlSZyhqi9E3XccrpfF71T1Nj/G112IyGLgu6r6pff19mZ03tf7AM+r6m5JHsdPgWZVvUNEvgk8iwtksoCftdUZWkSmAg/gEq/DL4yCCy5+qKofJmvsxhhjTHdkgYRJW14TsseBE4GvgIW4C8c9gLG49erfT0YTsp5EROpwNe5Xe1+fALwUnknwOlZ/rao5KR7XcGBfYEl7GrmJyN7s6CmyWFXnJGN8bYzBmpAZwOUcAZH9Q5pVdb5f4zHGmEgWSJi0JyInA6eyc0O6x1T1Mf9G1X145VZPUtU3W7j/UFyjuujKSCaKNSEz0TlH3gzfTjlHQDw5R8YYk3RWtcmkPVV9XFW/o6p7eh/fsSCiXT4Ezmzl/rO9xySViNzh5UNEb79ERH6f7PMnSGQTsvqI7a8CJ/sxIJNyP8aVL450GG6GahTwB1yJY2OM8Z0FEsaYzroNOEtEbhGRAeGNIjJARGbhOkKnIs/kROC9GNvfB76XgvMngjUhM/sBr0dtW+M1JVyBCzKsLLUxpkuwQMIY0ymq+gZwKa4603oRKReRrcB64BJc5avoC6OYROQMEXlPRNZ5OQ6IyOUi8t9x7N4XV7I3WiXQL57zdwHWhMwMYeff47PYuYfJVtzvujHG+M4CCWNMp6nqn4AxuFKpfwce826PUdXWmv5tJyIX4WYuXgB6syPBdBtweRyHWAIcHWP7MezoL9HVWRMyU0XE7JOqPhFVAnkkrfe/McaYlLGGdMaYhPCqNt3eiUNcCpyvqk+JSGQDuk9wvR3achtwl4j0Z8fSkCOAK4gvEEFEVgD3AQ+o6qp4B55A1oTMhHOO3mzh/rNJQc6RMcbEw2YkjDFdxUggVqnVBtzSnlap6n24oOFc4A3v4wfARap6T5xj+D1wArBMRF4RkVNEJGVla73ciL1xQcQXwFG4pU7TVfXTVI3D+Kqr5BwZY0ybrPyrSXsi8iSx158rrnLOEuBRVf0qpQNLMyKyAJipqk9HNrUTkUtxDeGmtONY/YE6Va3u4Fim4N75PRW3xOpR4D5V/awjxzOmPUTkx7jZvUzcMiYFioEgcEW8ywWNMSbZLJAwaU9EHsBVy9kGhN/1nYJbp/8fXDnOEcARqhqrKpBJABE5D/gNblbhXlxewGhgJnCeHyV5RSQLV47zJlyH7C+AO4D7NYkvntaEzIjIUFy1sbHepsXAv8KNH40xpiuwQMKkPRG5ESjCld0MedsCuHrtVcCvgLuBCao6w7eBdmMiIvFceIvI6bhgIpxsug64RlXvbeHxn+ECvHIRmUMrlY3aOaORBXwX+CFwJDAbF9wMAS4GXlfV0+I9XhznsyZkxhhjuh0LJEzaE5HNwEGq+nXU9t2B91W1n4hMBN5R1d6+DLIbEJFfqOotMbZnAA+r6qntOFY+UKiqsUqhRj7uGuAWVa31brdIVf83jvNOwQUPpwIh4CHgr6q6KOIxewEfq2pe299JfETk78AHqnqH93UVrnrTSlwwcRkwXFVPTNQ5jTHGmM6yqk3GuP8H44Gvo7aPZ8fyknqsjn9bfiEiWyNnD7wg4jFgr7Z2FpGRQKaqLvbKXdZ628cCTV4zrp1EBgfxBApx+Bh4Bdc5+ClVbYrxmOW47ymR9gOuj9q2RlVXAojI34DnE3xOY4wxplMskDDGdYq9V0R+h7uQBNgfV4rzIe/rQ3DdhU3LjgP+IyIVqvovEckE/oELyA6LY/8HcKVXF0dtPwCXL3Fo4obaolHhi/eWqGoNbtYikawJmTHGmG7HljaZtOe9a34Vrgtzqbd5I3AncJOqNovIMCCkqmt8Gma3ICKHA0/hSlSei2tSd7iqboxj30pgiqouido+BvikrWVlIlJO29W3HlDV++P5XlJJRDYBJ6nqmy3cfyjwT1Xtn8pxma4p3pwjY4xJNusjYdKeqjar6vWqOghXqam3qg5S1d+parP3mFUWRLRNVV/HNdP6N64vxCHxBBHh3YFeMbYXs3MFo5Zci8treB64xvt43tv2R9zStT+LyPktHUBEMkTk5yLykYhsEJGtkR9xfh8dEW5C1pKzsSZkaUVEftHC9nA5YmOM8Z0tbTImgqpW+j2G7kREnmjhrs24crr/J+IKD6nqCW0c7m1gpoicGg7gvIummcC7cQxnBvBrVb07aowXAEep6okiMg+XuNxSg7prcMuoZgG/xeUtjMCVB742jjF01G3AqyJShkse3+SNfQDwP7gZnqOSeH7T9XQq58gYY1LBljaZtCcipcCtwBHAAHaU3ARAVeN5NzwtiUjcy4RUtdW8AhHZExdMbAPe8TYfjCvNe7iqftnG/tXA3i0sjZqrqoUiMhqYp6oxO2WLyFLgMlV93quctLeqLhWRy4BpiSz5GuPc1oTMbCci++P62JwfI+focFXd0OoBjDEmBWxGwhiX5DsMuA5Yj1VniltbwUE7j7VARCbhclUmA3W4ZPe7VDWeZUVbgeNxF+ORjvfuAyjA9QZpyUBc0zmAatyFPMBzuN+PpFHVP4nIs1gTMgOo6sciciLwlIg0siPn6LB2LBc0xpikskDCGLck5mBVnev3QLqzyPKtUdtbLN8aTVXX4apldcR1uByIw4CPvG37A8cCF3pfHwm81cox1gCDgFXAUtxyos+84zR0cFxx8wKG6EDIpClVfV1EwjlHC3E5R1t8HpYxxmxngYQxsJqo5UymQx6gk+VbRaQ3MBW3xGynYhCq+lDMnXbcf4+ILMDNaITzMb7CXXy97z1mVhtDeBK3xO1DXNWuh0XkXNyMlV3gm6RKcM6RMcYkneVImLQnIkcBVwAXxPOuuYktAeVbjwceAQrZkSMQpqpakuAht0lEpgPTgcWq+myqz2/SSyJzjowxJhUskDBpz+s/kI+boasFdupm7McFbHckIhXAoao6J2r7vsCbqhqrtGvk474GXgB+6XW27sgYMnAVlvbwNs0HnglXgTLGGGNM4lggYdKeiJzV2v2q+mCqxtKdeYnCdUB0+dbHgQJVPaaN/WuAiaq6rIPnH4MLRAbjljQBjMMtXTtOVZfGcYyzgC2q+rz39c3Aj4AF3vfVatfrZLImZOklETlHxhiTbBZIGGMSIgHlW58AHlPVf3Tw/C/gcl1OD1d5EpG+wMO4ruTHxXGMr4CLvCTX6cBrwOXAt4Fgsteli8gvVPWWGNszgIdV9dRknt90HSLyFnBf9BsZIvID4DxVPdSXgRljTAQLJExaEpGicPM5ESlq7bHWpC5+IrIbO5dvnUec5Vu9pOargftxJVijl5g908b+NbheD19EbZ8MvKeqhXGMoRYYr6qrROQmYJCqnikiE3DLs/q3dYzOEJFNwMyWmpCp6h4t7mx6lM7mHBljTCpY1SaTrspFZJDXQXgbsXtHiLfdGtLFqZPlW8Pdpq+OdWjafh4agFh5GIVAY5xjqAb64sq/HoXrOA1QD+TFeYzOOA74j4hUxGhCdlgKzm+6DiX273Mx9ppkjOkiLJAw6epwdjQpswu0DvIayH2pqiHvdotUdV4b9wdauz8Oz+HKY57Ljj4SBwB3A63OZkR4BfiriMwBdsflXABMAFZ0cnxtsiZkJsLbwEwRic45mgm86+vIjDHGY0ubjDEdJiIhYKCqbvJuK7F7cqiqxv0uqojkqmp9O8fSG3gQ18k6vCwqExdEnK2qFXEe47fAUODPqvqSt/1/gUZVvb49Y+ooEfkO8E9cE7LDrQlZ+ulszpExxqSCBRLG0LlGaOlMRIYDq1RVvdstaqvikfdu6y9xXahLgd1VdZmIXAesiMwbaOM4Y3FLgQAWRq8x72paaUI2DVgCbA8irAlZeulMzpExxqSCBRIm7XXFRmg9jYjkqWpdG4+5GjgLlyNxDy65eJmInAxcrqrTUzDOo4FqVX3X+/pi4Hxc+deLVbU8Cee0JmTGGGO6JQskTNpLRCM0E5uI5ODeUf2Fqg5s47FLcN3FXxORKmCyF0iMBz5Q1T4x9rltlwO1QFV/Fsd4vwD+R1VfEJGJwMe4hOvDgEV2IW+SKZE5R8YYkwqWbG2Ma2B2hwURHeMFC78BjsRVR7pZVZ8SkR8C1wPNwO1xHGowbilPtACQ1cI++8Q5zHjfMRmJm30AOBF4TlV/KSJT2JF4nTTWhCztzQUGApu82y3mHGGVm4wxXYAFEsbAy8B+QIc6KhuuBS4AXgUOBP7pLdeZBvwM+Ge46kwbFuCSSaNzKb4HzIm1g6omuuJWI5Dv3f4mEM6P2YpLck22B4D7gMVR2w8AzgMOTcEYjH9GApsjbhtjTJdmgYQx8Dxwi1clpd2N0AzfB85U1WdEZC9cQmgmbmlSe9ZOXgs8KCKDcbMQJ4jIOOBMXGfpuInIEABVXdOe/XBlNW8Tkfdwyfcne9t3B9p7rI7YB3gvxvbZwF0pOL/xUWRBgtaKE4hIKnqaGGNMmyxHwqQ9r2xpS9pVtjQdef0ORqrqWu/rOmBqdIfpOI91MC7ZejIu+f0z4FpV/U8c+waAXwNXePsCVAGzgOtVtbXnOXyMYcCfcOVf7whXihKR24EMVb2svd9Te4hIBXCoqs6J2r4vrrN2rAZlJk20J+fIGGNSwQIJY0yniEgzrpfEZu/rKmCSqi5P8ThuwDVwu4Yd7+rPwOVv3KOqv0rleDpCRJ7FlfmMbkL2OFCgqsf4OT6TfHHmHN2lqjf5N0pjjHEskDDGdIo3o/Mi0OBtOh54HaiJfFyyeyCIyDrgwuilaCLy38CfVHVwK/ueBDylqo3e10OAdeFZDBHJBy5R1ZuT9g1gTcgMiMhN/7+9+46SrazyPv79cSUJCIIjOgISBVREGJQcREYdFEfRUdQlEkblneEVRcV3zCAGRkTBnAiKOuOMGAFRJJgwICAgWaIgXsk53v3+cU5DUXb3re7b3XWr6vtZq9c95znnPLWrL9xVu56weeSao78DxtYcfYje1xxJ0qwzkdBISvIm4AtVdU97PKGqOmKOwhpIvdZBGG/r1CQ30RSeuyHJzUyyu9LC6nkkuYdmJOSSrvb1gXOqasJ55e2oyhOran57fhvwzKq6vD1flSaxmPVpbhYhG21JLqepm9K55uhoYO8prjmSpFlnIqGRlOQKYLOqurE9nkhV1dpzFdeoSfI64L+q6t4kezB5InHMQvr6NfDr7nUMST4JPKuqtpjk2QU007PGEomH6li053OWSGi0zeSaI0mabe7apJFUVWuNd6y51ZkcVNXRi9jdAcDxSXYCzmjbtqRZOL3zIvY9ayxCpi7zaNZGjHkAuKNPsUjSpEwkJC0WkuwMPFhVJ3W1P49mx6QTJ3u+qk5P8hTg34EN2ubjaNZHXDcbMc8Qi5CpU4Cjk4ytOVoG+FySOV1zJEm9MJHQSEpyWK/3VtX+sxmLHvIR4P+N075Ee23SRAKgTRimuzvT89vtV8de87ntHHWAlabZZy8sQqZO3VP4ju1LFJLUA9dIaCQlObXHW6uqdpzVYAQ8NBd8w6q6sqt9TeAPVbXcOM/MyLSghdQS6eiif2skkixbVXf36/UlSermiIRGUlU9p98x6G/cCqwNXNnVvi5dW8l2mJFpQVVvbADNAAAb2ElEQVS1xBRjnTOdRcho3qskSYsFEwmNvCQr0szBv6mrfWXggaq6rT+RjZzvAp9I8tKq+iNAknVpKlN/b4JnhmJaUI9FyD7evwglSfpbTm3SyEtyIvD9qvpMV/s+wIurarHd8WeYtAndD4HNgD+1zavRFGbbtapu6Vdss80iZJKkQWQioZHXFkXbuqou7GrfAPhFVa3Sn8hGT5LQfCv/UDG2qvppj8+uUlU3tserA68HlgW+V1U/m/ThPrMImSRpEJlIaOS12ypu0V3wKclGNAXOHt2fyNSL9u/p+zT1Ii4FdqMZ2VgOWND++fKq+k7fglwIi5BJkgbRYrvAUJpDvwHeME77PsDv5jiWkZNkyyQv6mrbPckVSeYn+UK7hmAi/wmcB2wHnAb8ADgeWBF4LPB5xt9WdnFiETJJ0sBxREIjL8nWNHPTfwv8pG1+LvAs4HmL+7SYQdeuUTmtqg5pzzcCzqKZ2nMhzW5Fn6+q90/w/A3AjlV1bpLlgduAZ1XV79rrGwC/qqqea0EkWQp4PF1ftlTV1VN7dz2/3gKaOhljRch2AU6ha7cqi5BJkhYnJhISkOSZwAF0zM0HPlxVl/Y1sBGQ5M/ALlV1Znv+QWD7qtqmPf8X4MCqeuoEzy8AnlBV89vz24GNq+ry9nxV4LpeakAkWQ84kmbB8yMuMYt1JJIc1ct9VbXnbLy+JEnT4favElBV5wCv7nccI+qxwF86zrfnkVWsf0uz/mEy3d+ITPcbkqNpphW9CPjzIvQzJSYIkqRBZCIhAUnWAfakKYj25qqan+SfgKur6g/9jW7o/YWmBsQ17ZSiTYH3dVxfAbh/IX0cnWRsWtAywOfaRfQAk62v6PZM4B+q6qIpPCNJ0khysbVGXpLtaRbrbg68DFi+vbQxcGC/4hohJwAfSbIt8GHgLpraEWOeAfxxkuePoalsfWv7cyxwXcf5fOArPcZyAfC4qQQvSdKoco2ERl6SM2gKfh3WOb8+ybOB46pqtT6HONSSPA44DtiGZqei11XVtzuu/4RmsfS75iCWHYGDgXfSJJePGAmxyrkkSQ8zkdDIS3IHsFFVXdGVSKwJXFRVy/Q1wBHRVra+o7uCc5KV2/b7xn9yRmNY0B52/8M4q4utJUkaRK6RkOAW4InAFV3tmwDXzn04o6mqbp2g/aY5DOM5c/hakiQNNBMJCf4LOKTdZrSAJdraEofS+9x6Dbgkj6LZMerIqvpTv+ORJGlx59Qmjbx2p6BPA3vQVBh+oP3z68Ae3VNtNLzaqW0bVdWV/Y5FkqTFnYmE1EqyBvB0ml2bzrYY3ehJ8l2aBfbH9DsWSZIWd05tklpVdTVwdb/j0KJJ8lRgDWCpzvaq+l4Pj59IsxXtRsDvgDs7L/bYhyRJI8ERCY20JMsB7wB2BdakWSNxBfC/wKFVdVf/otNUJFkb+DawEc3fY9pLBdDLjksduzaNx12bJEnqYCKhkdWujfglzXSmE4GLaD58bgi8ADgL2K6qFlZVWYuBJN8HHgT+lSYZfDawCvAx4G1V9bNJHpckSVPk1CaNsv8DrEZTN+LizgtJNgBOA/YBPjn3oWkatgR2rKob2pGFBVX18yT/ARxBs51vz5IsU1X3zEagkiQNgyX6HYDUR7sCH+hOIgCq6iLgg8DL5zwqTdc84Pb2+Abg79vjq4D1e+kgybwk70lyLXBHO12KJB9IsvdMByxJ0iAzkdAoeyrNqMNETm3v0WA4H9i4Pf41cEBbD+S9wOU99vEumm2ADwA6K2mfTzNlSpIktUwkNMpWAm6c5PqNwIpzFIsW3cE8/G/ae4G1gJ8BOwNv6rGP3YE3VNXXaNZbjPk9sMEMxSlJ0lBwjYRG2RI88sNitwU002U0AKrqpI7jy4ANkqwM3Fy97yrxJOCycdqXAJZc9CglSRoeJhIaZQF+kuSBCa77/8eAq6qbpvjIBcC2NOsqOr0cOHtGgpIkaUj4QUmj7MAe7vnWrEehaUtyHLBHVd3WHk+oqnbtocuDgGOSPIlmFGLXJOvTTHl60SIHLEnSEDGR0Miqql4SCS3ebqUtONceL5Kq+m6SXWjWWNxJk1icBexSVT9e1P4lSRomFqSTJEmSNGXu2iRJkiRpypzaJGlgJTmbh6c2TaqqNp2gj5un0MfKvUcnSdJwM5GQNMi+03G8DPBvNDsvndG2bQE8DfjMJH28ueN4FeDdwEkdfWwJPB/4wAzEK0nS0HCNhEZekrWrqtfKx1pMJfkS8Oeqek9X+4HA6lW1Vw99fAs4tao+1dW+L7BTVb1kJmOWJGmQmUho5CVZAJwOfBn436q6p88haRqS3ApsVlWXdrWvB5xZVQutUp7kDuCZbUG7zvZ1gXOqavmZjFmSpEHmYmsJNgXOBQ4Drk/y+STP7nNMmrq7ga3Had8a6DU5vBH453Ha/7m9JkmSWq6R0MirqnOA/ZK8FXgxsAfw8ySXAEcCX62qv/YxRPXmE8Bnk2wK/KZt2xzYi97XN7wP+FKSHYBfd/TxAuD1MxeqJEmDz6lNUpckS9Ms2v0wsBRwH/BN4B1V9ed+xqbJJXkFsB+wYdt0IXB4VX1zCn1sDrypq48jqurXEz8lSdLoMZGQWkk2o/n2ejeaqsbH0KybWI3mm+rHVJVTniRJkjCRkEiyP7AnsD5wAvAl4ISqWtBxz2rAlVXldMDFWJKVgJcDawOHVtVN7VSnv1TVtT32MQ94CQ+PSPwB+F5VPTgbMUuSNKhMJDTyklxKsxbi6ImmLiVZCnhVVR0zp8GpZ0meAZwM3AqsCaxfVZcnORhYo6p276GPdYHjaUahLm6b1weuAV5YVX+cjdglSRpEJhIaeUnWBK7uHIFo20NTf+DqfsSlqUlyMnBWVR2Q5HZg4zaR2Ar4elWt2UMfJwABXlNVN7VtqwDHAguq6oWz9w4kSRosJhIaeUkeBJ5YVfO72lcB5lfVvP5Epqlo60hsWlV/7EokngxcXFXL9NDHncAWVXVeV/vGwC+sIyFJ0sOsIyE130CPZ3l6rz+g/rsXeMw47U8Bet2+915ghXHal6fZvUuSJLVcOKqRleSw9rCAg5Lc1XF5Hk39gHPmPDBN1/eA97ZbwAJUkjWAQ4Bv9djHD4AvJNmbR9ai+FzbvyRJajm1SSMryant4fbAGTzyG+f7gCtpdv65dI5D0zQkWRH4X2AzmlGF64An0Pzd7lxVd/bQx0o02/7uAtzfNj+KJonYo6punYXQJUkaSCYSGnlJjgL2q6rb+h2LFl2SbYBn0ExHOquqTp5GH+sBG7SnF1bVZTMYoiRJQ8FEQpIkSdKUuUZCIynJcTRTVW5rjydUVbvOUVhaREmeC7yFh4vJXQh8YmGjEkne20v/VXXQokUoSdLwMJHQqLqVZpH12LEGXJJ/Aw6nWSdxeNu8BXBCkrdU1acnefz9NGsq5jPxLl4FmEhIktRyapOkoZDkT8BHqupTXe3/Dryzqp40ybPHAzsCJ9FUOf9Bd4FCSZL0SNaRkDQsVgJ+OE77j4AVJ3uwrVi9DvBr4KPAtUkOSbL+jEcpSdKQcERCIynJ2Tw8tWlSVbXpLIejGZDk68DZVfXRrva3AZtV1W5T6Gs7YE/gZcB5wE5VdfdMxitJ0qBzjYRG1Xf6HYBm3AXAu5LsQFM7Apo1ElsDH0vyprEbq+qIhfT1W2BN4KnAJsCSgImEJEkdHJGQNBSSXNHjrVVVa0/Qx5bAXsArgEuAo4CvV9UtMxOlJEnDwxEJSUOhqtaa7rNJDgD2AB4HfA3YtqrOnaHQJEkaSo5IaCQluQl4SlXdkORmJlkvUVUrz11k6ockC4CrgR8A9010X1XtP2dBSZK0mHNEQqPqLcDt7fGb+xmIpi/JYcB7qurO9nhCC0kCfkqTTD5tsi6mEaIkSUPLEQlJAyvJqcBLq+qW9nhCVfWcOQpLkqSRYCIhAUnmAS8FNmybLgC+W1UP9C8qSZKkxZcF6TTykjyNZoeeY2iSiZe2x5cmeXo/Y1Pvkkw44tBWt5YkSTPIEQmNvCRnAH8FXldVN7dtjwWOBv6uqrbqY3jqUbtofqeq+l1X+37AB6rqMf2JTJKk4eSIhATPBP5jLIkAaI/fRVOMTIPh7cCJSTYYa0jyVuAg4IV9i0qSpCHlrk1SM61pVeAPXe2PBy6b+3A0HVX1pSQrAycn2QZ4JfBOYOeq+kUvfSRZA7imuoZqkwRYvaqunum4JUkaVCYSGklJOqe5/AdwRJL3A79q27YA3gu8Y45D0yKoqv9MsgpwJjAPeH5V/Wohj3W6AngiML+rfeX22rwZCVSSpCHgGgmNpLYAWed//Gn/rO7zqvLD42IqyZsmuPQ2mtoQvxlrqKojeuhvAbBqVf21q/3JwAVVtdwihCtJ0lAxkdBISrJ9r/dW1emzGYumL8kVPd5aVbX2JP2MFbPbD/gicFfH5XnA5sCDVbX1tAKVJGkIObVJI8nkYDhU1Voz1NXYovoAGwH3dVy7D/g9cOgMvZYkSUPBEQmNpCTPAM6vqgXt8YSq6tw5Ckt9luQoYL+quq3fsUiStLgzkdBIaufCP6Gq5nesl8g4t7pGYjHWTkl6T1Xd2TE9aVxVtf80+n8MsCNwUVVdNM0wJUkaSk5t0qhai6YI3dixBtMmwJIdxxPp6RuTJN8EflpVn0qyLM3uT2s2l7JbVX1rUYKVJGmYOCIhSa0k19NsGfv7JK8GDgQ2Bl4HvKGqLFAoSVLLEQmNpCQv7vXeqvrebMaiRZNkT+CUqrpqBrpbEbipPX4B8K2quivJ8cBHZ6B/SZKGhomERtV3us6710h0DtW5RmLx9hlgqSRXAaeO/VTVtdPo6xpgyyQ30SQSu7XtjwXumYlgJUkaFkv0OwCpH6pqibEf4HnAOcA/ASu1PzsDZ9F8mNTibSVgJ+ArwLo0dSCuTnJxks8leWWSVXvs6xPA14A/AdcBp7Xt2wHnzWjUkiQNONdIaOQlOR/Yp6p+3tW+LfCFqtqwP5FpOpIsA2wJPAfYAXgWsGRV9TQCm2QzYHXgx1V1R9v2QuCWqvrFrAQtSdIAcmqTBOsAt4zTfivNjj0aLAvan+LhKWtX9/pwVZ0JnJlWNY6fnVAlSRpcTm2S4LfAYZ3TX9rjjwK/6VtU6kmSpZJsl+S9SU6jSQA/DzyRZprTelW19hT62z3JecDdwN1Jzk3y2tmIXZKkQeaIhAR7Ad+mmVd/Tdu2OnAp8JK+RaVe3QrMB74PfBrYraqun05HSfYHPgB8ChibxrQN8Lkkj6uqj89AvJIkDQXXSEg01caAfwQ2aJsuBE4u/wdZ7CX5FU0xuotpFkefDpxWVTdOo68rgPdV1Ve62l8HvL+qLF4oSVLLRELSwEuyPM3IwdgC602AS3g4sTi9qub30M89wNOr6rKu9vWA86pqmZmNXJKkwWUiIQFJlgO2B9YAluq8VlVH9CUoTVuSFYBtaUaZ9gSW72XXpnYHr69X1Ye62t8NvLKqNpqNeCVJGkSukdDIS7IJcALwaGA5msrGjwPuopl7byIxIJIsQbPd6w40oxNb0/yd9lr1+n3AfyfZjofXSGwNPBd4xYwGK0nSgHNEQiOv3ennEmAfmoW7GwP3A8cCh1fVcf2LTguT5Nk0icMONNOblqcpKHcaD1e5vnIK/f0D8BZgrH7IhcDHqursmYpZkqRhYCKhkZfkFmDzqrq4Pd6yqi5MsjlwTFVtsJAu1EdJFgDX0yYNNInDH/sblSRJw8+pTVIz+rCgPZ5Ps07iQprRidX7FZR6tmFVXbwoHbRTot4OvJhmjcxPgAOr6u4ZiE+SpKFkQToJzqaZVw/NDj8HJXkN8Ang/L5FpZ4sahLRehfwIeAO4FpgP5qaFJIkaQJObdLIS7IZsEJVnZrk8cBXgK1oCtLtVVW/72uAmnVJLgUOrarPt+c7AccDy1bVgkkfliRpRJlISBp5Se4F1q2qazra7mnb/tS/yCRJWnw5tUkCkjwqyU5J3tjWICDJ37eFzjT8HgXc09V2P7BkH2KRJGkgOCKhkZfkycAPaRZZLw08paouT3I4sHRV7dPXADXr2p2fTgTu7WjeBTgFuHOsoap2nePQJElabLlrkwSHA2fS1I+4saP928AX+xKRpizJPGAPmuJxj6drxLWqdpzk8WPGaTt2xoKTJGkImUhIsC2wVVXdl6Sz/UrgSX2JSNNxOE0icTzNbls9D7dW1Z6zFJMkSUPLREJqvrmeN077asDtcxyLpm834BVVdUK/A5EkaRS42FqCHwFv7jivdpH1gYAfSgfHfcBl/Q5CkqRR4WJrjbwkqwEnAQHWo1kvsR5wA7BdVc3vY3jqUZK3AmsD+5b/sEmSNOtMJCSa7V+BV9IsuF4eOAv4WlXd3dfA1LMk3waeA9wE/IFm+9aHuOOSJEkzy0RCmkSSZU0mBkOSoya77oJqSZJmlomENI4kSwP7Am+vqif0Ox5JkqTFjYutNbKSLJ3kw0nOTPLLJC9p2/cErqBZgP3xvgYpSZK0mHJEQiMrySHAG4GTga2AvwOOArYAPgT8T1U92L8INVVJXg68gqZK+VKd16pq074EJUnSkHJEQqPsX4Ddq+rlwPNoakk8Cti4qv7LJGKwJHkTTSL4F2AT4Dc0lcrXBk7sY2iSJA0lRyQ0spLcB6xVVde253cDz66q8/obmaYjyUXAgVX1jSS30ySElyc5CFi5qvbtc4iSJA0VRyQ0yubRFDEb8wBwR59i0aJbA/hle3w3sEJ7/FXgVX2JSJKkIfaofgcg9VGAo5Pc254vA3wuyZ2dN1l/YGBcD6wMXAVcTbPW5ffAWjR/15IkaQaZSGiUHdN1fmxfotBMOQV4MXA2zVqJj7eLrzcDjutnYJIkDSPXSEgaCkmWAJaoqgfa891oduO6FPh8Vd032fOSJGlqTCQkSZIkTZmLrSUNjSTbJjk2yRlJntS2vTbJNv2OTZKkYWMiIWkoJHkZcBLNjk2bAEu3l1YE3tmvuCRJGlYmEpKGxbuBfarq9cD9He2/AKxqLUnSDDORkDQs1gd+Ok77rcBKcxyLJElDz0RC0rC4Hlh3nPZtgMvnOBZJkoaeiYSkYfFF4PAkmwMF/H2S1wCHAp/ta2SSJA0hC9JJGhYfofly5CfAo2mmOd0LHFpVn+xnYJIkDSPrSEgaKkmWopnitDxwQVXd0eeQJEkaSiYSkiRJkqbMqU2SBlqSI3u5r6r2mu1YJEkaJY5ISBpoSRYAVwFnA5novqp66ZwFJUnSCHBEQtKg+yzwKmAt4Cjg2Kq6qb8hSZI0/ByRkDTwkiwN7ArsBWwFHA98GfhR+Y+cJEmzwkRC0lBJ8mRgD2B3mlHXp7lzkyRJM8+CdJKGzQKagnQB5vU5FkmShpaJhKSBl2TpJK9K8mPgEmAjYF9gDUcjJEmaHS62ljTQknwG2A24BjgSeFVV3dDfqCRJGn6ukZA00NrtX6+m2f51wn/QqmrXOQtKkqQR4IiEpEH3FSZJICRJ0uxwREKSJEnSlLnYWpIkSdKUmUhIkiRJmjITCUmSJElTZiIhSZIkacpMJCRJ05KkkrykPV6zPX9mv+OaDcP+/iRpOkwkJGlAJTm6/XBbSe5PckWS/0yyTB/CuQZ4InD+XLxYkpclOSXJzUnuTnJxkiOTbDIXry9JMpGQpEH3Q5oP8GsDbwHeCBw410FU1YNVdX1VPTDbr5XkEOC/gXOAFwPrA68GLgc+PMlzS812bJI0SkwkJGmw3dt+gL+mqr4DnAz8Y+cNSVZP8s0ktyS5Kcl3k6zZcf1ZSX6c5IYktyY5PcmmXX2sl+SnSe5JckGS7td4xNSfJDu0589NcmaSu5L8Msn6Xc+9O8n8JLcn+VKSjyQ5Z6I3m2QL4ABg/6rav6p+VlVXV9Xvqupg4J867n1/knOS/GuSK4B72vYXJPl5+/u4MckPkqzT9TrPTnJ2+37PBP5mpCPJ05OcmOSOJH9J8tUkj5sodkkaNiYSkjQkkjwd2Aq4r6NtSeAk4HZgW2Br4A7ghx3f0K8AHANsA2wBXAqckGSFto8lgOPafjcH9gEO6TGsDwJvBTYDHgCO7IjtNcC7gHcA/wBcDfyfhfT3qjb+z4x3sf62yuq6wMuAXYGx9Q3LAYe1MT0XWAB8u32fJFke+AFwQRvX+4FDOztNshJwCnB2288LgFWBby4kfkkaGo/qdwCSpEXyoiR30Px7vjTNh+J9O66/kuZLo38d+5CdZE/gFmAH4EdVdUpnh0ne0F7fnuYD9U7ABsDzq+q69p53Aif2EN+7qur09pmPAMcnWaaq7gH+L/DlqjqqvfegJM8Dlp+kv6cAl3dOoUqyP3BQxz1Pqqpb2+OlgN2r6q9jF6vqW13vdy/gr8BTadZ4vJrmd7Z3G+cfkqwGfLbjsX2Bs6vqnV39XJPkKVV1yeS/FkkafI5ISNJgO5Xmm/bNaUYVjur6oLwxzbfyt7dTcO4AbgKWAdYBSLJqki8muTTJrcBtNB/m12j72BC4ZiyJaJ3RY3zndhz/uf3z8e2f6wO/6bq/+7wXR9L8Dt5IM9qQjmtXdSYR8NA0rW8kuTzJbcCV7aXO93tum0SM6X6/GwPPGfudtr/Xi9pr6yBJI8ARCUkabHdW1WXw0Dfiv0+yd1V9ub2+PPA74DXjPDv2AfsYYBVgP+Aq4F6aD84zsTj5/o7jsWlHi/Il1qXANkmWrKr7AarqFuCWdtSg253jtH2f5n2+Hriujed8pvZ+l2/7ecc41/48TpskDR1HJCRpSFTVAuBDwMFJlm2bzwLWA+ZX1WVdP2PTf7YGjqiqE6rqDzSJROei4QuB1ZM8saNtixkI+WLgWV1t3efdvkHzIf7fpvOCSVahGQk5uKp+UlUXAo/tuu1C4Bld2+h2v9+zgKcBV47zex0veZGkoWMiIUnD5X+AB4F/b8+/BtwAfDfJtknWandUOqLjG/xLgdcm2TDJ5u0zd3f0eTJwCXBMko2TbEuziHpRfRLYO8nr2ulG7waewcMjF3+jqs4APgZ8LMlhSbZJ8uR2N6e922cXTPKaNwM3Am9Ism6SHWkWXnf6etvPF5M8NcnOwNu67vk0sDLwjXbXq3WSPD/JUUnm9fwbkKQBZiIhSUOkXYT8KeCAJMtV1V3AdjQ7Ih1H8237l2nWSNzWPrY3zbfyZwFfBY4A5nf0uQB4KbAszRqGL9HstrSosX6Npu7Doe1rrwUcTbtN6yTPvY1mQfQmNIvBL6VJoJYAtqyq2yZ5dgGwG81uTOcDHwfe3nXPHcAuwEY0uzJ9kK4pTO16ka2BecCPgPOAT9AsUp8skZGkoZG/3SlPkqT+SPJj4Pqqem2/Y5EkTc7F1pKkvkjyaJqaFCfRTMd6Fc1Ws/842XOSpMWDIxKSpL5oF4R/n2aK0jI0i68Prqrj+hqYJKknJhKSJEmSpszF1pIkSZKmzERCkiRJ0pSZSEiSJEmaMhMJSZIkSVNmIiFJkiRpykwkJEmSJE2ZiYQkSZKkKTORkCRJkjRlJhKSJEmSpuz/AxaOMI20mO+0AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 900x900 with 2 Axes>" ] @@ -410,13 +410,9 @@ "\n", "legendMain=ax.legend(labels=[str(\"Google scholar author relative to ART Corpus distribution. Total docs: \")+str(len(trainingDats))], prop=legend_properties,loc='upper left')\n", "\n", - "\n", - "#for i,j,k in zip(author_stats_grid,heights,[str(NAME)+' mean',str(NAME)+' min',str(NAME)+' max']):\n", - "\n", "xinterval = author_stats_grid\n", "xinterval.extend(bmark_stats_items_grid)\n", - "#xinterval.append(other)\n", - "#coords = copy.copy([item for item in ax.get_xticklabels()])\n", + "\n", "x1,y1,z1 = (mwp_distance[0],mwp_height[0],str('mean wikipedia'))\n", "xinterval.insert(4,x1)\n", "ax.set_xticks(xinterval)\n", @@ -428,13 +424,11 @@ "x,y,z = (worst_distance[0],worst_height,other_name)\n", "\n", "data3 = pd.DataFrame({\n", - "'Standard Reading Level': [x,x1],\n", - " 'CDF': [y,y1]\n", + "'Standard Reading Level': [x1],\n", + " 'CDF': [y1]\n", " })\n", "ax = sns.regplot(data=data3, x='Standard Reading Level', y=\"CDF\", fit_reg=False, marker=\"o\", color=\"green\")\n", "\n", - "#new_categories.append(other_name)\n", - "\n", "ax.set_xticklabels(new_categories, minor=False, rotation=90)\n", "ax.set_xticklabels(new_categories, minor=True, rotation=0)\n", "\n", @@ -444,16 +438,9 @@ "xticks = list(range(0,45,5))\n", "\n", "plt.xticks(xticks)\n", - "#ax2.xaxis.set_minor_locator(AutoMinorLocator(4))\n", "plt.tick_params(axis=\"y\", labelcolor=\"r\", pad=8)\n", "\n", - "\n", - "\n", - "\n", - "ax.text(x-0.25,y+0.005,z, rotation=90) \n", - "\n", - "#ax.text(x1,y1,z1, rotation=90) \n", - "\n", + "ax.set(xlabel='Reading Grade', ylabel='Normalized Number of Texts at Reading Grade', title='some title')\n", " \n", "plt.savefig(str(NAME)+'_author_readability.png')\n", "plt.show()\n", @@ -520,7 +507,8 @@ " 8.421875,\n", " 14.234375,\n", " 16.171875,\n", - " 8.421875]" + " 8.421875,\n", + " 16.171875]" ] }, "execution_count": 15, @@ -567,7 +555,7 @@ " <tr>\n", " <td>0</td>\n", " <td>18.109375</td>\n", - " <td>0.215428</td>\n", + " <td>0.214495</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", @@ -575,7 +563,7 @@ ], "text/plain": [ " Standard Reading Level CDF\n", - "0 18.109375 0.215428" + "0 18.109375 0.214495" ] }, "execution_count": 16, @@ -621,17 +609,17 @@ " <tr>\n", " <td>0</td>\n", " <td>18.109375</td>\n", - " <td>0.215428</td>\n", + " <td>0.214495</td>\n", " </tr>\n", " <tr>\n", " <td>1</td>\n", " <td>13.265625</td>\n", - " <td>0.017952</td>\n", + " <td>0.017875</td>\n", " </tr>\n", " <tr>\n", " <td>2</td>\n", " <td>25.859375</td>\n", - " <td>0.008976</td>\n", + " <td>0.008937</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", @@ -639,9 +627,9 @@ ], "text/plain": [ " mean, min, maximum CDF\n", - "0 18.109375 0.215428\n", - "1 13.265625 0.017952\n", - "2 25.859375 0.008976" + "0 18.109375 0.214495\n", + "1 13.265625 0.017875\n", + "2 25.859375 0.008937" ] }, "execution_count": 17, @@ -661,7 +649,7 @@ { "data": { "text/plain": [ - "[6.484375, 8.484375, 14.484375, 16.484375, 8.484375]" + "[6.484375, 8.484375, 14.484375, 16.484375, 8.484375, 16.484375]" ] }, "execution_count": 18, @@ -690,18 +678,1027 @@ { "data": { "text/plain": [ - "{'link': 'local_resource',\n", - " 'wcount': 299,\n", - " 'english': True,\n", + "{'link': 'nicholas',\n", + " 'page_rank': 'nicholas',\n", + " 'wcount': 3593,\n", + " 'tokens': ['understanding',\n", + " 'climate',\n", + " 'change',\n", + " 'gregory',\n", + " 'nicholas',\n", + " 'v',\n", + " '1',\n", + " '30',\n", + " 'aug',\n", + " '2019',\n", + " '1',\n", + " '.',\n", + " 'introduction',\n", + " 'in',\n", + " '2019',\n", + " ',',\n", + " 'newspapers',\n", + " 'magazines',\n", + " 'publishing',\n", + " 'reports',\n", + " 'subject',\n", + " 'climate',\n", + " 'change',\n", + " '.',\n", + " 'it',\n", + " 'appears',\n", + " 'scientific',\n", + " 'meteorological',\n", + " 'bodies',\n", + " 'see',\n", + " 'climate',\n", + " 'change',\n", + " 'major',\n", + " 'problem',\n", + " 'humankind',\n", + " '(',\n", + " 'species',\n", + " ')',\n", + " ',',\n", + " 'concerted',\n", + " 'action',\n", + " 'needed',\n", + " 'immediately',\n", + " 'prevent',\n", + " 'disaster',\n", + " ',',\n", + " 'principally',\n", + " 'reducing',\n", + " 'emissions',\n", + " 'greenhouse',\n", + " 'gases',\n", + " '.',\n", + " 'however',\n", + " 'politicians',\n", + " 'administrative',\n", + " 'structures',\n", + " 'difficulty',\n", + " 'understanding',\n", + " 'nature',\n", + " 'problem',\n", + " '(',\n", + " 'except',\n", + " 'perhaps',\n", + " 'europeans',\n", + " ')',\n", + " 'seem',\n", + " 'hurry',\n", + " 'follow',\n", + " 'recommendations',\n", + " 'scientists',\n", + " '.',\n", + " 'i',\n", + " 'believe',\n", + " 'people',\n", + " 'clear',\n", + " 'understanding',\n", + " 'problem',\n", + " 'scientific',\n", + " 'community',\n", + " 'somehow',\n", + " 'unable',\n", + " '?',\n", + " 'rephrase',\n", + " 'explain',\n", + " 'reasoning',\n", + " 'form',\n", + " 'understood',\n", + " 'man',\n", + " 'eg',\n", + " '‘',\n", + " 'lay',\n", + " 'street',\n", + " '.',\n", + " 'they',\n", + " 'expect',\n", + " 'us',\n", + " 'take',\n", + " 'word',\n", + " 'without',\n", + " 'understanding',\n", + " 'audience',\n", + " '’',\n", + " 'thisextremelyseriousmatterourselves',\n", + " '.',\n", + " 'when',\n", + " 'one',\n", + " 'reads',\n", + " 'technical',\n", + " 'literature',\n", + " 'subject',\n", + " ',',\n", + " 'much',\n", + " 'seems',\n", + " 'transparent',\n", + " 'scientific',\n", + " 'background',\n", + " '.',\n", + " 'i',\n", + " 'therefore',\n", + " 'attempting',\n", + " 'essay',\n", + " 'go',\n", + " 'back',\n", + " 'scratch',\n", + " 'build',\n", + " 'component',\n", + " 'knowledge',\n", + " 'arguments',\n", + " 'form',\n", + " 'easily',\n", + " 'understood',\n", + " '.',\n", + " 'be',\n", + " 'warned',\n", + " ',',\n", + " 'however',\n", + " '!',\n", + " 'it',\n", + " 'simple',\n", + " 'task',\n", + " ',',\n", + " 'many',\n", + " 'scientific',\n", + " 'concepts',\n", + " 'involved',\n", + " '.',\n", + " 'the',\n", + " 'literature',\n", + " 'subject',\n", + " ',',\n", + " 'much',\n", + " 'available',\n", + " 'reputable',\n", + " 'internet',\n", + " 'sites',\n", + " ',',\n", + " 'falls',\n", + " 'following',\n", + " 'categories',\n", + " ':',\n", + " 'international',\n", + " 'bodies',\n", + " '(',\n", + " 'international',\n", + " 'panel',\n", + " 'climate',\n", + " 'change',\n", + " ')',\n", + " ';',\n", + " 'national',\n", + " 'bodies',\n", + " '(',\n", + " 'australian',\n", + " 'meteorological',\n", + " 'bureau',\n", + " ',',\n", + " 'csiro',\n", + " ',',\n", + " 'climate',\n", + " 'change',\n", + " 'authority',\n", + " ')',\n", + " ';',\n", + " 'state',\n", + " 'government',\n", + " 'bodies',\n", + " 'universities',\n", + " ';',\n", + " 'miscellaneous',\n", + " 'websites',\n", + " ',',\n", + " 'dubious',\n", + " '.',\n", + " 'in',\n", + " 'study',\n", + " 'i',\n", + " 'drawn',\n", + " 'selection',\n", + " 'reputable',\n", + " 'web',\n", + " 'based',\n", + " 'material',\n", + " 'also',\n", + " 'readily',\n", + " 'available',\n", + " 'textbooks',\n", + " '.',\n", + " '2',\n", + " '.',\n", + " 'setting',\n", + " 'scene',\n", + " '–',\n", + " 'what',\n", + " 'makes',\n", + " 'planet',\n", + " 'special',\n", + " '?',\n", + " 'let',\n", + " 'us',\n", + " 'start',\n", + " 'basics',\n", + " 'earth',\n", + " '’',\n", + " 'climate',\n", + " ',',\n", + " 'looking',\n", + " 'firstly',\n", + " 'planet',\n", + " '’',\n", + " 'rotation',\n", + " 'orbit',\n", + " 'around',\n", + " 'sun',\n", + " '(',\n", + " 'see',\n", + " 'diagram',\n", + " ')',\n", + " '.',\n", + " 'orbit',\n", + " 'orientation',\n", + " 'earth',\n", + " 'our',\n", + " 'earth',\n", + " 'rotates',\n", + " 'axis',\n", + " ',',\n", + " 'giving',\n", + " 'us',\n", + " 'cycle',\n", + " 'day',\n", + " 'night',\n", + " '.',\n", + " 'it',\n", + " 'also',\n", + " 'moves',\n", + " 'space',\n", + " 'around',\n", + " 'sun',\n", + " 'approximately',\n", + " 'circular',\n", + " 'orbit',\n", + " '.',\n", + " 'because',\n", + " 'its',\n", + " 'axis',\n", + " 'tilted',\n", + " ',',\n", + " 'illuminated',\n", + " 'area',\n", + " 'shifts',\n", + " 'north',\n", + " 'south',\n", + " 'back',\n", + " 'earth',\n", + " '’',\n", + " 'passage',\n", + " 'around',\n", + " 'sun',\n", + " ',',\n", + " 'experience',\n", + " 'seasons',\n", + " '.',\n", + " 'the',\n", + " 'intensity',\n", + " 'sun',\n", + " '’',\n", + " 'rays',\n", + " 'strongest',\n", + " 'tropics',\n", + " 'directly',\n", + " 'face',\n", + " 'sun',\n", + " ',',\n", + " 'weakest',\n", + " 'polar',\n", + " 'areas',\n", + " '.',\n", + " 'in',\n", + " 'solar',\n", + " 'system',\n", + " ',',\n", + " 'planet',\n", + " 'earth',\n", + " 'placed',\n", + " 'fortunate',\n", + " 'location',\n", + " '.',\n", + " 'the',\n", + " 'next',\n", + " 'outermost',\n", + " 'planet',\n", + " 'mars',\n", + " 'barren',\n", + " ',',\n", + " 'thin',\n", + " 'atmosphere',\n", + " ',',\n", + " 'without',\n", + " 'water',\n", + " 'cold',\n", + " 'surface',\n", + " '.',\n", + " 'the',\n", + " 'next',\n", + " 'innermost',\n", + " 'planet',\n", + " 'venus',\n", + " 'dense',\n", + " 'poisonous',\n", + " 'atmosphere',\n", + " ',',\n", + " 'surface',\n", + " 'extremely',\n", + " 'hot',\n", + " '.',\n", + " 'but',\n", + " 'earth',\n", + " 'blessed',\n", + " 'atmosphere',\n", + " 'able',\n", + " 'support',\n", + " 'life',\n", + " ',',\n", + " 'existence',\n", + " 'large',\n", + " 'quantities',\n", + " 'water',\n", + " 'form',\n", + " 'oceans',\n", + " '.',\n", + " 'its',\n", + " 'surface',\n", + " 'temperature',\n", + " 'determined',\n", + " 'incoming',\n", + " 'radiation',\n", + " 'sun',\n", + " ',',\n", + " 'surface',\n", + " 'characteristics',\n", + " 'land',\n", + " 'masses',\n", + " 'seas',\n", + " ',',\n", + " 'nature',\n", + " 'gases',\n", + " 'make',\n", + " 'atmosphere',\n", + " '(',\n", + " 'nitrogen',\n", + " ',',\n", + " 'oxygen',\n", + " 'others',\n", + " ')',\n", + " '.',\n", + " 'conditions',\n", + " 'earth',\n", + " '’',\n", + " 'surface',\n", + " 'largely',\n", + " 'determined',\n", + " 'atmosphere',\n", + " '.',\n", + " 'the',\n", + " 'atmosphere',\n", + " 'made',\n", + " 'layers',\n", + " ',',\n", + " 'shown',\n", + " 'diagram',\n", + " '.',\n", + " 'the',\n", + " 'troposphere',\n", + " ',',\n", + " 'average',\n", + " '11',\n", + " 'km',\n", + " 'thick',\n", + " '(',\n", + " '16',\n", + " 'km',\n", + " 'thick',\n", + " 'equator',\n", + " '8',\n", + " 'km',\n", + " 'poles',\n", + " ')',\n", + " '.this',\n", + " 'region',\n", + " 'contains',\n", + " '90',\n", + " '%',\n", + " 'atmosphere',\n", + " '’',\n", + " 'mass',\n", + " '.',\n", + " 'it',\n", + " 'region',\n", + " 'pressure',\n", + " 'differences',\n", + " ',',\n", + " 'winds',\n", + " ',',\n", + " 'vertical',\n", + " 'convection',\n", + " 'currents',\n", + " ',',\n", + " 'water',\n", + " 'evaporation',\n", + " 'condensation',\n", + " 'take',\n", + " 'place',\n", + " '.',\n", + " 'the',\n", + " 'stratosphere',\n", + " ',',\n", + " 'extends',\n", + " '50',\n", + " 'km',\n", + " '.',\n", + " 'a',\n", + " 'brief',\n", + " 'sentence',\n", + " 'mesosphere',\n", + " 'thermosphere',\n", + " 'would',\n", + " 'helpful',\n", + " 'mentioned',\n", + " 'diagram',\n", + " '.',\n", + " 'beyond',\n", + " 'stratosphere',\n", + " 'atmosphere',\n", + " 'becomes',\n", + " 'thinner',\n", + " 'thinner',\n", + " 'increasing',\n", + " 'altitude',\n", + " ',',\n", + " 'definite',\n", + " 'boundary',\n", + " 'atmosphere',\n", + " 'outer',\n", + " 'space',\n", + " '.',\n", + " 'earth',\n", + " '’',\n", + " 'magnetic',\n", + " 'field',\n", + " 'serves',\n", + " 'deflect',\n", + " 'solar',\n", + " 'wind',\n", + " ',',\n", + " 'whose',\n", + " 'charged',\n", + " 'particles',\n", + " 'would',\n", + " 'otherwise',\n", + " 'strip',\n", + " 'away',\n", + " 'ozone',\n", + " 'layer',\n", + " ',',\n", + " 'extends',\n", + " '15',\n", + " 'km',\n", + " '35',\n", + " 'km',\n", + " 'altitude',\n", + " 'protects',\n", + " 'earth',\n", + " 'harmful',\n", + " 'x',\n", + " 'rays',\n", + " 'ultraviolet',\n", + " 'radiation',\n", + " '.',\n", + " 'the',\n", + " 'atmosphere',\n", + " 'earth',\n", + " 'protects',\n", + " 'life',\n", + " 'earth',\n", + " 'creating',\n", + " 'sufficient',\n", + " 'pressure',\n", + " 'allow',\n", + " 'liquid',\n", + " 'water',\n", + " 'exist',\n", + " 'earth',\n", + " '’',\n", + " 'surface',\n", + " ';',\n", + " 'absorbing',\n", + " 'ultraviolet',\n", + " 'radiation',\n", + " ';',\n", + " 'warming',\n", + " 'surface',\n", + " 'heat',\n", + " 'retention',\n", + " 'reducing',\n", + " 'temperature',\n", + " 'extremes',\n", + " 'day',\n", + " 'night',\n", + " '.',\n", + " '3',\n", + " '.',\n", + " 'energy',\n", + " 'flow',\n", + " 'earth',\n", + " 'atmosphere',\n", + " 'the',\n", + " 'earth',\n", + " '’',\n", + " 'climate',\n", + " 'determined',\n", + " 'primarily',\n", + " 'energy',\n", + " 'flows',\n", + " 'sun',\n", + " ',',\n", + " 'earth',\n", + " '’',\n", + " 'surface',\n", + " 'atmosphere',\n", + " '.',\n", + " 'it',\n", + " 'important',\n", + " 'note',\n", + " ',',\n", + " 'stable',\n", + " 'temperature',\n", + " 'conditions',\n", + " ',',\n", + " 'total',\n", + " 'energy',\n", + " 'received',\n", + " 'radiant',\n", + " 'form',\n", + " 'sun',\n", + " 'must',\n", + " 'balanced',\n", + " 'total',\n", + " 'energy',\n", + " 'outgoing',\n", + " 'radiation',\n", + " 'emitted',\n", + " 'space',\n", + " '.',\n", + " 'in',\n", + " 'diagram',\n", + " ',',\n", + " 'energy',\n", + " 'flows',\n", + " 'average',\n", + " 'values',\n", + " 'surface',\n", + " 'earth',\n", + " 'period',\n", + " 'year',\n", + " '.',\n", + " 'but',\n", + " 'need',\n", + " 'concern',\n", + " 'unduly',\n", + " 'numerical',\n", + " 'values',\n", + " 'diagram',\n", + " '!',\n", + " 'section',\n", + " '7',\n", + " 'details',\n", + " 'range',\n", + " 'electromagnetic',\n", + " 'radiation',\n", + " 'wavelengths',\n", + " 'involved',\n", + " '.',\n", + " 'in',\n", + " 'general',\n", + " 'terms',\n", + " ',',\n", + " 'radiation',\n", + " 'sun',\n", + " ',',\n", + " 'high',\n", + " 'temperature',\n", + " ',',\n", + " 'shortwave',\n", + " 'category',\n", + " ',',\n", + " 'i.e',\n", + " '.',\n", + " 'short',\n", + " 'wavelength',\n", + " ',',\n", + " 'high',\n", + " 'energy',\n", + " 'content',\n", + " '.',\n", + " 'the',\n", + " 'surface',\n", + " 'land',\n", + " 'areas',\n", + " 'oceans',\n", + " 'lower',\n", + " 'temperature',\n", + " ',',\n", + " 'therefore',\n", + " 'emit',\n", + " 'radiation',\n", + " 'longer',\n", + " 'wavelengths',\n", + " '(',\n", + " 'longwave',\n", + " 'radiation',\n", + " ')',\n", + " 'lower',\n", + " 'energy',\n", + " 'content',\n", + " '.',\n", + " 'note',\n", + " 'made',\n", + " 'amount',\n", + " 'infrared',\n", + " 'radiation',\n", + " '(',\n", + " 'shown',\n", + " 'back',\n", + " 'radiation',\n", + " ')',\n", + " 'directed',\n", + " 'atmosphere',\n", + " 'back',\n", + " 'surface',\n", + " ',',\n", + " 'keeping',\n", + " 'us',\n", + " 'warm',\n", + " '.',\n", + " 'average',\n", + " 'global',\n", + " 'energy',\n", + " 'flows',\n", + " 'on',\n", + " 'short',\n", + " 'timescale',\n", + " ',',\n", + " 'distribution',\n", + " 'incoming',\n", + " 'energy',\n", + " 'sun',\n", + " 'influenced',\n", + " 'patterns',\n", + " 'circulating',\n", + " 'wind',\n", + " 'currents',\n", + " 'around',\n", + " 'globe',\n", + " '.',\n", + " 'these',\n", + " 'patterns',\n", + " 'determined',\n", + " 'rotation',\n", + " 'earth',\n", + " 'around',\n", + " 'axis',\n", + " '(',\n", + " 'see',\n", + " 'diagram',\n", + " ')',\n", + " '.',\n", + " 'it',\n", + " 'apparent',\n", + " 'atmospheric',\n", + " 'wind',\n", + " 'patterns',\n", + " 'northern',\n", + " 'hemisphere',\n", + " 'essentially',\n", + " 'separated',\n", + " 'southern',\n", + " 'hemisphere',\n", + " '.',\n", + " 'on',\n", + " 'longer',\n", + " 'timescale',\n", + " ',',\n", + " 'energy',\n", + " 'transferred',\n", + " 'patterns',\n", + " 'ocean',\n", + " 'currents',\n", + " '.',\n", + " 'whilst',\n", + " 'also',\n", + " 'driven',\n", + " 'rotation',\n", + " 'earth',\n", + " ',',\n", + " 'contained',\n", + " 'boundaries',\n", + " 'land',\n", + " 'masses',\n", + " 'depths',\n", + " 'oceans',\n", + " '.',\n", + " 'major',\n", + " 'wind',\n", + " 'patterns',\n", + " 'major',\n", + " 'ocean',\n", + " 'currents',\n", + " '4',\n", + " '.',\n", + " 'the',\n", + " 'constituents',\n", + " 'atmosphere',\n", + " 'let',\n", + " 'us',\n", + " 'look',\n", + " 'component',\n", + " 'gases',\n", + " 'make',\n", + " 'atmosphere',\n", + " '.',\n", + " 'the',\n", + " 'atmosphere',\n", + " '(',\n", + " 'dry',\n", + " 'air',\n", + " ')',\n", + " 'following',\n", + " 'major',\n", + " 'constituent',\n", + " 'gases',\n", + " ':',\n", + " 'nitrogen',\n", + " ':',\n", + " '781',\n", + " ',',\n", + " '000',\n", + " 'parts',\n", + " 'per',\n", + " 'million',\n", + " 'volume',\n", + " '(',\n", + " 'ppm',\n", + " 'average',\n", + " ')',\n", + " 'oxygen',\n", + " ':',\n", + " '209,000',\n", + " 'ppm',\n", + " 'av',\n", + " 'argon',\n", + " ':',\n", + " '9,300',\n", + " 'ppm',\n", + " 'av',\n", + " 'carbon',\n", + " 'dioxide',\n", + " ':',\n", + " '400',\n", + " 'ppm',\n", + " 'av',\n", + " 'neon',\n", + " ':',\n", + " '18',\n", + " 'ppm',\n", + " 'av',\n", + " 'helium',\n", + " ':',\n", + " '5',\n", + " 'ppm',\n", + " 'av',\n", + " 'methane',\n", + " ':',\n", + " '2',\n", + " 'ppm',\n", + " 'av',\n", + " 'these',\n", + " 'concentrations',\n", + " 'maintained',\n", + " 'steady',\n", + " '10',\n", + " 'km',\n", + " 'altitude',\n", + " '.',\n", + " 'the',\n", + " 'original',\n", + " 'presence',\n", + " 'nitrogen',\n", + " 'carbon',\n", + " 'dioxide',\n", + " 'atmosphere',\n", + " 'thought',\n", + " 'arisen',\n", + " 'volcanism',\n", + " ',',\n", + " 'together',\n", + " 'impact',\n", + " 'huge',\n", + " 'asteroids',\n", + " '(',\n", + " 'carrying',\n", + " 'ammonia',\n", + " ')',\n", + " 'early',\n", + " 'earth',\n", + " '’',\n", + " 'history',\n", + " '.',\n", + " 'the',\n", + " 'oxygen',\n", + " 'originates',\n", + " 'form',\n", + " 'living',\n", + " 'organisms',\n", + " '(',\n", + " 'algae',\n", + " ',',\n", + " 'plankton',\n", + " 'plant',\n", + " 'life',\n", + " 'thre',\n", + " 'land',\n", + " 'areas',\n", + " ')',\n", + " ',',\n", + " 'via',\n", + " 'process',\n", + " 'photosynthesis',\n", + " '.',\n", + " 'oxygen',\n", + " 'thought',\n", + " 'first',\n", + " 'produced',\n", + " 'around',\n", + " '2.8',\n", + " 'billion',\n", + " 'years',\n", + " 'ago',\n", + " '.',\n", + " 'in',\n", + " 'addition',\n", + " ',',\n", + " 'water',\n", + " 'vapour',\n", + " 'present',\n", + " '0.25',\n", + " '%',\n", + " 'mass',\n", + " 'full',\n", + " 'atmosphere',\n", + " '.',\n", + " 'locally',\n", + " 'vary',\n", + " '100',\n", + " 'ppm',\n", + " '4200ppm',\n", + " 'volume',\n", + " ',',\n", + " 'depending',\n", + " 'local',\n", + " 'temperature',\n", + " '.',\n", + " 'its',\n", + " 'concentration',\n", + " 'highest',\n", + " 'tropical',\n", + " 'latitudes',\n", + " ',',\n", + " 'varies',\n", + " 'strongly',\n", + " 'locally',\n", + " 'throughout',\n", + " '.',\n", + " 'the',\n", + " 'presence',\n", + " 'water',\n", + " 'vapour',\n", + " 'air',\n", + " 'naturally',\n", + " 'dilutes',\n", + " 'displaces',\n", + " 'air',\n", + " 'components',\n", + " 'concentration',\n", + " 'increases',\n", + " '.',\n", + " 'water',\n", + " 'vapour',\n", + " 'lower',\n", + " 'density',\n", + " 'air',\n", + " 'therefore',\n", + " 'buoyant',\n", + " 'atmosphere',\n", + " '.',\n", + " 'its',\n", + " 'mean',\n", + " 'global',\n", + " 'content',\n", + " 'roughly',\n", + " 'sufficient',\n", + " 'cover',\n", + " 'entire',\n", + " 'surface',\n", + " 'planet',\n", + " 'layer',\n", + " 'liquid',\n", + " 'depth',\n", + " '25',\n", + " 'mm',\n", + " '.',\n", + " 'approximately',\n", + " '99',\n", + " '%',\n", + " 'earth',\n", + " '’',\n", + " 'water',\n", + " 'vapour',\n", + " 'contained',\n", + " 'within',\n", + " 'troposphere',\n", + " '.',\n", + " 'its',\n", + " 'condensation',\n", + " 'liquid',\n", + " 'solid',\n", + " 'form',\n", + " 'responsible',\n", + " 'clouds',\n", + " ',',\n", + " 'rain',\n", + " ',',\n", + " 'snow',\n", + " 'precipitation',\n", + " ',',\n", + " 'count',\n", + " 'amongst',\n", + " 'significant',\n", + " 'elements',\n", + " 'experience',\n", + " 'weather',\n", + " '.',\n", + " 'less',\n", + " 'obviously',\n", + " ',',\n", + " 'latent',\n", + " 'heat',\n", + " 'vaporisation',\n", + " ',',\n", + " 'released',\n", + " 'atmosphere',\n", + " 'whenever',\n", + " 'condensation',\n", + " 'occurs',\n", + " ',',\n", + " 'one',\n", + " 'important',\n", + " 'terms',\n", + " 'atmospheric',\n", + " 'energy',\n", + " 'budget',\n", + " 'local',\n", + " 'global',\n", + " 'scales',\n", + " '.',\n", + " 'for',\n", + " 'example',\n", + " ',',\n", + " 'latent',\n", + " 'heat',\n", + " 'release',\n", + " ...],\n", + " 'perplexity': None,\n", + " 'publication': {},\n", + " 'clue_words': ['volume', 'nature', 'article'],\n", + " 'clue_links': [],\n", " 'science': False,\n", - " 'uniqueness': 0.5913978494623656,\n", - " 'info_density': 0.012151898734177215,\n", - " 'scaled_info_density': -4.064180178654587e-05,\n", - " 'sp': 0.1776315789473684,\n", - " 'ss': 0.5230263157894737,\n", - " 'gf': 18.021016949152543,\n", - " 'standard': 8.0,\n", - " 'penalty': 8.700657894736842}" + " 'wiki': False,\n", + " 'uniqueness': 0.37306172088780787,\n", + " 'info_density': 0.0006726645926175061,\n", + " 'sp': 0.0730123687858983,\n", + " 'ss': 0.4008192815898699,\n", + " 'sp_norm': 0.0730123687858983,\n", + " 'ss_norm': 0.4008192815898699,\n", + " 'gf': 15.72,\n", + " 'standard': 16.0,\n", + " 'scaled': 0.004453103256331756,\n", + " 'conciseness': 8.03688862445894,\n", + " 'penalty': 8.01378057590509}" ] }, "execution_count": 20, diff --git a/Publication/manuscript.docx b/Publication/manuscript.docx deleted file mode 100644 index e9b0360035ec9e7bd990d5dbf14300d457aecf0e..0000000000000000000000000000000000000000 Binary files a/Publication/manuscript.docx and /dev/null differ diff --git a/Publication/project_plan.docx b/Publication/project_plan.docx deleted file mode 100644 index 0342955752165d62134c3c2307266c5fcfb704cc..0000000000000000000000000000000000000000 Binary files a/Publication/project_plan.docx and /dev/null differ diff --git a/Publication/tex_manuscript/alocal.sty b/Publication/tex_manuscript/alocal.sty deleted file mode 100644 index f9df2658b359af7d1b8b14fe5a867912afbe5f96..0000000000000000000000000000000000000000 --- a/Publication/tex_manuscript/alocal.sty +++ /dev/null @@ -1,20 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% alocal.sty -% for Sandra Kuebler -% 2011/05/29 02:20 CET -% Klaus Lagally -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% patches for use with class CLV2 -% put this file into the working directory - -\gdef\n@tr@ce -{\edef \dotr@ce {\nxp \tracingmacros \the \tracingmacros \relax }% - \tracingmacros 0\relax } - -\gdef\notr@ce -{\protect\n@tr@ce} - -\long\gdef \@gobble #1{} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\endinput diff --git a/Publication/tex_manuscript/clv3.cls b/Publication/tex_manuscript/clv3.cls deleted file mode 100644 index fcf5ad46b85e3eb3215975a854f5a7ef000e3823..0000000000000000000000000000000000000000 --- a/Publication/tex_manuscript/clv3.cls +++ /dev/null @@ -1,2063 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% This File : clv3.cls -% Version : 3 -% -% Developed By : Krishan Gopal Goswami -% Date : 21-Oct-2005 -% -% Developed for : SPI Publisher Services -% Copyright (c) : -% -% Remarks : This is based on MIT - Computational Linguistics -% Standard Typesetting Instructions -% -% Note : -% -% 1) Do not make any change in this file with out prior information -% 2) Update History for the changes in the format given below -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% Version : V1.2 -% -% Updated By : Narayan Piyush -% Date : 26-Nov-2005 -% -% Updated for : -% -% 1) Italic Greek (Lowercase & Uppercase) Characters -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% Version : V3 -% -% Updated By : Daniel Gildea -% Date : 15-Jun-2016 -% -% Updated for : -% -% 1) use natbib. Fixes incompatibility with hyperref, for clickable pdfs. -% allows for more flexible citation commands. Requires use -% use compling.bst in place of fullname.bst. -% 2) use amsthm. Fixes problem with no demarcation of the end -% of a theorem/lemma/proposition. Fixes problem with small extra -% space at beginning of a theorem/lemma/proposition -% if the \begin{theorem} is followed by a \label command. -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% Fonts: -% -% Palatino -% Helvetica -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% Standard Sizes: -% -% normalsize -- 10/12 -% footnotesize -- 8/9 -% small -- 9/10 -% scriptsize -- 7/8 -% tiny -- 5/6 -% large -- 12/13 -% Large -- 16/20 -% LARGE -- 17/20 -% huge -- 20/25 -% Huge -- 25/30 -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\NeedsTeXFormat{LaTeX2e} -\ProvidesClass{clv3}[2016/06/15 v2 LaTeX document class for MIT - Computational Linguistics Journals] -% -%\xdef\jobtag{MIT --- Computational Linguistics\qquad (Typeset by spi publisher services, Delhi)}% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Job Options %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newdimen\draftrule\draftrule0pt -\newdimen\trimrule\trimrule.1pt -% -\newif\ifindex -\newif\ifdiscussion -\newif\ifbookreview -\newif\ifbrief -\newif\ifpubrec -\newif\ifshortpaper -\newif\ifmanuscript -% -\DeclareOption{manuscript}{\AtBeginDocument{\setlength{\baselineskip}{2\baselineskip}\global\manuscripttrue}} -\DeclareOption{discussion}{\discussiontrue} -\DeclareOption{bookreview}{\bookreviewtrue} -\DeclareOption{brief}{\brieftrue\shortpapertrue} -\DeclareOption{pubrec}{\pubrectrue\shortpapertrue} -\DeclareOption{index}{\indextrue} -\DeclareOption{final}{} -\ExecuteOptions{final} -\ProcessOptions -% -\@twosidetrue\@mparswitchtrue\ifshortpaper\@twocolumntrue\else\@twocolumnfalse\fi -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Variable Declarations %%%%%%%%%%%%%%%%%%%%% -% -% \newlength Declarations -% -\newlength\trimwidth -\newlength\trimheight -\newlength\typewidth -\newlength\typeheight -\newlength\normaltextheight -\newlength\blindfoliodrop -\newlength\figheight -\newlength\figwidth -\newlength\tabledim -% -%%%%% \newdimen Declarations %%%%% -% -\newdimen\tempdimen -\newdimen\enumdim -\newdimen\mathindent -\newdimen\emathindent -\newdimen\bibindent -% -% \newskip Declarations -% -\newskip\normalbaselineskip -\newskip\tableleftskip -\newskip\tablerightskip -% -%%%%% \newbox Declarations %%%%% -% -\newbox\tempbox -% -%%%%% \newif Declarations %%%%% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%% Variable Initialization %%%%%%%%%%%%%%%%%%%%%% -% -% -%% -\setlength\trimheight{10in} -\setlength\trimwidth{6.75in} -% -\setlength\typeheight{56pc} -% -\setlength\headheight{6.5\p@}% -\setlength\headsep {31pt}% -\setlength\topskip {7\p@}% -% -\setlength\textheight{49.61pc}% -%\addtolength\textheight{\topskip}% \textheight = 49\baselineskip + \topskip -% -\setlength\normaltextheight{\textheight} -\setlength\textwidth{32pc} -% -\setlength\typewidth{\textwidth} -% -\setlength\topmargin{26.7pt}%25.35pt} -\setlength\oddsidemargin{54pt} -% -\setlength\evensidemargin\trimwidth -\addtolength\evensidemargin{-\textwidth} -\addtolength\evensidemargin{-\oddsidemargin} -%\addtolength\oddsidemargin{4.5pc} -\setlength\footskip{36pt} -\setlength\maxdepth{4\p@} -% -\setlength\blindfoliodrop{\trimheight} -\addtolength\blindfoliodrop{-\typeheight} -\addtolength\blindfoliodrop{-\topmargin} -%\addtolength\blindfoliodrop{-\footskip} -\addtolength\blindfoliodrop{18pt} -% -\ifshortpaper - \setlength\parindent{9pt} -\else - \setlength\parindent{18pt} -\fi -% -\setlength\marginparwidth {5pc} -\setlength\marginparsep{6\p@} -\setlength\marginparpush{5\p@} -% -\setlength\footnotesep{6.65\p@} -\setlength{\skip\footins}{23\p@ \@plus 8\p@}% \@minus 8\p@}% -\skip\@mpfootins = \skip\footins -% -\setlength\floatsep {19\p@ \@plus 2\p@}% \@minus 2\p@} -\setlength\textfloatsep{30\p@ \@plus 2\p@}% \@minus 4\p@} -\setlength\intextsep {12\p@ \@plus 2\p@}% \@minus 2\p@} -\setlength\dblfloatsep {12\p@ \@plus 2\p@ \@minus 2\p@} -\setlength\dbltextfloatsep{20\p@ \@plus 2\p@ \@minus 4\p@} -\setlength\@fptop{0\p@} -\setlength\@fpsep{8\p@ \@plus 1fil} -\setlength\@fpbot{0\p@ \@plus 1fil} -\setlength\@dblfptop{0\p@} -\setlength\@dblfpsep{8\p@ \@plus 1fil} -\setlength\@dblfpbot{0\p@ \@plus 1fil} -% -\setlength\partopsep{0pt} -\setlength\lineskip{1\p@}% check if it can be flexible -\setlength\normallineskip{1\p@}% -\renewcommand\baselinestretch{} -\ifpubrec - \setlength\parskip{10pt plus.1pt}%{0\p@ \@plus \p@} -\else - \setlength\parskip{\z@}%{0\p@ \@plus \p@} -\fi -\@lowpenalty 51 -\@medpenalty 151 -\@highpenalty 301 -% -\@beginparpenalty -\@lowpenalty -\@endparpenalty -\@lowpenalty -\@itempenalty -\@lowpenalty -% -\clubpenalty\@M -\widowpenalty\@M -\hyphenpenalty400 -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fonts Size Definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\@viiipt{8} -\def\@ixpt{9} -\def\@xpt{10} -\def\@xhpt{10.5} -\def\@xiipt{12} -\def\@xvpt{15} -\def\@xvipt{16} -\def\@xviipt{17} -\def\@xviiipt{18} -\def\@xxivpt{24} -% -\normalbaselineskip12pt -% -\ifpubrec - \renewcommand\normalsize{% - \@setfontsize\normalsize\@ixpt{10}% - \abovedisplayskip 11\p@ \@plus2\p@% \@minus\p@ - \belowdisplayskip \abovedisplayskip - \abovedisplayshortskip \abovedisplayskip - \belowdisplayshortskip \abovedisplayskip - \let\@listi\@listI} -\else -\ifbrief - \renewcommand\normalsize{% - \@setfontsize\normalsize\@ixpt{11}% - \abovedisplayskip 11\p@ \@plus2\p@% \@minus\p@ - \belowdisplayskip \abovedisplayskip - \abovedisplayshortskip \abovedisplayskip - \belowdisplayshortskip \abovedisplayskip - \let\@listi\@listI} -\else - \renewcommand\normalsize{% - \@setfontsize\normalsize\@xpt{12}% - \abovedisplayskip 12\p@ \@plus2\p@% \@minus\p@ - \belowdisplayskip \abovedisplayskip - \abovedisplayshortskip \abovedisplayskip - \belowdisplayshortskip \abovedisplayskip - \let\@listi\@listI} -\fi\fi -\def\biggg#1{{\hbox{$\left#1\vbox to20.5\p@{}\right.\n@space$}}} -\def\Biggg#1{{\hbox{$\left#1\vbox to23.5\p@{}\right.\n@space$}}} -\normalsize -% -\newcommand\small{% - \@setfontsize\small\@ixpt{10}% - \abovedisplayskip 10\p@ \@plus2\p@% \@minus\p@ - \belowdisplayskip \abovedisplayskip - \abovedisplayshortskip \abovedisplayskip - \belowdisplayshortskip \abovedisplayskip - \def\@listi{\leftmargin\leftmargini - \topsep 5\p@ \@plus2\p@% \@minus\p@ - \parsep 0\p@% \@plus\p@% \@minus\p@ - \itemsep \parsep}% - \abovedisplayshortskip\abovedisplayskip - \belowdisplayshortskip\abovedisplayshortskip - \belowdisplayskip \abovedisplayskip - \setSmallDelims} -% -\def\setSmallDelims{% -\def\big##1{{\hbox{$\left##1\vbox to7.5\p@{}\right.\n@space$}}}% -\def\Big##1{{\hbox{$\left##1\vbox to10.5\p@{}\right.\n@space$}}}% -\def\bigg##1{{\hbox{$\left##1\vbox to13.5\p@{}\right.\n@space$}}}% -\def\Bigg##1{{\hbox{$\left##1\vbox to16.5\p@{}\right.\n@space$}}}% -\def\biggg##1{{\hbox{$\left##1\vbox to19.5\p@{}\right.\n@space$}}}% -\def\Biggg##1{{\hbox{$\left##1\vbox to22.5\p@{}\right.\n@space$}}}% -} -% -\newcommand\footnotesize{% - \@setfontsize\footnotesize\@viiipt{9}% - \abovedisplayskip 9\p@ \@plus2\p@% \@minus\p@ - \belowdisplayskip \abovedisplayskip - \abovedisplayshortskip \abovedisplayskip - \belowdisplayshortskip \abovedisplayskip - \def\@listi{\leftmargin\leftmargini - \topsep 4.5\p@ \@plus\p@% \@minus\p@ - \parsep 0\p@% \@plus\p@% \@minus\p@ - \itemsep \parsep}% - \setFootnotesizeDelims} -% -\def\setFootnotesizeDelims{% -\def\big##1{{\hbox{$\left##1\vbox to6.5\p@{}\right.\n@space$}}}% -\def\Big##1{{\hbox{$\left##1\vbox to9.5\p@{}\right.\n@space$}}}% -\def\bigg##1{{\hbox{$\left##1\vbox to12.5\p@{}\right.\n@space$}}}% -\def\Bigg##1{{\hbox{$\left##1\vbox to15.5\p@{}\right.\n@space$}}}% -\def\biggg##1{{\hbox{$\left##1\vbox to18.5\p@{}\right.\n@space$}}}% -\def\Biggg##1{{\hbox{$\left##1\vbox to21.5\p@{}\right.\n@space$}}}% -} -% -\newcommand\tiny{\@setfontsize\tiny\@vpt{6}} -\newcommand\scriptsize{\@setfontsize\scriptsize\@viipt{8}} -\newcommand\large{\@setfontsize\large\@xiipt{13}} -\newcommand\Large{\@setfontsize\Large\@xvipt{20}} -\newcommand\LARGE{\@setfontsize\LARGE\@xviipt{20}} -\newcommand\huge{\@setfontsize\huge\@xxpt{25}} -\newcommand\Huge{\@setfontsize\Huge\@xxvpt{30}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -%% headings -\def\rhfont{\small} -\def\rffont{\footnotesize} -\def\foliofont{\normalsize} -\def\dropfoliofont{\normalsize} -%% Title -\def\sptitlefont{\LARGE\bfseries\ifdiscussion\rightskip4pc plus1fill\else\raggedright\fi\mathversion{bold}} -\ifbrief - \def\titlefont{\fontsize{10}{11}\selectfont\bfseries\raggedright\mathversion{bold}} -\else\ifbookreview - \def\titlefont{\fontsize{12}{12}\selectfont\bfseries\raggedright\mathversion{bold}} -\else\ifdiscussion - \def\titlefont{\Large\bfseries\raggedright\mathversion{bold}} -\else - \def\titlefont{\Large\bfseries\rightskip4pc plus1fill\mathversion{bold}} -\fi\fi\fi -\def\subtitlefont{\large\bfseries} -%% Author/Affil -\ifbrief - \def\authorfont{\small\bfseries\raggedright} -\else\ifbookreview - \def\authorfont{\normalsize\bfseries\raggedright} -\else - \def\authorfont{\large\raggedright} -\fi\fi -\ifbrief - \def\affilfont{\small\raggedright} -\else - \def\affilfont{\normalsize\raggedright} -\fi -\ifbrief - \def\pubinfofont{\small\raggedright} -\else - \def\pubinfofont{\normalsize\raggedright} -\fi -\def\reviewerfont{\normalsize\itshape} -\ifbrief - \def\biofont{\normalsize} -\else - \def\biofont{\small}%\itshape} -\fi -%% -\def\abstractfont{\normalsize\setlength\baselineskip{13pt}\itshape} -\def\keywordfont{\normalsize\raggedright} -%% section -\def\sectionfont{\normalsize\bfseries\mathversion{bold}} -\def\sectionnumfont{\normalsize\bfseries} -\def\subsectionfont{\normalsize\bfseries\mathversion{bold}} -\def\subsectionnumfont{\normalsize\bfseries} -\def\subsubsectionfont{\normalsize\bfseries\mathversion{bold}} -\def\paragraphfont{\normalsize\itshape}% -\def\subparagraphfont{}% -\def\subsubparagraphfont{}% -\def\xheadfont{\normalsize\bfseries} -%% figure -\def\figcaptionfont{\small\raggedright}%\mathversion{sfnormal}} -\def\figcaptionnumfont{\small\bfseries} -\def\figsourcefont{\reset@font\fontsize{8.5}{10}\selectfont} -%% table -\def\tablefont{\small}%\leftskip\tableleftskip\rightskip\tablerightskip use plus 1fill if needed -\def\tablecaptionfont{\small\raggedright}%\mathversion{sfnormal}}% -\def\tablecaptionnumfont{\small\bfseries}% -\def\TCHfont{\small}% -\def\tabnotefont{\leftskip\tableleftskip\rightskip\tablerightskip}% use plus 1fill if needed -%% BM -\def\indexfont{\fontsize{9}{10}\selectfont\raggedright} -\def\ackfont{\small\raggedright} -% -\def\listfont{\raggedright} -\def\listdevicefont{} -% -\ifbrief - \def\extractfont{\small\leftskip2pc} -\else\ifbookreview - \def\extractfont{\normalsize\itshape} -\else - \def\extractfont{\small\leftskip1.5pc\rightskip1.5pc plus1fill}% -\fi\fi -\def\sourcefont{\reset@font\normalsize} -% -% -%%%%%%% For Times family %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} -\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} -\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} -\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} -\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} -\DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl} -\DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc} -\DeclareOldFontCommand{\bi}{\bfseries\itshape}{\bfseries\itshape} -\newcommand{\cal}{\protect\pcal} -\newcommand{\pcal}{\@fontswitch{\relax}{\mathcal}} -\newcommand{\mit}{\protect\pmit} -\newcommand{\pmit}{\@fontswitch{\relax}{\mathnormal}} -% -%\renewcommand\rmdefault{Times} -%\newcommand\rmmathdefault{TimesMath} -% -%\renewcommand\sfdefault{Officina} -%\newcommand\sfmathdefault{HelveticaMath} -%\renewcommand{\ttdefault}{Courier} -%% -\def\scitdefault{scit}% All scit -\def\capsitdefault{capsit}% all capsit -% -\def\capsdefault{caps}% all caps -\DeclareRobustCommand\capsshape - {\not@math@alphabet\capsshape\mathrm - \ifx\f@shape\itdefaultabbrev\fontshape\capsitdefault\else\fontshape\capsdefault\fi\selectfont} -% -\def\itdefaultabbrev{it} -\DeclareRobustCommand\itshape - {\not@math@alphabet\itshape\mathit - \ifx\f@shape\scdefaultabbrev\fontshape\scitdefault\else\ifx\f@shape\capsdefault\fontshape\capsitdefault\else\fontshape\itdefault\fi\fi\selectfont} -% -\def\scdefaultabbrev{sc} -\DeclareRobustCommand\scshape - {\not@math@alphabet\scshape\relax - \ifx\f@shape\itdefaultabbrev\fontshape\scitdefault\else\fontshape\scdefault\fi\selectfont} -% -%%%%%%%%%%%%%%%%%%%% Times %%%%%%%%%%%%%%%%%% -% -\DeclareFontFamily{OML}{TimesMath}{\skewchar\font127 } -\DeclareFontShape{OML}{TimesMath}{m}{it}{<-> MTMI }{} -\DeclareFontShape{OML}{TimesMath}{bx}{it}{<-> MTMIB }{} -\DeclareFontShape{OML}{TimesMath}{b}{it}{<->ssub*TimesMath/bx/it}{} -% -\DeclareFontFamily{OMS}{TimesMath}{\skewchar\font48 } -\DeclareFontShape{OMS}{TimesMath}{m}{n}{<-> MTSY }{} -\DeclareFontShape{OMS}{TimesMath}{bx}{n}{<-> MTSYB }{} -% -\DeclareFontFamily{OMX}{TimesMath}{} -\DeclareFontShape{OMX}{TimesMath}{m}{n}{<-> MTEX }{} -% -\DeclareFontFamily{OT1}{Times}{} -\DeclareFontShape{OT1}{Times}{m}{n}{ <-> ptmr }{} -\DeclareFontShape{OT1}{Times}{m}{it}{ <-> ptmri }{} -% -\DeclareFontShape{OT1}{Times}{bx}{n}{ <-> ptmb }{} -\DeclareFontShape{OT1}{Times}{bx}{it}{ <-> ptmbi }{} -% -%%%%%%%%%%%%%%%%%%%% Helvetica %%%%%%%%%%%%%%%%%% -% -\DeclareFontFamily{OML}{HelveticaMath}{\skewchar\font127 } -\DeclareFontShape{OML}{HelveticaMath}{m}{it}{<-> HelMTMI }{} -\DeclareFontShape{OML}{HelveticaMath}{bx}{it}{<-> HelMTMIB }{} -\DeclareFontShape{OML}{HelveticaMath}{b}{it}{<->ssub*HelveticaMath/bx/it}{} -% -\DeclareFontFamily{OMS}{HelveticaMath}{\skewchar\font48 } -\DeclareFontShape{OMS}{HelveticaMath}{m}{n}{<-> MTSY }{} -\DeclareFontShape{OMS}{HelveticaMath}{bx}{n}{<-> MTSYB }{} -% -\DeclareFontFamily{OMX}{HelveticaMath}{} -\DeclareFontShape{OMX}{HelveticaMath}{m}{n}{<-> MTEX }{} -% -\DeclareFontFamily{OT1}{Helvetica}{} -\DeclareFontShape{OT1}{Helvetica}{m}{n}{ <-> phvr }{} -\DeclareFontShape{OT1}{Helvetica}{m}{it}{ <-> phvro }{} -\DeclareFontShape{OT1}{Helvetica}{bx}{n}{ <-> phvb }{} -\DeclareFontShape{OT1}{Helvetica}{bx}{it}{ <-> phvbo }{} -% -% -\DeclareFontFamily{OT1}{ams}{} -\DeclareFontShape{OT1}{ams}{m}{n}{ <-> msam10 }{} -\DeclareFontShape{OT1}{ams}{m}{it}{ <-> msam10 }{} -\DeclareFontShape{OT1}{ams}{bx}{n}{ <-> msbm10 }{} -\DeclareFontShape{OT1}{ams}{bx}{it}{ <-> msbm10 }{} -% -% -\DeclareFontShape{OMS}{cmsy}{m}{n}{ <-> cmsy10 }{} -\DeclareFontShape{OMS}{cmsy}{b}{n}{ <-> cmbsy10 }{} -% -% -\newcommand\sfboldmath{\@nomath\sfboldmath\mathversion{sfbold}} -%%%%% define bold math font %%%%% -\newcommand\bm[1]{\mathchoice - {\mbox{\boldmath$\displaystyle#1$}}% - {\mbox{\boldmath$#1$}}% - {\mbox{\boldmath$\scriptstyle#1$}}% - {\mbox{\boldmath$\scriptscriptstyle#1$}}} -% -\usepackage[T1]{fontenc} -\usepackage{textcomp} -\usepackage{palatino,helvet}%,zeupplv1}%,mathptm}% -% -\DeclareFontFamily{OML}{euppl}{\skewchar \font =127} -\DeclareFontShape{OML}{euppl}{m}{it}{<8-> pplre7m <6-8> pplre7m7 <-6> pplre7m5}{} -\DeclareFontShape{OML}{euppl}{m}{sl}{<->ssub * euppl/m/it}{} -\DeclareFontShape{OML}{euppl}{b}{it}{<-> pplbe7m}{} -\DeclareFontShape{OML}{euppl}{bx}{it}{<->ssub * euppl/b/it}{} -% -\DeclareFontFamily{OML}{euphv}{\skewchar \font =127} -\DeclareFontShape{OML}{euphv}{m}{it}{<8-> phvre7m <6-8> phvre7m7 <-6> phvre7m5}{} -\DeclareFontShape{OML}{euphv}{m}{sl}{<->ssub * euphv/m/it}{} -\DeclareFontShape{OML}{euphv}{b}{it}{<-> phvbe7m}{} -\DeclareFontShape{OML}{euphv}{bx}{it}{<->ssub * euphv/b/it}{} -% -\DeclareFontFamily{U}{bbnum}{} -\DeclareFontShape{U}{bbnum}{m}{n}{<-> CASLOB}{} -\DeclareMathAlphabet{\mathbbnum}{U}{bbnum}{m}{n} -% -%\DeclareMathSymbol{,}{\mathpunct}{operators}{`,} -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% General Commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newcommand\contentsname{Contents} -\newcommand\listfigurename{List of Figures} -\newcommand\listtablename{List of Tables} -\newcommand\bibname{References} -\newcommand\indexname{Index} -\newcommand\figurename{Figure} -\newcommand\tablename{Table} -\newcommand\appendixname{Appendix} -% -\newcommand\today{\ifcase\month\or - January\or February\or March\or April\or May\or June\or - July\or August\or September\or October\or November\or December\fi - \space\number\day, \number\year} -% -\newcount\minute -\newcount\hour -\def\currenttime{% - \minute\time - \hour\minute - \divide\hour60 - \the\hour:\multiply\hour60\advance\minute-\hour\the\minute} -% -\def\spreadoutfactor{1} -% -\def\spreadout#1{% - \gdef\temp{#1}\dimen0 = \spreadoutfactor pt - \expandafter\dospreadout\temp\endmark\kern-\dimen0} -% -\def\dospreadout{% - \afterassignment\findospreadout - \let\next= } -% -\def\findospreadout{% - \ifx\next\endmark - \let\nextaction = \relax - \else - \let\nextaction = \dospreadout - \next - \kern\dimen0 - \fi - \nextaction} -% -%%%%%%%%%%%%%%%%%%%%%%%%%% Make Title %%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\jname#1{\gdef\@jname{#1}} -\def\jinfo#1{\gdef\@jinfo{#1}} -\def\jvol#1{\gdef\@jvol{#1}}\def\@jvol{xx} -\def\jnum#1{\gdef\@jnum{#1}}\def\@jnum{xx} -\def\jyear#1{\gdef\@jyear{#1}}\def\@jyear{2005} -\def\rtitle#1{\gdef\@rtitle{#1}}\def\@rtitle{Running Title} -\def\rauthor#1{\gdef\@rauthor{#1}}\def\@rauthor{Running Author} -% -\def\issue #1#2#3{\jvol{#1}\jnum{#2}\jyear{#3}} -\def\runningtitle#1{\rtitle{#1}} -\def\runningauthor#1{\rauthor{#1}} -% -\jname{Computational Linguistics} -\jinfo{Volume \@jvol, Number \@jnum} -% -\def\@sptitle{} -\def\sptitle#1{\gdef\@sptitle{#1}} -% -\def\@title{} -\def\title{\@dblarg{\@@title}} -\def\@@title[#1]#2{\gdef\@title{#2}} -% -\newcount\aucount -\newcount\tempcount -% -\def\author{\@dblarg{\@author}} -\def\@author[#1]#2{\global\advance\aucount\@ne - \expandafter\gdef\csname author\romannumeral\aucount\endcsname{#2}} -% -\def\affil#1{\expandafter\gdef\csname affil\romannumeral\aucount\endcsname{#1}} -% -\def\printauthors{% - \ifnum\aucount=\z@ - \gdef\@authors{} - \else - \gdef\@authors{% - \tempcount\@ne - \@whilenum\aucount>\z@ - \do{% - \ifbrief - {\authorfont\csname author\romannumeral\tempcount\endcsname\vphantom{pl}\par} - {\reset@font\affilfont\csname affil\romannumeral\tempcount\endcsname\vphantom{pl}\par}% - \else\ifbookreview - {\authorfont\csname author\romannumeral\tempcount\endcsname\vphantom{pl}\par - {\reset@font\affilfont\csname affil\romannumeral\tempcount\endcsname\vphantom{pl}\par}}% - \else - \ifnum\tempcount=\@ne\noindent\else\ifodd\tempcount\vskip13.5pt\noindent\else\hskip2pc\fi\fi - \parbox[t]{15pc}{\authorfont - \csname author\romannumeral\tempcount\endcsname\vphantom{pl}\par - {\affilfont\setlength\baselineskip{13pt}\csname affil\romannumeral\tempcount\endcsname\vphantom{pl}\par}}% - \fi\fi - \advance\aucount\m@ne\advance\tempcount\@ne - }% - } - \fi -} -% -\def\@historydates{} -\def\historydates#1{\gdef\@historydates{#1}}%\thanks{#1}} -% -\def\@pubinfo{} -\def\pubinfo#1{\gdef\@pubinfo{#1}} -% -\def\@reviewer{} -\def\reviewer#1{\gdef\@reviewer{#1}} -% -\def\endbody{\ifx\@reviewer\@empty\else\unskip---{\itshape\@reviewer}\fi}%\par\addvspace{10pt}} -% -\def\@biography{} -\def\biography#1{\gdef\@biography{#1}} -% -\ifpubrec - \def\@maketitle{\cleardoublepage% - \thispagestyle{pageonly}%titlepage - \parindent\z@ - \ifx\@sptitle\@empty\else - \null\vskip -56.3pt - {\sptitlefont\@sptitle\vphantom{y}\par}% - \vskip 16.5pt - \fi -} -\else -\ifbrief - \def\@maketitle{\cleardoublepage% - \thispagestyle{pageonly}%titlepage - \parindent\z@ - \ifx\@sptitle\@empty\else - \null\vskip -56.3pt - {\sptitlefont\@sptitle\vphantom{y}\par}% - \vskip 17.5pt - \fi - \gdef\mktout@after@twocol{\parindent\z@% - \ifx\@title\@empty\else - {\titlefont\@title\vphantom{y}\par} - \fi - \printauthors - \ifx\@authors\@empty\else\vskip 6pt - {\authorfont\@authors\par} - \fi - \ifx\@pubinfo\@empty\else\vskip 6pt - {\pubinfofont\@pubinfo\par} - \fi -% \ifx\@reviewer\@empty\else\vskip 12pt -% {\reviewerfont Reviewed by\par\@reviewer\par} -% \fi - \par\addvspace{13pt}% - }\aftergroup\mktout@after@twocol -} -\else\ifbookreview - \def\@maketitle{\cleardoublepage% - \thispagestyle{empty}%titlepage - \parindent\z@ - \ifx\@sptitle\@empty\else - \null\vskip -52.5pt - {\sptitlefont\@sptitle\vphantom{y}\par}% - \vskip 42.5pt - \fi - \ifx\@title\@empty\else - {\titlefont\@title\vphantom{y}\par}\vskip 12pt - \fi - \printauthors - \ifx\@authors\@empty\else - {\authorfont\@authors\par} - \fi - \ifx\@pubinfo\@empty\else\vskip 12pt - {\pubinfofont\@pubinfo\par} - \fi - \ifx\@reviewer\@empty\else\vskip 12pt - {\reviewerfont Reviewed by\par\@reviewer\par} - \fi - \par\addvspace{12pt}% - \gdef\@reviewer{} -} -\else - \def\@maketitle{\cleardoublepage% - \thispagestyle{titlepage}% - \parindent\z@ - \ifx\@sptitle\@empty\else - \null\vskip -52.5pt - {\sptitlefont\@sptitle\vphantom{y}\par}% - \vskip 39.5pt - \fi - \ifx\@title\@empty\else - {\titlefont\@title\vphantom{y}\par}\vskip 29pt - \fi - \printauthors - \ifx\@authors\@empty\else - {\authorfont\@authors\par} - \fi - \par\addvspace{31pt}% -} -\fi\fi\fi -% -\def\maketitle{\par - \begingroup - \def\thefootnote{\fnsymbol{footnote}} - \if@twocolumn - \twocolumn[\@maketitle] - \else - \@maketitle - \fi - \@thanks - \ifx\@historydates\@empty\else\let\domkfnmark\relax\def\dofnformat{\vskip\baselineskip}\@footnotetext{\@historydates}\fi - \endgroup - \setcounter{footnote}{0} - \let\maketitle\relax - \let\@maketitle\relax - \gdef\@thanks{}\gdef\@authors{}\gdef\@title{}\gdef\@pubinfo{}\let\thanks\relax\@afterindentfalse\@afterheading} -% -\newenvironment{abstract}{\par\abstractfont\noindent\ignorespaces}{\par\addvspace{12pt}\@afterindentfalse\@afterheading} -\newcommand{\keywords}[1]{{\keywordfont Keywords: #1\par\addvspace{12pt}}} -% -\def\bookinfospace{\vskip10pt plus1pt} -\long\def\bookinfo#1#2{{\raggedright{\bfseries #1}\\#2\par\bookinfospace}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sectioning commands %%%%%%%%%%%%%%%%%%%%%%%%%% -% -\setcounter{secnumdepth}{3} -\newcounter {part} -\newcounter {chapter} -\newcounter {section}[chapter] -\newcounter {subsection}[section] -\newcounter {subsubsection}[subsection] -\newcounter {paragraph}[subsubsection] -\newcounter {subparagraph}[paragraph] -\renewcommand\thepart {\Roman{part}} -\renewcommand\thechapter {\arabic{chapter}} -\renewcommand\thesection {\arabic{section}} -\renewcommand\thesubsection {\thesection.\arabic{subsection}} -\renewcommand\thesubsubsection {\thesubsection .\arabic{subsubsection}} -\renewcommand\theparagraph {\thesubsubsection.\arabic{paragraph}} -\renewcommand\thesubparagraph {\theparagraph.\arabic{subparagraph}} -% -\def\@sectioncntformat#1{{\csname #1numfont\endcsname\csname the#1\endcsname.}\nobreakspace} -\def\@seccntformat#1{\csname #1numfont\endcsname\csname the#1\endcsname\nobreakspace} -% -\newcommand\section{\@startsection {section}{1}{\z@}{-12pt \@plus -2pt}{12pt}{\def\@afterhead{}\sectionfont}}% -\newcommand\subsection{\@startsection{subsection}{2}{\z@}{-12pt \@plus -2pt}{12pt}{\def\@afterhead{}\subsectionfont}}% -\newcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}{-12pt \@plus -2pt}{0pt}{\def\@afterhead{. }\subsubsectionfont}}% -\newcommand\paragraph{\def\@afterhead{.}\@startsection{paragraph}{4}{\z@}{-12pt \@plus -2pt}{-0pt}{\def\@afterhead{. }\paragraphfont}}% -\newcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}{-6pt \@plus -2pt}{-1em}{\def\@afterhead{. }\subparagraphfont}}% -\newcommand\subsubparagraph{\@startsection{subsubparagraph}{6}{\parindent}{-6pt \@plus -2pt}{-1em}{\def\@afterhead{. }\subsubparagraphfont}}% -\newcommand\xhead{\@startsection{xhead}{7}{\z@}{-14pt \@plus -2pt}{2pt}%{0.0001pt} - {\def\@afterhead{}\xheadfont}}% -\let\xheadmark\@gobble -% -\def\@startsection#1#2#3#4#5#6{% - \if@noskipsec \leavevmode \fi - \par - \@tempskipa #4\relax - \@afterindenttrue - \ifdim \@tempskipa <\z@ - \@tempskipa -\@tempskipa \@afterindentfalse - \fi - \if@nobreak -% \ifnum#2=2\fi - \ifnum#2=3\vskip-12pt\fi - \everypar{}% - \else - \addpenalty\@secpenalty\addvspace\@tempskipa - \fi - \@ifstar - {\@ssect{#3}{#4}{#5}{#6}}% - {\@dblarg{\@sect{#1}{#2}{#3}{#4}{#5}{#6}}}} -% -\def\@afterhead{} -\def\@sect#1#2#3#4#5#6[#7]#8{\ifnum #2>\c@secnumdepth - \let\@svsec\@empty\else - \refstepcounter{#1}% - \let\@@protect\protect - \def\protect{\noexpand\protect\noexpand}% - \ifnum#2=1 - \edef\@svsec{\@sectioncntformat{#1}}% - \else - \edef\@svsec{\@seccntformat{#1}}% - \fi - \let\protect\@@protect\fi - \@tempskipa #5\relax - \ifdim \@tempskipa>\z@ - \begingroup #6\relax - \@hangfrom{\hskip #3\relax\@svsec}% - {\interlinepenalty \@M #8\@afterhead\par}% - \endgroup - \csname #1mark\endcsname{#7}\addcontentsline - {toc}{#1}{\ifnum #2>\c@secnumdepth \else - \protect\numberline{\csname the#1\endcsname}\fi - #7}\else - \def\@svsechd{#6\hskip #3\relax - \@svsec #8\@afterhead\csname #1mark\endcsname - {#7}\addcontentsline - {toc}{#1}{\ifnum #2>\c@secnumdepth \else - \protect\numberline{\csname the#1\endcsname}% - \fi - #7}}\fi - \@xsect{#5}} -% -\def\@ssect#1#2#3#4#5{\@tempskipa #3\relax - \ifdim \@tempskipa>\z@ - \begingroup #4\@hangfrom{\hskip #1}{\interlinepenalty \@M #5\par}\endgroup - \else \def\@svsechd{#4\hskip #1\relax #5\@afterhead\null}\fi - \@xsect{#3}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%% Lists Variable Initialisation %%%%%%%%%%%%%%%%%%%%%%% -% -\newskip\topsepi \topsepi6\p@ \@plus2\p@% \@minus.5\p@ -\newskip\topsepii \topsepii2pt% \@plus1\p@ -\newskip\topsepiii \topsepiii2pt% \@plus1\p@ -\newskip\itemsepi \itemsepi0pt -\newskip\itemsepii \itemsepii0pt -\newskip\itemsepiii \itemsepiii0pt -\newdimen\LabelSep \LabelSep4.7pt -% -\def\@listI{\leftmargin\leftmargini - \labelwidth\leftmargini - \advance\labelwidth-\labelsep - \parsep 0\p@% - \topsep \topsepi - \itemsep\itemsepi}% -\let\@listi\@listI -\@listi -\def\@listii {\leftmargin\leftmarginii - \labelwidth\leftmarginii - \advance\labelwidth-\labelsep - \topsep\topsepii - \parsep 0pt - \itemsep\itemsepii} -\def\@listiii {\leftmargin\leftmarginiii - \labelwidth\leftmarginiii - \advance\labelwidth-\labelsep - \topsep\topsepiii - \parsep 0pt - \itemsep\itemsepiii} -\def\@listiv {\leftmargin\leftmarginiv - \labelwidth\leftmarginiv - \advance\labelwidth-\labelsep} -\def\@listv {\leftmargin\leftmarginv - \labelwidth\leftmarginv - \advance\labelwidth-\labelsep} -\def\@listvi {\leftmargin\leftmarginvi - \labelwidth\leftmarginvi - \advance\labelwidth-\labelsep} -% -\setlength\leftmargini {2.5em} -\setlength\leftmarginii {2.2em} -\setlength\leftmarginiii {1.87em} -\setlength\leftmarginiv {1.7em} -\setlength\leftmarginv {1em} -\setlength\leftmarginvi {1em} -\setlength\leftmargin {\leftmargini} -% -\setlength \labelsep {\LabelSep} -\setlength \labelwidth{\leftmargini} -\addtolength\labelwidth{-\labelsep} -% -\renewcommand\theenumi{\arabic{enumi}} -\renewcommand\theenumii{\alph{enumii}} -\renewcommand\theenumiii{\roman{enumiii}} -\renewcommand\theenumiv{\Alph{enumiv}} -\newcommand\labelenumi{\theenumi.} -\newcommand\labelenumii{(\theenumii)} -\newcommand\labelenumiii{\theenumiii.} -\newcommand\labelenumiv{\theenumiv.} -\renewcommand\p@enumii{\theenumi} -\renewcommand\p@enumiii{\theenumi(\theenumii)} -\renewcommand\p@enumiv{\p@enumiii\theenumiii} -\font\lcir = lcircle10 at 12pt -\newcommand\bulls{\hbox{\lcir\char'162}} -\def\textbullet{\leavevmode\raise3.5pt\bulls\hskip-2pt} -\def\textendash{{\bf--}} -\def\textasteriskcentered{\leavevmode\raise-1.5pt\hbox{*}} -\def\textperiodcentered{\leavevmode\raise1.5pt\hbox{\bulls}} -\newcommand\labelitemi{\textbullet} -\newcommand\labelitemii{\normalfont\bfseries \textendash} -% -\newenvironment{description} - {\list{}{\labelwidth\z@ \itemindent-\leftmargin - \let\makelabel\descriptionlabel}} - {\endlist} -\newcommand*\descriptionlabel[1]{\hspace\labelsep - \normalfont\bfseries #1} -% -\newenvironment{verse} - {\let\\\@centercr - \list{}{\itemsep \z@ - \itemindent -1.5em% - \listparindent\itemindent - \rightmargin \leftmargin - \advance\leftmargin 1.5em}% - \item\relax} - {\endlist} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Enumerate list %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newskip\listtopsepi -\newskip\listtopsepii -\newskip\listtopsepiii -\newskip\listitemsepi -\newskip\listitemsepii -\newskip\listitemsepiii -\newlength\listleftmargini -\newlength\listleftmarginii -\newlength\listleftmarginiii -\newlength\listlabelwidthi -\newlength\listlabelwidthii -\newlength\listlabelwidthiii -\newlength\listlabelsepi -\newlength\listlabelsepii -\newlength\listlabelsepiii -\newlength\listrightmargin -% -\newcount\listdepth -% -\newif\if@nomainitem -\def\nomainitem{\global\@nomainitemtrue} -\newlength\lpalignmaxwd -\newif\if@lpalign -\def\lpalign#1{\global\@lpaligntrue\global\settowidth\lpalignmaxwd{#1}} -% -\ifbrief - \listtopsepi 5pt plus2pt% minus1pt - \listtopsepii 0pt - \listtopsepiii 0pt - \listleftmargini 25pt - \listleftmarginii 25pt - \listleftmarginiii 25pt - \listlabelwidthi 12pt - \listlabelwidthii 12pt - \listlabelwidthiii 12pt - \listlabelsepi 13pt - \listlabelsepii 13pt - \listlabelsepiii 13pt - \listrightmargin 0pt - \listitemsepi 3pt - \listitemsepii 0pt - \listitemsepiii 0pt -\else - \listtopsepi 12pt plus2pt% minus1pt - \listtopsepii 0pt - \listtopsepiii 0pt - \listleftmargini 36pt - \listleftmarginii 14pt - \listleftmarginiii 8pt - \listlabelwidthi 18pt - \listlabelwidthii 32pt - \listlabelwidthiii 40pt - \listlabelsepi 18pt - \listlabelsepii 18pt - \listlabelsepiii 18pt - \listrightmargin 18pt - \listitemsepi 6pt - \listitemsepii 0pt - \listitemsepiii 0pt -\fi -% -\def\enumerate{\@ifnextchar[{\@enumerate}{\@enumerate[1]}}% -% -\def\@enumerate[#1]{\par - \ifnum\@enumdepth >\thr@@\@toodeep\else - \advance\@enumdepth\@ne\advance\listdepth\@ne - \edef\@listcounter{enum\romannumeral\the\@enumdepth}% - \setcounter{\@listcounter}{1}% - \fi - \list{\csname labelenum\romannumeral\the\@enumdepth\endcsname}{\listfont% - \usecounter{\@listcounter}% - \topsep\csname listtopsep\romannumeral\the\listdepth\endcsname - \leftmargin\csname listleftmargin\romannumeral\the\listdepth\endcsname - \labelwidth\csname listlabelwidth\romannumeral\the\listdepth\endcsname - \labelsep\csname listlabelsep\romannumeral\the\listdepth\endcsname - \itemsep\csname listitemsep\romannumeral\the\listdepth\endcsname - \rightmargin\listrightmargin\advance\leftmargin\leftskip - \if@lpalign - \global\@lpalignfalse - \def\makelabel##1{\hbox to \labelwidth{\hss\hbox to\lpalignmaxwd{##1\hss}\hskip-.6pt}} - \else - \def\makelabel##1{\hbox to \labelwidth{\hss##1\hskip-.6pt}} - \fi - \if@nomainitem - \global\@nomainitemfalse - \leftmargin 10pt - \labelwidth 10pt - \labelsep 0pt - \def\makelabel##1{##1 }% - \fi - }% - }% -% -\def\endenumerate{\endlist}% -% -\newenvironment{arabiclist}{% - \def\theenumi{\arabic{enumi}}\def\labelenumi{\theenumi.} - \def\theenumii{\arabic{enumii}}\def\labelenumii{\theenumii.}% - \def\theenumiii{\arabic{enumiii}}\def\labelenumiii{\theenumiii.}% - \begin{enumerate}% -}{% - \end{enumerate}} -% -\newenvironment{romanlist}{% - \def\theenumi{\roman{enumi}}\def\labelenumi{\theenumi.}% - \def\theenumii{\roman{enumii}}\def\labelenumii{\theenumii.}% - \def\theenumiii{\roman{enumiii}}\def\labelenumiii{\theenumiii.}% - \begin{enumerate}% -}{% - \end{enumerate}} -% -\newenvironment{alphalist}{% - \def\theenumi{\alph{enumi}}\def\labelenumi{(\theenumi)}% - \def\theenumii{\alph{enumii}}\def\labelenumii{(\theenumii)}% - \def\theenumiii{\alph{enumiii}}\def\labelenumiii{(\theenumiii)}% - \begin{enumerate}% -}{% - \end{enumerate}} -% -\newenvironment{Romanlist}{% - \def\theenumi{\Roman{enumi}}\def\labelenumi{\theenumi.}% - \def\theenumii{\Roman{enumii}}\def\labelenumii{\theenumii.}% - \def\theenumiii{\Roman{enumiii}}\def\labelenumiii{\theenumiii.}% - \begin{enumerate}% -}{% - \end{enumerate}} -% -\newenvironment{Alphalist}{% - \def\theenumi{\Alph{enumi}}\def\labelenumi{(\theenumi)}% - \def\theenumii{\Alph{enumii}}\def\labelenumii{(\theenumii)}% - \def\theenumiii{\Alph{enumiii}}\def\labelenumiii{(\theenumiii)}% - \begin{enumerate}% -}{% - \end{enumerate}} -% -\newenvironment{examples}{\begin{exlist}\item}{\end{exlist}} -% - -\newcounter{eqnnosave} % used in trick with equation number -\newenvironment{exlist}{% % define "example" environment - \listleftmargini 36pt - \listlabelwidthi 30pt - \listlabelsepi 6pt - \listitemsepi12pt - \def\labelenumi{(\theenumi)} - \def\theenumii{\arabic{enumii}}\def\labelenumii{\theenumii.}% - \begin{enumerate}% - \setcounter{enumi}{\arabic{eqnnosave}}% % restores previous value -}% -{\end{enumerate}% -\setcounter{eqnnosave}{\arabic{enumi}}% -} -% -\newenvironment{exoutlist}{\par% - \listleftmarginii 20pt - \listlabelwidthii 32pt - \listlabelsepii 24pt - \def\labelenumi{(\theenumi)} - \def\theenumii{\arabic{enumii}}\def\labelenumii{\theenumii.}% - \begin{enumerate}% - \setcounter{enumi}{\arabic{eqnnosave}}% % restores previous value -}% -{\end{enumerate}% -\setcounter{eqnnosave}{\arabic{enumi}}% -} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% itemize (bullet) %%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\itemize{\par - \ifnum\@itemdepth >\thr@@\@toodeep\else - \advance\@itemdepth\@ne\advance\listdepth\@ne - \fi - \list{\csname labelitem\romannumeral\the\@itemdepth\endcsname}{\listfont% - \topsep\csname listtopsep\romannumeral\the\listdepth\endcsname - \labelwidth\csname listlabelwidth\romannumeral\the\listdepth\endcsname - \labelsep\csname listlabelsep\romannumeral\the\listdepth\endcsname - \leftmargin\csname listleftmargin\romannumeral\the\listdepth\endcsname - \itemsep\csname listitemsep\romannumeral\the\listdepth\endcsname - \rightmargin\listrightmargin\advance\leftmargin\leftskip - \def\makelabel##1{\hbox to \labelwidth{\hss##1}}}% - }% -% -\def\enditemize{\endlist} -%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% enumroman (i) %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newenvironment{bulletlist}{% - \renewcommand\labelitemi{\textbullet}\renewcommand\labelitemii{\textbullet}% - \begin{itemize} -}{% - \end{itemize}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% unnumlist %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newenvironment{unnumlist}{\par% - \list{}{\listfont% - \topsep12pt plus2pt% minus1pt - \rightmargin18pt - \leftmargin36pt%\itemindent-18pt - \itemsep6pt\parsep0pt - \partopsep0pt} - \def\makelable##1{##1}% - }{\endlist}% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Quotes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\@source{} -\def\source#1{\gdef\@source{#1}} -% -\newenvironment{extract}{\par\ifbrief\addvspace{4pt plus2pt}\else\ifbookreview\addvspace{12pt plus2pt}\else\addvspace{14pt plus2pt}\fi\fi - \extractfont\parindent18pt\noindent\ignorespaces -}{\par\ifx\@source\@empty\else{\sourcefont\noindent---\@source\par}\fi\gdef\@source{}\ifbrief\addvspace{3pt plus2pt}\else\addvspace{12pt plus2pt}\fi\@endparenv} -% -%%%%%%%%%%%%%%%%%%%%%% endpara and numberedpara %%%%%%%%%%%%%%%%%%%%%%% -% -\newenvironment{lastpara}{\par\addvspace{17pt plus2pt}% - \noindent\ignorespaces}{\par} -% -\newenvironment{numpara}{\par - \list{\arabic{enumi}}{\usecounter{enumi}\topsep\z@\itemsep\z@\leftmargin9pt\itemindent-9pt\labelwidth\z@\labelsep\z@\labelwidth\z@\listparindent12pt\def\makelabel##1{##1 }}}{\endlist} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Theorems %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\usepackage{amsthm} -\newtheoremstyle{break}% - {}{}% - {}{}% - {\bfseries}{}% % Note that final punctuation is omitted. - {\newline}{} - -\theoremstyle{break} - -\def\examplename{Example} -\newtheorem{example}{\examplename} -% -\def\theoremname{Theorem} -\newtheorem{theorem}{\theoremname}%[section] -% -\def\lemmaname{Lemma} -\newtheorem{lemma}{\lemmaname}%[section] -% -%\def\rulesname{Rule} -%\newtheorem{rules}{\rulesname}%[section] -% -\def\propositionname{Proposition} -\newtheorem{proposition}{\propositionname}%[section] -% -\def\corollaryname{Corollary} -\newtheorem{corollary}{\corollaryname}%[section] -% -\def\notationname{Notation} -\newtheorem{notation}{\notationname}%[section] -% -\def\assumptionname{Assumption} -\newtheorem{assumption}{\assumptionname}%[section] -% -\def\remarkname{Remark} -\newtheorem{remark}{\remarkname}%[section] -% -\newif\ifdefinition -\def\numdefname{Definition} -\newtheorem{numdef}{\numdefname}%[section] -% -\newtheorem{numtheorem}{Theorem} -% -\def\casename{Case} -\newtheorem{case}{\casename}%[section] -% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Proof %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% proof* and proof are the same -% proof* is provided for compatibility with older cl style files -\newenvironment{proof*}{\begin{proof}}{\end{proof}} -% -\newenvironment{solution}{\begin{proof}[Solution.]}{\end{proof}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Floats %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\setcounter{topnumber}{5} -\renewcommand\topfraction{.9} -\setcounter{bottomnumber}{5} -\renewcommand\bottomfraction{.9} -\setcounter{totalnumber}{10} -\renewcommand\textfraction{.09} -\renewcommand\floatpagefraction{.901} -\setcounter{dbltopnumber}{1} -\renewcommand\dbltopfraction{.9} -\renewcommand\dblfloatpagefraction{.901} -% -\newlength\abovecaptionskip -\newlength\belowcaptionskip -\setlength\abovecaptionskip{4.5\p@} -\setlength\belowcaptionskip{2.5\p@} -% -\def\FigName{figure} -% -\long\def\@makecaption#1#2{% - \ifx\FigName\@captype - \vskip\abovecaptionskip - \@makefigurecaption{#1}{#2}% - \else - \@maketablecaption{#1}{#2}% - \vskip\belowcaptionskip - \fi -} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Figures %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newcounter{figure}[chapter] -\renewcommand\thefigure{\@arabic\c@figure} -\def\fps@figure{tbp} -\def\ftype@figure{1} -\def\ext@figure{lof} -\def\fnum@figure{\figurename\nobreakspace\thefigure} -% -\newenvironment{figure} - {\@float{figure}} - {\end@float} -% -\newenvironment{figure*} - {\@dblfloat{figure}} - {\end@dblfloat} -% -\def\figlabelsep{.5em} -% -\def\@makefigurecaption#1#2{% - {\figcaptionnumfont#1\par} - {\figcaptionfont#2\vphantom{y}\par}\vskip-2.6pt} -% -\def\ArtDir{art/}% -% -\usepackage{epsfig} -\usepackage[figuresright]{rotating} -% -\newbox\figtempbox -\def\ArtPiece#1{\epsfbox{\ArtDir#1}}% -\let\figboxformat\leftline -% -\def\figurebox#1#2#3{% - \@ifnextchar[{\@figurebox{#1}{#2}{#3}}{\@figurebox{#1}{#2}{#3}[]}} -% -\def\@figurebox#1#2#3[#4]{% - \gdef\@figscale{#3} - \gdef\@frtharg{#4} - \ifx\@frtharg\empty - \global\figheight=#1 - \global\figwidth=#2 - \else - \setbox\figtempbox=\hbox{\ifx\@figscale\empty\else\epsfxsize\@figscale\fi\epsfbox{\ArtDir#4}}% - \global\figwidth=\wd\figtempbox - \global\figheight=\ht\figtempbox - \fi - {\figboxformat{\figbox}}%% -}% -% -\def\figbox{% - \ifx\@frtharg\empty - \noindent\vbox{\hsize\figwidth% - \hrule\hbox to\figwidth{\vrule\hfill\vbox to\figheight{\hsize\figwidth\vfill}\vrule}\hrule}% - \else - \vbox{\vskip.8pt\hsize\figwidth - \hbox to\figwidth{\vbox to\figheight{\hsize\figwidth\box\figtempbox}}}% - \fi -} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newcounter{table}[chapter] -\renewcommand\thetable{\@arabic\c@table} -\def\fps@table{tbp} -\def\ftype@table{2} -\def\ext@table{lot} -\def\fnum@table{\tablename\nobreakspace\thetable} -% -\newenvironment{table} - {\@float{table}} - {\end@float} -% -\newenvironment{table*} - {\@dblfloat{table}} - {\end@dblfloat} -% -\def\@maketablecaption#1#2{% - \hrule height1pt\par\vskip12pt - {\tablecaptionnumfont#1\par}% - {\tablecaptionfont#2\vphantom{y}\par}} -% -\def\tbl#1#2{\tablefont% - \setbox\tempbox\hbox{\tablefont#2}% - \tabledim\hsize - \advance\tabledim-\wd\tempbox - \ifdim\tabledim>0pt - \divide\tabledim2 - \else - \global\tabledim0pt - \fi - \global\tableleftskip\tabledim - \global\tablerightskip\tabledim - \caption{#1}% - {\box\tempbox}}% -% -\def\TCH#1{\TCHfont#1}% -% -\def\x{@{\extracolsep{\fill}}} -\def\toprule{\Hline\\[-5.5pt]} -\def\colrule{\\[-7.5pt]\Hline\\[-5pt]} -\def\botrule{} -\def\crule#1{\\[-7.5pt]\CLINE{#1}\\[-5pt]} -% -\def\Hline{% - \noalign{\ifnum0=`}\fi\hrule \@height .5pt \futurelet%\@height \arrayrulewidth - \@tempa\@xhline} -% -\newenvironment{tabnote}{\par\tabnotefont - }{\par} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Floats %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\arraystretch{1} -\setlength\arraycolsep{1.5\p@} -\setlength\tabcolsep{6\p@} -\setlength\arrayrulewidth{.4\p@} -\setlength\doublerulesep{2\p@} -\setlength\tabbingsep{\labelsep} -\setlength\fboxsep{3\p@} -\setlength\fboxrule{.4\p@} -% -\setlength\columnsep{24\p@} -\setlength\columnseprule{0\p@} -% -\@addtoreset{equation}{chapter} -\renewcommand\theequation{\arabic{equation}} -\def\@eqnnum{{\reset@font\rmfamily\quad (\theequation)}} -% -\def\bstrut{\vrule width0pt depth6pt} -\def\tstrut{\vrule width0pt height9pt} -\jot=6pt -%% -% -\def\text#1{\mathchoice - {\hbox{\fontsize{\tf@size}{\tf@size}\selectfont#1}}% - {\hbox{\fontsize{\tf@size}{\tf@size}\selectfont#1}}% - {\hbox{\fontsize{\sf@size}{\sf@size}\selectfont#1}}% - {\hbox{\fontsize{\ssf@size}{\ssf@size}\selectfont#1}}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Footnote %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\thanks#1{\footnotemark - \protected@xdef\@thanks{\@thanks\protect\footnotetext[\the\c@footnote]{#1}}} -% -\def\@makefnmark{\smash{\hbox{\@textsuperscript{\normalfont\@thefnmark}}}} -% -\renewcommand\footnoterule{% - \kern-4\p@ - \hrule width 15pc height.5pt depth\z@ - \kern 3.5\p@} -% -\@addtoreset{footnote}{chapter} -\renewcommand\thefootnote{\arabic{footnote}} -% -\def\@fnsymbol#1{\ifcase#1\or \ensuremath{*}\or \ensuremath{**}\or\ensuremath{\dagger}\or\ensuremath{\ddagger}\or - \S\or\|\or\#\or**\or\ensuremath{\dagger\dagger}\or\ensuremath{\ddagger\ddagger} - \or\S\S\or\|\hskip-1pt\|\or\#\#\or ***\or\ensuremath{\dagger\dagger\dagger}\or\ensuremath{\ddagger\ddagger\ddagger}\else\@ctrerr\fi\relax} -% -\newdimen\@footmax -\def\footmax#1{% - \setbox\tempbox\hbox{\footnotesize#1} - \global\@footmax\wd\tempbox} -% -\footmax{00} -% -\def\domkfnmark{\noindent\hskip-12pt\hbox to 12pt{\hbox to \@footmax{\hss$\@thefnmark$}\hss}} -\def\dofnformat{\parindent8pt\leftskip12pt\rightskip0pt plus1fill} -% -\long\def\@makefntext#1{\dofnformat% - \domkfnmark#1} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Footnote %%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Page styles %%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\cyanColor#1{\special{color push cmyk 1 0 0 0}#1\special{color pop}} -\def\whiteColor#1{\special{color push cmyk 0 0 0 0}#1\special{color pop}} -% -\def\folio{{\foliofont\thepage}} -% -\def\bookrev#1{\gdef\@bookrev{#1}} -\bookrev{Book Reviews} -% -\def\briefhead#1{\gdef\@briefhead{#1}} -\briefhead{Briefly Noted} -% -\def\ps@headings{% - \def\@oddfoot{\hfill{\folio}} - \def\@evenfoot{{\folio}\hfill} - \def\@evenhead{{\rhfont\@jname\hfill\@jinfo}}% - \def\@oddhead{\ifbookreview{\rhfont\hfill\@bookrev}\else\ifshortpaper{\rhfont\hfill\@sptitle}\else{\rhfont\@rauthor\hfill\@rtitle}\fi\fi}% - \let\@mkboth\markboth -} -% -\def\ps@empty{% - \def\@oddfoot{\hfill\lower\blindfoliodrop\hbox{\thepage}\hfill} - \let\@evenfoot\@oddfoot - \def\@evenhead{}% - \def\@oddhead{}% - \let\@mkboth\markboth -} -% -\newcommand{\footmark}{\copyright\ \@jyear\ Association for Computational Linguistics} -% -\def\ps@titlepage{\let\@mkboth\@gobbletwo% - \def\@oddfoot{\footnotesize\footmark\hfill} - \def\@evenfoot{\footnotesize\hfill\footmark} - \def\@oddhead{}\let\@evenhead\@oddhead} -% -\def\ps@pageonly{\let\@mkboth\@gobbletwo% - \def\@oddfoot{\hfill{\folio}} - \def\@evenfoot{{\folio}\hfill} - \def\@oddhead{}\let\@evenhead\@oddhead} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Page styles %%%%%%%%%%%%%%%%%%%%%%%% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bibliography Section %%%%%%%%%%%%%%%%%% -% -% Bibliography -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -%%% Citation forms: -%%% -%%% Macro Output format -%%% ----------- ----------------------------------------- -%%% \cite: (Dewey, 1988) -%%% (Dewey, 1988, page 15) -%%% (Dewey, 1988; Cheatham, 1987; Howe, 1903) -%%% \namecite: Dewey (1988) -%%% Dewey (1988, page 15) -% - -\newlength\bibleftmargin -\newlength\biblabelsep -\newlength\bibitemsep -\newlength\bibparsep -% -\setlength\bibleftmargin{9pt} -\setlength\biblabelsep {3pt} -\setlength\bibitemsep {0pt} -\setlength\bibparsep {0pt} -% -\def\bibhead#1{\bibitem{}\null\par\bgroup\nobreak{\leftskip-\leftmargin\hskip\leftmargin\bfseries #1\par}\nobreak\egroup} -% -\newenvironment{thebibliography}[1] - {\par% - \ifx\withintwocol{true}\else%\starttwocolumn - \fi - \def\@tempa{#1}% - \ifx\@tempa\@empty - \list{}{% - \labelwidth0pt\labelsep0pt - \leftmargin\bibleftmargin - \itemindent-\bibleftmargin - \itemsep\bibitemsep - \parsep\bibparsep - \usecounter{enumiv}% - \let\p@enumiv\@empty}% - \else - \setbox\tempbox\hbox{\@tempa.} - \tempdimen\wd\tempbox - \def\@biblabel##1{\hbox to \tempdimen{\hfill##1.}} - \list{\@biblabel{\arabic{enumiv}}}% - {\settowidth\labelwidth{\@biblabel{#1}}% - \labelsep\biblabelsep\leftmargin\labelsep - \advance\leftmargin\labelwidth - \itemindent0pt - \itemsep\bibitemsep - \parsep\bibparsep - \usecounter{enumiv}% - \let\p@enumiv\@empty - \renewcommand\theenumiv{\arabic{enumiv}}}% - \fi - \sloppy\clubpenalty4000\widowpenalty4000\sfcode`\.=\@m - }{% - \def\@noitemerr{\@latex@warning{Empty `thebibliography' environment}}% - \endlist - } - -\def\@lbibitem[#1]#2{\item[]\if@filesw - { \def\protect##1{\string ##1\space}\immediate - \write\@auxout{\string\bibcite{#2}{#1}}\fi\ignorespaces}} - -\def\@bibitem#1{\item\if@filesw \immediate\write\@auxout - {\string\bibcite{#1}{\the\c@enumi}}\fi\ignorespaces} - - -\usepackage{natbib} - \setcitestyle{aysep={}} % no comma between author and year - \renewcommand{\cite}{\citep} % to get "(Author Year)" with natbib - \newcommand{\namecite}{\citet} % to get "Author (Year)" with natbib - \def\bibfont{\small\raggedright} - \def\bibsection{\xhead*{References}} - -% -\newcommand\newblock{} -% -% endnotes; same environment as bibliography: -% -\def\theendnotes{\small\parindent=0pt\par\vspace{14pt}{\bf Notes}\par\vspace{2pt}\everypar{\hangindent=1em\hangafter=1}\raggedright} -\def\endtheendnotes{\par\vskip14pt plus4pt } -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Bibliography Section %%%%%%%%%%%%%%%%%%%%%%% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Contents List %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\dotfill{% - \leavevmode - \cleaders \hb@xt@ .44em{\hss.\hss}\hfill - \kern\z@} -% -\newcommand\@pnumwidth{1.55em} -\newcommand\@tocrmarg {2.55em} -\newcommand\@dotsep{4.5} -\setcounter{tocdepth}{2} -% -\newcommand\l@section {\@dottedtocline{1}{1.5em}{2.3em}} -\newcommand\l@subsection {\@dottedtocline{2}{3.8em}{3.2em}} -\newcommand\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}} -\newcommand\l@paragraph {\@dottedtocline{4}{10em}{5em}} -\newcommand\l@subparagraph {\@dottedtocline{5}{12em}{6em}} -\let\l@table\l@figure -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Appendix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% command to add a section to the appendix -\newcommand{\appendixsection}[1]{\addtocounter{section}{1}% - \setcounter{table}{0} - \setcounter{figure}{0} - \setcounter{equation}{0} - \section*{Appendix \Alph{section}: #1}% -} -% -\newcommand\appendix{% - \setcounter{section}{0} - \renewcommand{\theequation}{\Alph{section}.\arabic{equation}} -} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Appendix %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%% Document & End Document %%%%%%%%%%%%%%%%%%%%% -% -%\def\@watermark{\offinterlineskip\vbox to 0pt{\setlength\overfullrule{0pt}\vskip12pc\hskip2pc\begin{turn}{45}\hbox to \textheight{\hss\grayColor{{\sffamily\fontsize{107.5}{107.5pt}\selectfont\bfseries spi}\hskip16pt\raise10pt\hbox{\sffamily\fontsize{50}{50}\selectfont\bfseries publisher services}}\hss}\end{turn}}\vskip0pt} -% -\def\@questionmark{\vbox to 0pt{\vskip13pc\hskip-5pc - \hbox to \textwidth{\fontsize{570}{570}\selectfont ?\hss}}} -\def\questionmark#1{\xdef\@questionmark{#1}}% -% -%\def\draftnote{\vbox to 0pt{\offinterlineskip% - %\hbox to \trimwidth{\hfill\footnotesize\jobname\vphantom{q}\qquad\today\qquad\currenttime\hfill}\par\@questionmark}}% -% -\def\document{\endgroup - \ifx\@unusedoptionlist\@empty\else - \@latex@warning@no@line{Unused global option(s):^^J% - \@spaces[\@unusedoptionlist]}% - \fi - \@colht\textheight - \@colroom\textheight \vsize\textheight - \columnwidth\textwidth - \@clubpenalty\clubpenalty - \if@twocolumn - \advance\columnwidth -\columnsep - \divide\columnwidth\tw@ \hsize\columnwidth \@firstcolumntrue - \fi - \hsize\columnwidth \linewidth\hsize - \begingroup\@floatplacement\@dblfloatplacement - \makeatletter\let\@writefile\@gobbletwo - \global \let \@multiplelabels \relax - \@input{\jobname.aux}% - \endgroup - \if@filesw - \immediate\openout\@mainaux\jobname.aux - \immediate\openout\@mainqry=\jobname.qry - \immediate\write\@mainaux{\relax}% - \fi - \process@table - \let\glb@currsize\@empty %% Force math initialisation. - \normalsize - \everypar{}% - \@noskipsecfalse - \let \@refundefined \relax - \let\AtBeginDocument\@firstofone - \@begindocumenthook - \ifdim\topskip<1sp\global\topskip 1sp\relax\fi - \global\@maxdepth\maxdepth - \global\let\@begindocumenthook\@undefined - \ifx\@listfiles\@undefined - \global\let\@filelist\relax - \global\let\@addtofilelist\@gobble - \fi - \gdef\do##1{\global\let ##1\@notprerr}% - \@preamblecmds - \global\let \@nodocument \relax - \global\let\do\noexpand - \ignorespaces} -% -\def\enddocument{% - \ifx\@biography\@empty\else{\par\ifbrief\vskip10pt\fi\biofont\noindent\@biography\par}\fi - \@enddocumenthook - \@checkend{document}% - \immediate\closeout\@mainqry - %\ifquery - % \process@queries\clearpage - %\else - \ifodd\c@page\clearpage\thispagestyle{empty}\null\clearpage\else\clearpage\fi - %\fi -% \ifquery\clearpage\else\ifodd\c@page\clearpage\thispagestyle{empty}\null\clearpage\else\clearpage\fi\fi - \begingroup - \if@filesw - \immediate\write\@mainaux{\string\questionmark{}}% - \immediate\closeout\@mainaux - \let\@setckpt\@gobbletwo - \let\@newl@bel\@testdef - \@tempswafalse - \makeatletter \input\jobname.aux - \fi - \@dofilelist - \ifdim \font@submax >\fontsubfuzz\relax - \@font@warning{Size substitutions with differences\MessageBreak - up to \font@submax\space have occured.\@gobbletwo}% - \fi - \@defaultsubs - \@refundefined - \if@filesw - \ifx \@multiplelabels \relax - \if@tempswa - \@latex@warning@no@line{Label(s) may have changed. - Rerun to get cross-references right}% - \fi - \else - \@multiplelabels - \fi - \fi - \endgroup - \deadcycles\z@\@@end} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Trimmarks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\trimmarks{% - \vbox to 0pt{\offinterlineskip% - \vskip-25pt\parindent0pt - %\draftnote - \offinterlineskip}% - \vbox to 0pt{\hsize\trimwidth\offinterlineskip - \parindent0pt\leftskip0pt\rightskip0pt - \vbox to \trimheight{\offinterlineskip\parindent0pt - \hbox to \trimwidth{\vbox to 2pc{\vskip-3.5pc\hbox{\vrule height2pc width\trimrule}}\raisebox{2pc}{\hbox{\hskip-3.5pc\vrule width2pc height\trimrule}}\hfill - \raisebox{2pc}{\vrule width2pc height\trimrule\hskip-3.75pc} - \vbox to 2pc{\vskip-3.5pc\hbox{\vrule height2pc width\trimrule}}% - }\vfill - \hbox to \trimwidth{\hbox{\hskip-3.5pc\vrule height\trimrule width2pc}\vbox to 3pc{\vspace*{4.5pc}\hbox{\hskip1.5pc\vrule width\trimrule height2pc}}\hfill - \vbox to 3.5pc{\vskip5pc\hbox{\vrule height2pc width\trimrule}}\rlap{\hskip1.5pc\vrule width2pc height\trimrule}}}} -\insidedraftrules} -% -\def\insidedraftrules{\setlength\overfullrule{0pt}\vbox to 0pt{% - \offinterlineskip\parindent0pt - \vskip \topmargin - \tempdimen\normaltextheight - \advance\tempdimen\headheight - \advance\tempdimen\headsep - \moveright\@themargin - \vbox{\vbox to 0pt{\vskip\headheight\vskip\headsep - \vrule height\draftrule width\textwidth} - \hbox{\fboxsep0pt\fboxrule\draftrule - \fbox{\vbox to \tempdimen - {\hsize\textwidth\hskip\textwidth}}}}}}% -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output Routine %%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\@outputpage{% -\begingroup% - \let \protect \noexpand - \@resetactivechars - \@parboxrestore - \shipout \vbox{% - \set@typeset@protect - \aftergroup \endgroup - \aftergroup \set@typeset@protect - \if@specialpage - \global\@specialpagefalse\@nameuse{ps@\@specialstyle}% - \fi - \if@twoside - \ifodd\count\z@ \let\@thehead\@oddhead \let\@thefoot\@oddfoot - \let\@themargin\oddsidemargin - \else \let\@thehead\@evenhead - \let\@thefoot\@evenfoot \let\@themargin\evensidemargin - \fi - \fi - \reset@font - \normalsize - \baselineskip\z@skip \lineskip\z@skip \lineskiplimit\z@ - \@begindvi\trimmarks - \vskip \topmargin - \moveright\@themargin \vbox {% - \setbox\@tempboxa \vbox to\headheight{% - \vfil - \color@hbox - \normalcolor - \hb@xt@\textwidth {% - \let \label \@gobble - \let \index \@gobble - \let \glossary \@gobble - \@thehead - }% - \color@endbox - }% - \dp\@tempboxa \z@ - \box\@tempboxa - \vskip \headsep - \box\@outputbox - \baselineskip \footskip - \color@hbox - \normalcolor - \hb@xt@\textwidth{% - \let \label \@gobble - \let \index \@gobble - \let \glossary \@gobble - \@thefoot - }% - \color@endbox - }% - }% -\global \@colht \textheight -\stepcounter{page}% -\let\firstmark\botmark - \ifodd\c@page - \ifspreadlong\global\spreadlongfalse - \enlargethispage{\@spreadlong}\fi - \fi -} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Miscelleneous %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newcommand\callout[1]{\ifdraftrules\marginpar{\bf#1}\fi} -% -\def\comment{\@ifnextchar[\@comment{\@comment[\relax]}} -\def\@comment[#1]#2{\marginpar{\ifx#1\relax\else\vspace*{#1}\fi\bf\raggedright#2}} -% -\def\pos@of@dbl@text{0pt} -\def\movetext{\vrule height\z@ depth\pos@of@dbl@text width\z@} -% -\def\acknowledgments{\par\gdef\withintwocol{true}%\starttwocolumn - %\subsection - \xhead*{Acknowledgments}%\vspace*{2pt} - \ackfont} -\def\endacknowledgments{\par} -% -\newenvironment{displaytext}{\par\addvspace{14pt plus2pt}\bgroup\hangindent18pt\parindent\z@\let\sc\scshape\let\it\itshape}{\par\egroup\addvspace{12pt plus2pt}\@endparenv} -% -\newenvironment{algorithm}{\par\list{}{\leftmargin\z@\labelwidth\z@\labelsep\z@\itemsep6pt\topsep12pt plus2pt - \let\makelabel\algorithmlabel}}{\endlist} -\def\algorithmlabel#1{{\bfseries #1: }} -% -\newenvironment{dialogue}{\par\addvspace{12pt plus2pt}\normalsize\hangindent18pt\parindent\z@}{\par\addvspace{12pt plus2pt}\@endparenv} -% -\newenvironment{deflist}{\par\list{}{\leftmargin18pt\rightmargin18pt\itemindent-\leftmargin\labelwidth\z@\labelsep\z@\itemsep6pt\topsep12pt plus2pt - \let\makelabel\definitionlabel}\raggedright}{\endlist} -\def\definitionlabel#1{{\bfseries #1:} } -% -\newcounter{rules} -\newenvironment{rules}{\par\addvspace{12pt plus2pt} - \global\addtocounter{rules}{1}\noindent{\bfseries Rule \therules: }\noindent\ignorespaces% - }{\par\@endparenv} -% -\@namedef{rules*}{\par\addvspace{12pt plus2pt}\noindent{\bfseries Rule: }\noindent\ignorespaces} -\@namedef{endrules*}{\par\@endparenv} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\def\str@right{right} -\def\str@left{left} -% -\newwrite\@mainqry -% -\newcounter{qcount} -\newdimen\qcountdim\qcountdim0pt -\def\qtoafont{\reset@font\normalsize\bfseries\raggedright} -%\def\queryfont{\fontsize{9}{10.5}\selectfont} -\def\qlist@headfont{\fontsize{15}{15}\selectfont\centering} -\def\qlist@subheadfont{\fontsize{12}{14}\selectfont\bfseries} -\def\qlist@font{\fontsize{10}{12}\selectfont} -% -\def\qtoa{\@ifnextchar[{\@qtoa}{\@qtoa[\@empty]}} -\def\@qtoa[#1]#2{\@ifnextchar[{\@@qtoa[#1]#2}{\@@qtoa[#1]#2[0pt]}} -\def\@@qtoa[#1]#2[#3]{\global\addtocounter{qcount}{1}% - \protected@write{\@mainqry}{}{\string\item{} #2\par}% - \@question{#1}{Q\theqcount}{#3}\ignorespaces} -% -\newenvironment{qlist}{\par\list{}{\usecounter{enumi}\topsep30pt\labelsep5pt\settowidth{\labelwidth}{Q\theqcount:}\leftmargin\labelwidth\labelsep5pt\advance\leftmargin\labelsep\itemsep\baselineskip\rightmargin\z@\def\makelabel##1{\hbox - to\labelwidth{\hss Q\theenumi.}}}}{\endlist} -% -% -\def\qtom{\@ifnextchar[{\@qtom}{\@qtom[\@empty]}} -\def\@qtom[#1]#2{\@ifnextchar[{\@@qtom[#1]#2}{\@@qtom[#1]#2[0pt]}} -\def\@@qtom[#1]#2[#3]{\@question{#1}{#2}{#3}\ignorespaces} -% -\def\@question#1#2#3{% - \ifvmode% - \@@question{#1}{#2}{#3}% - \else% - \vadjust{\vbox to 0pt{% - \vskip-7.5pt\@@question{#1}{\qtoafont#2}{#3}\vskip7.5pt}}% - \fi}% -% -\def\@@question#1#2#3{\edef\@argone{#1}\hbox to \hsize{% - \if@twocolumn% - \if@firstcolumn - \ifx\@argone\str@right - \hfill\rlap{\hskip\marginparsep% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \else% - \tempdimen\columnwidth\advance\tempdimen-\hsize% - \ifdim\columnwidth>\hsize\hskip-\tempdimen\fi% - \hskip-\marginparsep\llap{\hskip\columnwidth% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \fi% - \else - \ifx\@argone\str@left - \tempdimen\columnwidth\advance\tempdimen-\hsize% - \ifdim\columnwidth>\hsize\hskip-\tempdimen\fi% - \hskip-\marginparsep\llap{\hskip\columnwidth% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \else - \hfill\rlap{\hskip\marginparsep% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \fi% - \fi% - \else% - \ifx\@argone\str@left% - \tempdimen\columnwidth\advance\tempdimen-\hsize% - \ifdim\columnwidth>\hsize\hskip-\tempdimen\fi% - \hskip-\marginparsep\llap{\hskip\columnwidth% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \else% - \hfill\rlap{\hskip\marginparsep% - \vbox to 0pt{\hsize\marginparwidth\vspace*{#3}{#2}\endgraf\vss}}% - \fi% - \fi}\ignorespaces}% -% -\newif\ifspreadlong -\def\spreadlong#1{\ifodd\c@page\wlog{Ignoring spreadlong} - \else - \spreadlongtrue\gdef\@spreadlong{#1}% - \enlargethispage{#1}% - \fi} -% -\def\leaflong#1{\enlargethispage{#1}} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\let\dochead\sptitle -\let\quote\extract -\let\endquote\endextract -\let\tcaption\tbl -\let\unenumerate\unnumlist -\let\endunenumerate\endunnumlist -\let\definition\numdef -\let\enddefinition\endnumdef -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -%\let\starttwocolumn\relax -\newdimen\@twocolsep\@twocolsep=16pt -\def\twocolsep#1{\global\advance\@twocolsep by #1\relax} -\newbox\partialpage -\def\starttwocolumn{% - {\output={\global\setbox\partialpage=\vbox{\unvbox255}}\newpage}% - \twocolumn[\unvbox\partialpage\vspace{\@twocolsep}]% -} -% -\def\cleardoublepage{\clearpage\if@twoside \ifodd\c@page\else - \hbox{}\newpage\thispagestyle{empty}\if@twocolumn\hbox{}\newpage\thispagestyle{empty}\fi\fi\fi} -% -\def\onecolumnnew{% - %\clearpage - \global\columnwidth\textwidth - \global\hsize\columnwidth - \global\linewidth\columnwidth - \global\@twocolumnfalse - \col@number \@ne - \@floatplacement} -% -\def \twocolumnnew {% - %\clearpage - \global\columnwidth\textwidth - \global\advance\columnwidth-\columnsep - \global\divide\columnwidth\tw@ - \global\hsize\columnwidth - \global\linewidth\columnwidth - \global\@twocolumntrue - \global\@firstcolumntrue - \col@number \tw@ - \@ifnextchar [\@topnewpage\@floatplacement -} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\newcount\tblcolcount -\newskip\tcsepbefore -% -\def\@addamp{\global\advance\tblcolcount\@ne\relax% - \if@firstamp - \@firstampfalse - \else - \edef\@preamble{\@preamble &}% - \fi} -% -\def\CLINE#1{\expandafter\@CLINE#1\@nil} -\def\@CLINE#1-#2\@nil{% - \omit% - \@multicnt#1% - \advance\@multispan\m@ne% - \ifnum\@multicnt=\@ne\@firstofone{&\omit}\fi% - \@multicnt#2% - \advance\@multicnt-#1% - \advance\@multispan\@ne% - \ifthenelse{#1=1}{\tcsepbefore\z@}{\tcsepbefore\tabcolsep}% - \ifthenelse{\the\tblcolcount=#2}{% - {\kern\tcsepbefore\leaders\hrule\@height.5pt\hfill\kern\tabcolsep}% - }{% - \kern\tcsepbefore\leaders\hrule\@height.5pt\hfill\kern\tabcolsep}% - \cr - \noalign{\vskip-\arrayrulewidth}}% -% -\def\fulltabular{\global\tblcolcount\z@\def\@halignto{to \textwidth}\@tabular} -\def\endfulltabular{\endtabular\global\tblcolcount\z@} -% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -\usepackage{amsfonts,amssymb} -\usepackage{multicol} -\multicolsep = 14pt plus 4pt% minus 3pt -% -% -\usepackage{dcolumn} -\newcolumntype{D}[3]{>{\DC@{#1}{#2}{#3}}l<{\DC@end}} -% -\AtBeginDocument{% -\@ifpackageloaded{lingmacros}{% -\long\def\@enumsentence[#1]#2{\begin{list}{}{\topsep12pt% -\labelsep6pt\leftmargin30pt\labelwidth30pt\advance\leftmargin by\labelsep\advance\leftmargin by\widelabel \advance\labelwidth by \widelabel} -\item[#1] #2 -\end{list}} -}{} -} -% -\AtBeginDocument{ - -\DeclareFontFamily{OML}{pns}{} -\DeclareFontShape{OML}{pns}{m}{n}{<-> zplmr7m }{} -\DeclareSymbolFont{itgreek}{OML}{zplmr7m}{m}{n} -\SetSymbolFont{itgreek}{normal}{OML}{pns}{m}{n} - -%%%%%%%%%%%%%%%%%%% Uppercase Greek Italic %%%%%%%%%%%%%%%%%%%%%%%%%% - \DeclareMathSymbol{\slGamma} {\mathalpha}{itgreek}{"00} - \DeclareMathSymbol{\slDelta} {\mathalpha}{itgreek}{"01} - \DeclareMathSymbol{\slTheta} {\mathalpha}{itgreek}{"02} - \DeclareMathSymbol{\slLambda} {\mathalpha}{itgreek}{"03} - \DeclareMathSymbol{\slXi} {\mathalpha}{itgreek}{"04} - \DeclareMathSymbol{\slPi} {\mathalpha}{itgreek}{"05} - \DeclareMathSymbol{\slSigma} {\mathalpha}{itgreek}{"06} - \DeclareMathSymbol{\slUpsilon}{\mathalpha}{itgreek}{"07} - \DeclareMathSymbol{\slPhi} {\mathalpha}{itgreek}{"08} - \DeclareMathSymbol{\slPsi} {\mathalpha}{itgreek}{"09} - \DeclareMathSymbol{\slOmega} {\mathalpha}{itgreek}{"0A} - \DeclareMathSymbol{\slupDelta}{\mathalpha}{itgreek}{"01} - \DeclareMathSymbol{\slupOmega}{\mathalpha}{itgreek}{"0A} - -%%%%%%%%%%%%%%%%%%% Lowercase Greek Italic %%%%%%%%%%%%%%%%%%%%%%%%%% -\DeclareMathSymbol{\slalpha}{\mathalpha}{itgreek}{"0B} -\DeclareMathSymbol{\slbeta}{\mathalpha}{itgreek}{"0C} -\DeclareMathSymbol{\slgamma}{\mathalpha}{itgreek}{"0D} -\DeclareMathSymbol{\sldelta}{\mathalpha}{itgreek}{"0E} -\DeclareMathSymbol{\slepsilon}{\mathalpha}{itgreek}{"0F} -\DeclareMathSymbol{\slzeta}{\mathalpha}{itgreek}{"10} -\DeclareMathSymbol{\sleta}{\mathalpha}{itgreek}{"11} -\DeclareMathSymbol{\sltheta}{\mathalpha}{itgreek}{"12} -\DeclareMathSymbol{\sliota}{\mathalpha}{itgreek}{"13} -\DeclareMathSymbol{\slkappa}{\mathalpha}{itgreek}{"14} -\DeclareMathSymbol{\sllambda}{\mathalpha}{itgreek}{"15} -\DeclareMathSymbol{\slmu}{\mathalpha}{itgreek}{"16} -\DeclareMathSymbol{\slnu}{\mathalpha}{itgreek}{"17} -\DeclareMathSymbol{\slxi}{\mathalpha}{itgreek}{"18} -\DeclareMathSymbol{\slpi}{\mathalpha}{itgreek}{"19} -\DeclareMathSymbol{\slrho}{\mathalpha}{itgreek}{"1A} -\DeclareMathSymbol{\slsigma}{\mathalpha}{itgreek}{"1B} -\DeclareMathSymbol{\sltau}{\mathalpha}{itgreek}{"1C} -\DeclareMathSymbol{\slupsilon}{\mathalpha}{itgreek}{"1D} -\DeclareMathSymbol{\slphi}{\mathalpha}{itgreek}{"1E} -\DeclareMathSymbol{\slchi}{\mathalpha}{itgreek}{"1F} -\DeclareMathSymbol{\slpsi}{\mathalpha}{itgreek}{"20} -\DeclareMathSymbol{\slomega}{\mathalpha}{itgreek}{"21} -\DeclareMathSymbol{\slvarepsilon}{\mathalpha}{itgreek}{"22} -\DeclareMathSymbol{\slvartheta}{\mathalpha}{itgreek}{"23} -\DeclareMathSymbol{\slvarpi}{\mathalpha}{itgreek}{"24} -\DeclareMathSymbol{\slvarrho}{\mathalpha}{itgreek}{"25} -\DeclareMathSymbol{\slvarsigma}{\mathalpha}{itgreek}{"26} -\DeclareMathSymbol{\slvarphi}{\mathalpha}{itgreek}{"27} -} - -% -\medmuskip=4mu -\thickmuskip=5mu -% -\pagestyle{headings} -\pagenumbering{arabic} -% -%\makeindex -\frenchspacing -\sloppy -% -%\ifprinter -% \voffset-6.03pc -% \hoffset-6.03pc -%\else - \voffset-1pc - \hoffset-1.5pc -%\fi -% -\endinput diff --git a/Publication/tex_manuscript/manuscript.tex b/Publication/tex_manuscript/manuscript.tex deleted file mode 100644 index 8ad5b3338322a9401a15633d9084875d911bacf2..0000000000000000000000000000000000000000 --- a/Publication/tex_manuscript/manuscript.tex +++ /dev/null @@ -1,548 +0,0 @@ -\documentclass{clv3} - -\usepackage{hyperref} -\usepackage{xcolor} -\definecolor{darkblue}{rgb}{0, 0, 0.5} -\hypersetup{colorlinks=true,citecolor=darkblue, linkcolor=darkblue, urlcolor=darkblue} - -\bibliographystyle{compling} - -% test compatibility with algorithmic.sty -%\usepackage{algorithmic} - -\issue{1}{1}{2016} - -%Document Head -\dochead{Journal of Computational Linguistics} - - -\runningtitle{Science Accessibility Project} - -\runningauthor{Russell J. Jarvis} - -\begin{document} - -\title{Science Accessibility Project} - -\author{Russell J. Jarvis\thanks{Tempe, ASU. E-mail: rjjarvis@asu.edu.}} -\affil{School of Life Sciences ASU} - -\author{Another Author\thanks{PITC Building}} -\affil{Publishing / SPi} - -\author{And Another Author} -\affil{Publishing / SPi} - -\author{And Yet Another} -\affil{Publishing / SPi} - -\maketitle - -\begin{abstract} -This article describes how we scrapped a wide variety of written word from the internet, and then analysed scrapped samples, in order to better charecterize the readability of scientific and non scientific writings. -\end{abstract} - -\section{The issue of Irreducible Complexity} -It has been observed that the readability of scientific texts is declining with increased time[]. Decreasing readability, is usually due to increased writting complexity. One could argue that scientific writing is increasing in complexity, as this reflects, the obvious advances in science methods and analysis, which increase the complexity in the act of simply doing science. Afterall manys cientific advances add details to existing complex models and imaging techniques.\\ -\\ -Given that the act of science is becoming more complex, is it reasonable to argue that all scientific writing needs to be complex in order to capture irreducible complexity? We argue that there are some great counter examples to the idea of irreducible complexity.\\ -\\ - -\subsubsection{}keywords} -Bag of words analysis, naive Bayes. - -\section{Introduction} -Non-scientific writing typically exceeds genuine scientific writing in one important criteria: in contrast to genuine science non-science ideas are often expressed with a more accessible writing style. We believe non-science writing occupies a more accessible style niche, that academic science writing should also occupy. We show that we can use machine learning to predict the status of writing: popular culture writing, opinionative writing, and traditional science, by first scrapping a large variety of web documents, and then classifying among the different writing types. By predicting which of the several different writing types any writing piece occupies, we are able to characterize among different writing niches.\\ -\\ -Multiple stake holders can benefit when science is communicated with lower complexity expression of ideas. With lower complexity science writing, knowledge would be more readily transferred into public awareness, additionally, digital organization of facts derived from journal articles would occur more readily, as successful machine comprehension of documented science would likely occur with less human intervention.\\ -\\ -Objectively describing the different character of the different writing styles will allow us to prescribe how, to shift academic science writing into a more accessible niche, where science can more aggressively compete with pseudo-science, and blogs, facilitating greater knowledge transference, at a moment in history when public awareness is critically at stake.\\ -\\ -The accessibility of written word can be approximated by a computer program that reads over the text, and guesses the mental difficulty, associated with comprehending a written document. The computer program maps reading difficult onto a quantity that represents the number of years of schooling needed to decode the language in the document. For convenience, we can refer to the difficulty associated with the text as the 'complexity' of the document. - - -\section{Introduction Old} - -Non-scientific writing typically exceeds genuine scientific writing in one important criteria: in contrast to genuine science non-science ideas are often expressed using a less complex more engaging writing style. Yet, multiple stake holders could benefit if science was communicated using a less complex expression of ideas. Using less complicated science writing, knowledge could be more readily transferred into public awareness, also, and machine reading machine organization, and machine action on factual information derived from journal articles could occur more readily. - -We believe non-science writing occupies a style niche, that academic science writing should also occupy. We show that we can blindly predict the status of writing: popular culture writing, opinionative writing, and traditional science, by using machine learning to classify the different writing types. By predicting which of the several different writing types any writing piece occupies, we are able to characterize among different writing niches. - -Objectively describing the different character of the different writing styles will allow us to prescribe how, to shift academic science writing into a more accessible niche, where science can more aggressively compete with pseudo-science, and blogs, facilitating greater knowledge transference, at a moment in history when public awareness is critically at stake. - - -\section{Methods} - -We built a web-scraping and written text analysis infrastructure by extending many existing Free and Open Source (FOS) tools. The Web scrapping interface employs several common python modules, chief among those was: Google Scrape, Beautiful Soup and Selenium. The Text analysis infrastructure was based on the two substantial code bases Text-stat, which contained measures of text reading level (complexity), and NLTK (the Natural Language Processing Tool Kit), which contained measures of text subjectivity, and sentiment type. - -The scraping, and analysis work we performed, rested on top of a large hierarchy of software dependencies. However, it is increasingly well understood, that, dependency heavy software stacks act as a significant impediment to investigating or reproducing any product of digital, scholary research. In order to address this problem and to enhance the reproducibility of our approach, we created the necessary web-scrapping, and analysis infrastructure inside a dedicated Docker Container. - -Reproducibility is burdened by the technical task of satisfying each software dependencies necessary to recreate a digital scientific experiment. Our position, of starting with from a cloned software environment, will mitigate, the burden of duplicating our digital research environment. That is why we have used a Docker file, and associated Docker container together, as they act as self-documenting and extremely portable software environment clone. - -Initially we created two different, unrelated and broad ranging lists of scientific queries. The first type of query was predominantly cultural in nature, or world view related. The second set of queries represented gains in knowledge about physical entities or physical processes in the world. We were interested in scientific, and pseudo-scientific writing.\\ - -There were two types of writing that we actively excluded from our analysis, those were websites expressed in a non-English language, and also websites, that were highly commercial in nature. These were websites advertisements, of consumer goods, and online shopping generally. These websites, utilizing wording, that significantly biases text stat metrics. Webpages of less than 400 words, were most often advertisements, and websites of a comercial nature such as Amazon shopping.\\ - -Non English, websites were excluded for the simple reason that they are not amenable to Textstat, and NLTK tools, however, even if this was not the case, it is also known, that there are significant differences in per-word information entropy between different natural languages. - -\subsection{Search Engine Queries:} -The first two lists of queries were chosen to be belong to an overt set of exclusively scientific or cultural search terms. A third list of terms was designed to be deliberately ambiguous. - -\subsubsection{Science Queries:} -The three lists of search engine queries were as implemented as follows: science engine queries: 'evolution', 'photo-sysnthesis' ,'Transgenic', 'GMO', 'climate change', 'cancer', 'Vaccines', 'Genetically Modified Organism', ‘differential equation’,"psycho-physics","soma†- -\subsubsection{Cultural queries were as follows:} 'reality TV', 'prancercise philosophy', 'play dough delicious deserts', 'unicorn versus brumby', 'football soccer' , god fearing. - -As discussed we also designed ambiguous queries which were equally likely return content that was either scientific, or non scientific in nature. The reason for doing this was to provide a challenge for the classification algorithm. - -\subsubsection{Ambiguous Queries, were as follows:} - -"the singularity","skynet","","killer robot","franken-science","Frankenstein,â€the God Delusion","god does not play dice", "the selfish gene","political science", ", "requim for a spike" - - -After scraping across the two different lists were performed, the resulting queries were filtered, according to specific sets of criteria. As stated previously, we discarded from our analysis, web pages that were not written in English, since we did not have the necessary tools, to analyze them. - -\subsection{Text Metrics:} -A list of metrics applied to downloaded corpus include: TextStat, which was used to measure word complexity (an average of several important word complexity metrics, such as the Gunning Fog measure of reading level), LZW compression-ratio, de-compression ratio, sentiment analysis, subjectivity analysis, and page rank. - -Compression ratios were used to investigate the notion, that well written scientific writing, might simply be lower in information entropy, and an information theoretic analysis, can be used to both to better characterize, and corroborate the findings of other reading word complexity metrics - -\subsection{Reference Texts:} - -Some reference texts were used, as a means of providing contrast, and context, to data points, among our web scraping derived corpus. The Upgoer5 is a library, of scientific texts, written with the aid of a text editor, which imposes, that output documents are exclusively comprised by, only the 10,000 most commonly occurring English words. - -The Post Modern Essay Generator (PMEG), embodies an artificial English synthesis technique. Documents that are output from the website, consist of sentences that obey the rules of written English, however there are no restraints governing the semantic conceptual references in the sentences. If any particular sentence in a PMEG document, embodies an objective meaning, it is only by chance. Output from PMEG reads as highly coded, and vague. - -The reference data points in some ways provide further validation to the existing text metric tools, as we needed to verify that word readability metrics provided results that were consistant with prior assumptions about known texts. For instance, the corpus derived from upgoer editor, should require a very low reading grade level to understand. Texts, from the PMEG should require a very high reading level to understand, and cumulative entropy of such texts should be high. - - -\verb|\documentclass[bookreview,manuscript]{clv3}| - -%\subsection{Default Option} - -\begin{deflist} -\item[bookreview] Sets the article layout for Book Review. -\item[brief] Sets the article layout for Briefly Noted. -\item[discussion] Sets the article layout for Squibs and Discussions. -\item[pubrec] Sets the article layout for Publication Received. -\item[shortpaper] Sets the article layout for Short Paper. -\item[manuscript] Sets the baseline spacing to double space. This -option can be used in combination with other options. -\end{deflist} - -By not declaring any option in the \verb|\documentclass| command the class file -will automatically set to standard article layout. - -\section{Results} - -We created a total list all of the different queries obtained, from combining both the list of cultural queries, and scientific queries, and then applied such queries exclusively to the Wikipedia, search interface. We take the result of evaluating this pool of queries, and then plot the resulting pool of queries versus page rank. The Wikipedia, actually showed a small but consistant preference for web pages of higher complexity. - -%\begin{figure} -% \centering -% \includegraphics[width=0.7\linewidth]{screenshot001} -% \caption{} -% \label{fig:figure1} -%\end{figure} - -% - -The plots below may appear to look a bit unprofessional, as not all data points have error bars. The reason for this, is pandas+seaborne allows you to plot on the same axis multiple sample data points, and single sampled data points. Only of the five mentioned search engines was made to sample beyond page rank 10, but all five sampled under page rank 10. - -%\begin{figure} -% \centering -% \includegraphics[width=0.7\linewidth, height=0.7\textheight]{figure2} -% \caption{} -% \label{fig:figure2} -%\end{figure} -% - -The same plot but with mean and std deviation plots when multiple samples per page rank are available. When we plotted the Wikipedia queries, where reading (text-stat standard) level is instead plotted against page rank, we again see that there is a slight trend towards increasing text complexity with decreasing page rank. - - -If instead we consider how resistant Wikipedia pages are to compression, we see that low page rank pages, are more resistant to compression. This finding recapitulates the same result as the above figure, where increasing Wikipedia page rank slightly decreases text complexity. - -When aggregated search results between all possible search engines, and then plotting page rank versus complexity, for particular types of search terms, there was a strong positive correlation between page rank, and reading level. - -In the case of GMO, and Genetically Modified Organism, positive increasing trends where observed - -The title page is created using the standard \LaTeX\ command \verb|\maketitle|. -Before this command is declared, the author must declare all the data which are -to appear in the title area.\footnote{$\backslash$maketitle is the command to execute all the title page information.} - -\subsection{Volume, Number and Year} - -The command \verb|\issue{vv}{nn}{yyyy}| is used in declaring the volume, number -and year of the article. The first argument is for the volume, the second argument -is for the issue number. Volume and Issue number will appear on the even page -running head opposite the journal name. The third argument is for the Year which -will appear in the copyright line at the bottom of the title page. - -\subsection{Document Head} - -Document head is produced with the command \verb|\dochead{Document Head}|. Doc head -will output differently, or may not appear at all, depending on the option used in the -documentclass. - -\subsection{Paper Title} - -The paper title is declared like: \verb|\title{Computer Linguistic Article}| -in the usual \LaTeX manner. Line breaks may be inserted with (\verb|\\|) to equalize -the length of the title lines. - -\subsection{Authors} -The name and related information for authors is declared with the \verb|\author{}| command. - -The \verb|\thanks{}| command produces the ``first footnotes.''. \LaTeX\ \verb|\thanks| -cannot accommodate multiple paragraphs, author will have to use a separate \verb|\thanks| -for each paragraph. - -The \verb|\affil{}| command produces the author affiliations that appears right under -the author's name. - -\subsection{Running Headers} -The running heads are declared with the \verb|\runningtitle{Running Title}| for the -journal name and \verb|\runningauthor{Author's Surname}| for author. These information -will appear on the odd pages. For {\tt bookreview} option, odd page running head is -automatically set to "Book Reviews". Even page running head is default to Computational -Linguistics opposite volume and issue number. - -\subsection{History Dates} - -History dates are declared with \verb|\historydates{Submission received:...}|. This data -should contain Submission, Revised and Accepted date of the article. History dates appear -at the footnote area of title age. - - -\section{Abstract} - -Abstract is the first part of a paper after \verb|\maketitle|. Abstract text is -placed within the abstract environment: - -\begin{verbatim} -\begin{abstract} -This is the abstract text . . . -\end{abstract} -\end{verbatim} - -\section{Section Headings} - -Section headings are declared in the usual \LaTeX\ way via \verb|\section{}|, -\verb|\subsection{}|, \verb|\subsubsection{}|, and \verb|\paragraph{}|. The -first 3 levels of section head will have Arabic numbering separated -by period. The \verb|\paragraph{}| section will have the title head in Italics -and at the same line with the first line of succeeding paragraph. - -\section{Citations} -Citations in parentheses are declared using the \verb|\cite{}| -command, and appear in the text as follows: -This technique is widely used \cite{woods}. -The command \verb|\citep{}| (cite parenthetical) is a synonym of \verb|\cite{}|. - -Citations used in the sentence are declared using the \verb|\namecite{}| -commands, and appear in the text as follows: -\namecite{woods} first described this technique. -The command \verb|\citet{}| (cite textual) is a synonym of \verb|\namecite{}|. - -This style file is designed to be used with the BibTeX -style file \verb|compling.bst|. Include the command -\verb|\bibliographystyle{compling}| in your source file. - -Citation commands are based on the \verb|natbib| package; -for details on options and further variants of the commands, -see the \verb|natbib| documentation. In particular, options -exist to add extra text and page numbers. For example, -\verb|\cite[cf.][ch.\ 1]{winograd}| yields: \cite[cf.][ch.\ 1]{winograd}. - -The following examples illustrate how citations appear both in the text -and in the references section at the end of this document. -\begin{enumerate} -\item Article in journal: - \namecite{akmajian}; - \namecite{woods}. -\item Book: - \namecite{altenberg}; - \namecite{winograd}. -\item Article in edited collection/Chapter in book: - \namecite{cutler}; - \namecite{sgall}; - \namecite{jurafsky}. -\item Technical report: - \namecite{appelt}; - \namecite{robinson}. -\item Thesis or dissertation: - \namecite{baart}; - \namecite{spaerckjones}; - \namecite{cahn}. -\item Unpublished item: - \namecite{ayers}. -\item Conference proceedings: - \namecite{benoit}. -\item Paper published in conference proceedings: - \namecite{krahmer}; - \namecite{Copestake2001}. -\end{enumerate} - - -\section{Definition with Head} - -Definition with head is declared by using the environment: -\\ -\begin{verbatim} -\begin{definition} -Definition text. . . -\end{definition} -\end{verbatim} - -This environment will generate the word {\bf ``Definition 1''} in bold on separate -line. The sequence number is generated for every definition environment. Definition -data will have no indention on the first line while succeeding lines will have hang -indention. - -\section{Lists} - -The usual \LaTeX\ itemize, enumerate and definition list environments are used -in CLV3 style. - -To produce Numbered List use the environment: - -\begin{verbatim} -\begin{enumerate} -\item First numbered list item -\item Second numbered list item -\item Third numbered list item -\end{enumerate} -\end{verbatim} - -To produce Bulleted List use the environment: - -\begin{verbatim} -\begin{itemize} -\item First bulleted list item -\item Second bulleted list item -\item Third bulleted list item -\end{itemize} -\end{verbatim} - -To produce Definition List use the environment: - -\begin{verbatim} -\begin{deflist} -\item[First] Definition list item. . . -\item[Second] Definition list item. . . -\item[Third] Definition list item. . . -\end{deflist} -\end{verbatim} - -Additional list environment were also defined such as Unnumbered, Arabic and Alpha lists. - -Unnumbered List is the list where item labels are not generated. To produce Unnumbered List use the environment: - -\begin{verbatim} -\begin{unenumerate} -\item First list item -\item Second list item -\item Third list item -\end{unenumerate} -\end{verbatim} - -To produce Arabic List use the environment: - -\begin{verbatim} -\begin{arabiclist} -\item First arabic list item -\item Second arabic list item -\item Third arabic list item -\end{arabiclist} -\end{verbatim} - -To produce Alpha List use the environment: - -\begin{verbatim} -\begin{alphalist} -\item First alpha list item -\item Second alpha list item -\item Third alpha list item -\end{alphalist} -\end{verbatim} - -All the list environments mentioned above can be nested with each other. - -\subsection{Other List Types} - -\subsubsection{Outline List or Example List} - -\begin{verbatim} -\begin{exlist} -\item First outline list item. . . -\item Second outline list item. . . -\item Third outline list item. . . -\end{exlist} -\end{verbatim} - -\subsubsection{Output Formula or Algorithm} - -\begin{verbatim} -\begin{algorithm} -\item[Step 1] First item. . . -\item[Step 2] Second item. . . -\end{algorithm} -\end{verbatim} - -% test compatibility with algorithmic.sty -%\begin{algorithmic} -%\STATE i -%\end{algorithmic} - -See sample on the {\tt COLI-template.pdf}. - -\section{Word Formula or Displayed Text} - -Word formula and displayed text are text that should be displayed in a -separate line without indention. This are achieved by using the environment: - -\begin{verbatim} -\begin{displaytext} -This is a sample of displayed text . . . -\end{displaytext} -\end{verbatim} - -\section{Dialogue} - -Dialogue text are presentation of people's conversation. These will be presented -on a separate line where each dialogue starts with the name of speaker, followed by -colon. Succeeding lines will be hang indented. To produce Dialogue use the environment: -\\ -\begin{verbatim} -\begin{dialogue} -Speaker 1: dialogue. . . - -Speaker 2: dialogue. . . -\end{dialogue} -\end{verbatim} - - -\noindent Please make sure to insert an empty line between dialogues. - -\section{Extracts} - -Extract text acts like quote, where left and right margins are indented. -To produce Extract use the environment: - -\begin{verbatim} -\begin{extract} -This is an example of Extract text. . . -\end{extract} -\end{verbatim} - -\noindent See sample on the {\tt COLI-template.pdf}. - -\section{Theorem-like Environments} - -There are several theorem-like environments defined in CLV3 class file. Theorem-like -environments generate the name of the theorem as label, and counter number in bold. - -\subsection{Example} - -To produce Example use the environment: - -\begin{verbatim} -\begin{example} -This is Example text. . . -\end{example} -\end{verbatim} - -\subsection{Lemma} - -To produce Lemma use the environment: - -\begin{verbatim} -\begin{lemma} -Lemma text. . . -\end{lemma} -\end{verbatim} - -This produces the following output: -\begin{lemma}\label{lem} -Lemma text. -\end{lemma} -A small vertical space separates the end of the lemma -from the following text. - -\subsection{Theorem} - -To produce Theorem use the environment: - -\begin{verbatim} -\begin{theorem} -Theorem text. . . -\end{theorem} -\end{verbatim} - -This produces the following output: -\begin{theorem}\label{thm} -Theorem text. -\end{theorem} -\noindent -A small vertical space separates the end of the theorem -from the following text. - -\subsection{Proof} - -The proof environment produces a square at the end of the text. To produce Proof -use the environment: - -\begin{verbatim} -\begin{proof} -Proof text. . . -\end{proof} -\end{verbatim} - -This produces the following output: -\begin{proof}\label{proof} -Proof text. -\end{proof} -A small vertical space separates the end of the lemma -from the following text. - -\subsection{Unnumbered Theorem-like Environments} - -There are also unnumbered version of some of the theorem-like environments. -These are declared by using its asterisked version. Here are the three -unnumbered version of theorem-like environments: - -\begin{verbatim} -\begin{theorem*} -Unnumbered theorem text. . . -\end{theorem*} -\end{verbatim} - -\section{Appendix} - -Appendix is declared by issuing the command \verb|\appendix|. This will set -the necessary labels to appendix's rule (i.e. (A.1) for equation number). - -Sections inside Appendix are declared using \verb|\appendixsection{}|, which -will produce {\bf Appendix A: Section Title} for first section. - -Equation numbers are automatically set to (A.1), (A.2) and (A.3). Where the letters -follow the current level of Appendix section. So equations on {\bf Appendix B} -will have equation numbers as follow: (B.1), (B.2) and (B.3). - -\section{Acknowledgments} - -Acknowledgments are produce by using the environment: -\\ -\begin{verbatim} -\begin{acknowledgments} -Acknowledgments text. . . -\end{acknowledgments} -\end{verbatim} - -\section{Others} - -Other items such as Equations, Figures, Tables and References are produced in -the standard \LaTeX\ typesetting. - -\starttwocolumn -\bibliography{compling_style} - -\end{document} diff --git a/README.md b/README.md index bf4a1661e46eb3e5d99a9a862de9ff43f5636283..5ab226ea04b8de05d0c7d15fd26f6e4e6a25c71f 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,8 @@ [](https://travis-ci.com/russelljjarvis/ScienceAccessibility) -[](https://mybinder.org/v2/gh/russelljjarvis/ScienceAccessibility/dev) +[](https://mybinder.org/v2/gh/russelljjarvis/simple_science_access.git/master) -[Also see this short publication document]( -https://github.com/russelljjarvis/ScienceAccessibility/blob/dev/comparing_the_written_language_of_scientific_and_non_scientific_sources.md) +[Also see this short publication document](https://github.com/russelljjarvis/ScienceAccessibility/blob/master/manuscript.md) ## Overview Understanding a big word is hard, so when big ideas are written down with lots of big words, the large pile of big words is also hard to understand. diff --git a/compete.png b/compete.png new file mode 100644 index 0000000000000000000000000000000000000000..2af439fcc09571ab0e1761878af8939420c3da4e Binary files /dev/null and b/compete.png differ diff --git a/for_joss_standard_dev.png b/for_joss_standard_dev.png new file mode 100644 index 0000000000000000000000000000000000000000..291b688f5c7f9d1f93096c66a26f384bb65ff157 Binary files /dev/null and b/for_joss_standard_dev.png differ diff --git a/paper.bib b/paper.bib new file mode 100644 index 0000000000000000000000000000000000000000..4826d26ba5f104a1b79d586c7e8cba9a809acee0 --- /dev/null +++ b/paper.bib @@ -0,0 +1,29 @@ +## References + +[1] Kutner, Mark, Elizabeth Greenberg, and Justin Baer. "A First Look at the Literacy of America's Adults in the 21st Century. NCES 2006-470." The National Center for Education Statistics. (2006). + +[2] Plavén-Sigray, Pontus, Granville James Matheson, Björn Christian Schiffler, and William Hedley Thompson. "The readability of scientific texts is decreasing over time." Elife. (2017). + +[3] Kincaid JP, Fishburne RP Jr, Rogers RL, Chissom BS. "Derivationof new readability formulas (Automated Readability Index, FogCount and Flesch Reading Ease Formula) for Navy enlistedpersonnel".The Institue for Simulation and Training, (1975): 8–75. + +[4] Soldatova, Larisa, and Maria Liakata. "An ontology methodology and cisp-the proposed core information about scientific papers." JISC Project Report (2007). + +[5] Kuhn, Tobias. "The controlled natural language of randall munroe’s thing explainer." International Workshop on Controlled Natural Language. Springer, Cham, (2016). + +[6] Bulhak, Andrew C. "On the simulation of postmodernism and mental debility using recursive transition networks." Monash University Department of Computer Science (1996). + +[7] Gopen, George D., and Judith A. Swan. "The science of scientific writing." American Scientist 78, no. 6 (1990): 550-558. + + +@article{Pearson:2017, + Adsnote = {Provided by the SAO/NASA Astrophysics Data System}, + Adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170304627P}, + Archiveprefix = {arXiv}, + Author = {{Pearson}, S. and {Price-Whelan}, A.~M. and {Johnston}, K.~V.}, + Eprint = {1703.04627}, + Journal = {ArXiv e-prints}, + Keywords = {Astrophysics - Astrophysics of Galaxies}, + Month = mar, + Title = {{Gaps in Globular Cluster Streams: Pal 5 and the Galactic Bar}}, + Year = 2017 +} diff --git a/paper.md b/paper.md new file mode 100644 index 0000000000000000000000000000000000000000..046ab01fd69422c8984282bf042abd2bbdd8a368 --- /dev/null +++ b/paper.md @@ -0,0 +1,98 @@ +title: 'Exploring the Readability of Scientific and Non-scientific Sources' + +tags: + - readability + - science communication + - science writing + +authors: + - name: Russell Jarvis + affiliation: PhD Candidate Neuroscience, Arizona State University + - name: Patrick McGurrin + affiliation: National Institute of Neurological Disorders and Stroke, National Institutes of Health + - name: Shivam Bansal + affiliation: Senior Data Scientist, H2O.ai + - name: Bradley G Lusk + affiliation: Science The Earth; Mesa, AZ 85201, USA + +date: 20 October 2019 + +bibliography: paper.bib + +## Summary +To ensure that writing is accessible to the general population, wauthors must consider the length of written text, as well as sentence structure, vocabulary, and other language features [@Kutner:2006]. While popular magazines, newspapers, and other outlets purposefully cater language for a wide audience, there is a tendency for academic writing to use more complex, jargon-heavy language [@Plavén-Sigray:2017]. + +In the age of growing science communication, this tendency for scientists to use more complex language can carry over when writing in more mainstream media, such as blogs and social media. This can make public-facing material difficult to comprehend, undermining efforts to communicate scientific topics to the general public. + +To address this, we created a tool to analyze complexity of a given scientist’s work relative to other writing sources. The tool first quantifies existing text repositories with varying complexity, and subsequently uses this output as a reference to contextualize the readability of user-selected written work. + +While other readability tools currently exist to report the complexity of a single document, this tool uses a more data-driven approach to provide authors with insights into the readability of their published work with regard to other text repositories. This will enable monitoring of the relative complexity of their writing, guiding readability improvements to online material. We hope it will help scientists interested in science writing make their published work more accessible to a broad audience, and lead to an improved global communication and understanding of complex topics. + +## Methods + +### Text Analysis Metrics +We built a web-scraping and text analysis infrastructure by extending many existing Free and Open Source (FOS) tools, including Google Scrape, Beautiful Soup, and Selenium. + +We first query a number of available text repositories with varying complexity: + +| Text Source | Mean Complexity | Description | +|----------|----------|:-------------:| +| Upgoer 5 | 6 | library using only the 10,000 most commonly occurring English words | +| Wikipedia | 14.9 | free, popular, crowdsourced encyclopedia | +| Post-Modern Essay Generator (PMEG) | 16.5 | generates output consisting of sentences that obey the rules of written English, but without restraints on the semantic conceptual references | +| Art Corpus | 18.68 | library of scientific papers published in The Royal Society of Chemistry | + +The author's name entered by the user is then queried through Google Scholar, returning the results from articles containing the author's name. + +The Flesch-Kincaid readability score [@Kincaid:1975] - the most commonly used metric to assess readability - is then used to quantify the complexity of all items. + +### Plot Information +The resulting plot is a histogram binned by readability score, initially populated exclusively by the ART corpus [@Soldatova:2007] data. We use this data because it is a pre-established library of scientific papers. + +The mean readability scores of Upgoer5 [@Kuhn:2016], Wikipedia, and PMEG [@Bulhak:1996] libraries are labeled on the plot to contextualize the complexity of the ART corpus data with other text repositories of known complexity. + +We also include mean readability scores from two scholarly reference papers, Science Declining Over Time [@Kutner:2006] and Science of Writing [@Gopen:1990], which discuss writing to a broad audience in an academic context. We use these to demonstrate the feasibility of discussing complex content using more accessible language. + +Lastly, the mean reading level of the entered author's work, as well as the maximum and minimum scores, are displayed on the plot. Thus, the resulting graph displays the mean writing complexity of the entered author against a distribution of ART corpus content as these other text repositories of known complexity. + +### Reproducibility +A Docker file and associated container together serve as a self-documenting and portable software environment clone to ensure reproducibility given the hierarchy of software dependencies. + +## Results +Data are available here: [Open Science Framework data repository](https://osf.io/dashboard). + +### Setting Up the Environment (Developer) +A docker container can be downloaded from Docker hub or built locally. +```BASH +docker login your_user_name@dockerhub.com +docker pull russelljarvis/science_accessibility:slc +mkdir $HOME/data_words +docker run -it -v $HOME/data_words russelljarvis/science_accessibility:slc +``` +### Running a Simple Example (User) +After Docker installation on your Operating System, run the following commands in a BASH terminal. +```BASH +docker pull russelljarvis/science_accessibility_user:latest +``` +Here is a python example to search for results from academic author Richard Gerkin. When inside the docker container, issue the command: +```BASH +mkdir $HOME/data_words +docker run -v $HOME/data_words russelljarvis/science_accessibility_user "R Gerkin" +``` + + +This tool also allows the entry of two author names to view whose text has the lowest average reading grade level. Public competitions and leader boards often incentivize good practices, and may also help to improve readability scores over time. + + + + +## Future Work +We have created a command line interface (CLI) for using this tool. However, we aim to expand this to a web application that is more user friendly to those less familiar with coding. + +The readability of ART Corpus is comparable to that of other scientific journals [2], but incorporating a larger repository of journal articles of various topics, and perhaps even overlaying them on the plot, would nonetheless be beneficial. In addition, adding search engine queries of different, broad-ranging lists of search would also help to further contextualize the readability of published scientific work with regard to topics engaged by the public on a more daily basis. + +While the Flesch-Kincaid readability score is the most common readability metric, including other metrics, such as information entropy, word length, and compression ratios, subjectivity, and reading ease scores, will serve to provide more robust feedback to the user with regard to the complexity and structure of their written text. + +Finally, we believe that the idea public competition could be a fun and interactive way for scientists to improve their science communication skills, and believe there is room for expansion here as well. + +## References