diff --git a/app.py b/app.py index d646ad122fbcdde7351171bf3e92ebf5052b61c8..c39d5e4f95726d220d2611d3003aba3cd3b255d5 100644 --- a/app.py +++ b/app.py @@ -189,6 +189,7 @@ def clouds_big_words(sci_corpus): """ This word cloud is based on the largest words found in the mined text. The biggest words here are likely detracted from readability. + """ ) big_words, word_counts_fz, fig_wl = art_cloud_wl(sci_corpus) @@ -204,7 +205,7 @@ def main(): author_name = st.text_input("Enter Author Name:") st.markdown( """Entering a middle initial followed by a period '.' may improve search accuracy.""" - ) + st.markdown("-----") ar = None @@ -236,6 +237,7 @@ def main(): ), ) + if genre =="defaults": scatter_plots = True tables = True @@ -313,13 +315,7 @@ def main(): #fig = go.Figure(data=[go.Pie(labels=labels, values=values, hole=0.3)]) #st.write(fig) - - # df_concat_art = pd.concat([art_df, df_author]) - # fig_art = px.box( - # df_concat_art, x="Origin", y="Reading_Level", points="all", color="Origin" - # ) - # st.write(fig_art) - + df0 = df_concat_art st.markdown("-----") @@ -391,15 +387,13 @@ def main(): Kutner M, Greenberg E, Baer J. National Assessment of Adult Literacy (NAAL): A First Look at the Literacy of America’s Adults in the 21st Century (NCES 2006-470). Washington, DC: National Center for Education Statistics; 2005. """ ) - - st.markdown("\n\n") st.markdown("-----") st.markdown(""" ### Word Frequency Word Cloud""") """ This word cloud is based on the most common words found in the mined text. - It is for humans to validate the text mining work. As the word cloud - frequency often matches a writer's own knowledge of concepts in their work, + It is for humans to validate the text mining work. As the word cloud + frequency often matches a writer's own knowledge of concepts in their work, it may also help instill trust in text-mining results. """ @@ -489,8 +483,6 @@ def main(): "author_score": author_score, "sci_corpus": sci_corpus, } - st.markdown("\n") - st.markdown("-----") st.markdown("\n\n\n\n")