From cec8f555d7dcc18f3a629c8fee65dd5521be9eef Mon Sep 17 00:00:00 2001 From: Russell Jarvis <russelljarvis@protonmail.com> Date: Fri, 10 Dec 2021 14:49:54 +1100 Subject: [PATCH] update for web app --- app.py | 42 +++++++++++++++++++++--------------------- 1 file changed, 21 insertions(+), 21 deletions(-) diff --git a/app.py b/app.py index 9b35d06..6183fd2 100644 --- a/app.py +++ b/app.py @@ -613,31 +613,31 @@ def main(): np.mean(average_reading_time), author_name, len(ar) ) ) - if "sentiment" in genre: - sentiment = [] - uniqueness = [] - for block in trainingDats: - uniqueness.append(block["uniqueness"]) - sentiment.append(block["sp"]) - temp = np.mean(sentiment) < np.mean([r["sp"] for r in ar]) - - st.markdown("""### Sentiment""") - st.markdown( - """It is {} that the mean sentiment of {}'s writing is more postive relative to that of Readability of the ART Corpus. - """.format( - temp, author_name - ) - ) + #if "sentiment" in genre: + # sentiment = [] + # uniqueness = [] + # for block in trainingDats: + # uniqueness.append(block["uniqueness"]) + # sentiment.append(block["sp"]) + # temp = np.mean(sentiment) < np.mean([r["sp"] for r in ar]) + + # st.markdown("""### Sentiment""") + # st.markdown( + # """It is {} that the mean sentiment of {}'s writing is more postive relative to that of Readability of the ART Corpus. + # """.format( + # temp, author_name + # ) + # ) - temp = "{0} positive sentiment".format(author_name) - labels = [temp, "ART Corpus positive sentiment"] - values = [np.mean([r["sp"] for r in ar]), np.mean(sentiment)] + # temp = "{0} positive sentiment".format(author_name) + # labels = [temp, "ART Corpus positive sentiment"] + # values = [np.mean([r["sp"] for r in ar]), np.mean(sentiment)] # urlDat["reading_time"] - fig = go.Figure(data=[go.Pie(labels=labels, values=values, hole=0.3)]) - st.write(fig) + # fig = go.Figure(data=[go.Pie(labels=labels, values=values, hole=0.3)]) + # st.write(fig) - st.markdown("\n") + # st.markdown("\n") if __name__ == "__main__": -- GitLab