diff --git a/file_download_upload.py b/file_download_upload.py
deleted file mode 100644
index f7e74f865e71c2af477ef23a3b1e536908d200ea..0000000000000000000000000000000000000000
--- a/file_download_upload.py
+++ /dev/null
@@ -1,308 +0,0 @@
-import streamlit as st
-import os
-
-
-# NLP Pkgs
-from textblob import TextBlob
-import spacy
-from gensim.summarization import summarize
-
-# Sumy Pkg
-from sumy.parsers.plaintext import PlaintextParser
-from sumy.nlp.tokenizers import Tokenizer
-from sumy.summarizers.lex_rank import LexRankSummarizer
-
-##
-# code to acknowledge and integrate from awesome streamlit
-##
-# Sumy Summarization
-def sumy_summarizer(docx):
-    parser = PlaintextParser.from_string(docx, Tokenizer("english"))
-    lex_summarizer = LexRankSummarizer()
-    summary = lex_summarizer(parser.document, 3)
-    summary_list = [str(sentence) for sentence in summary]
-    result = " ".join(summary_list)
-    return result
-
-
-# Function For Analysing Tokens and Lemma
-@st.cache
-def text_analyzer(my_text):
-    nlp = spacy.load("en")
-    docx = nlp(my_text)
-    # tokens = [ token.text for token in docx]
-    allData = [
-        ('"Token":{},\n"Lemma":{}'.format(token.text, token.lemma_)) for token in docx
-    ]
-    return allData
-
-
-# Function For Extracting Entities
-@st.cache
-def entity_analyzer(my_text):
-    nlp = spacy.load("en")
-    docx = nlp(my_text)
-    tokens = [token.text for token in docx]
-    entities = [(entity.text, entity.label_) for entity in docx.ents]
-    allData = ['"Token":{},\n"Entities":{}'.format(tokens, entities)]
-    return allData
-
-
-def main():
-    """ NLP Based App with Streamlit """
-
-    # Title
-    st.title("NLPiffy with Streamlit")
-    st.subheader("Natural Language Processing On the Go..")
-
-    # Tokenization
-    if st.checkbox("Show Tokens and Lemma"):
-        st.subheader("Tokenize Your Text")
-
-        message = st.text_area("Enter Text", "Type Here ..")
-        if st.button("Analyze"):
-            nlp_result = text_analyzer(message)
-            st.json(nlp_result)
-
-    # Entity Extraction
-    if st.checkbox("Show Named Entities"):
-        st.subheader("Analyze Your Text")
-
-        message = st.text_area("Enter Text", "Type Here ..")
-        if st.button("Extract"):
-            entity_result = entity_analyzer(message)
-            st.json(entity_result)
-
-    # Sentiment Analysis
-    if st.checkbox("Show Sentiment Analysis"):
-        st.subheader("Analyse Your Text")
-
-        message = st.text_area("Enter Text", "Type Here ..")
-        if st.button("Analyze"):
-            blob = TextBlob(message)
-            result_sentiment = blob.sentiment
-            st.success(result_sentiment)
-
-    # Summarization
-    if st.checkbox("Show Text Summarization"):
-        st.subheader("Summarize Your Text")
-
-        message = st.text_area("Enter Text", "Type Here ..")
-        summary_options = st.selectbox("Choose Summarizer", ["sumy", "gensim"])
-        if st.button("Summarize"):
-            if summary_options == "sumy":
-                st.text("Using Sumy Summarizer ..")
-                summary_result = sumy_summarizer(message)
-            elif summary_options == "gensim":
-                st.text("Using Gensim Summarizer ..")
-                summary_result = summarize(rawtext)
-            else:
-                st.warning("Using Default Summarizer")
-                st.text("Using Gensim Summarizer ..")
-                summary_result = summarize(rawtext)
-
-            st.success(summary_result)
-
-    st.sidebar.subheader("About App")
-    st.sidebar.text("NLPiffy App with Streamlit")
-    st.sidebar.info("Cudos to the Streamlit Team")
-
-    st.sidebar.subheader("By")
-    st.sidebar.text("Jesse E.Agbe(JCharis)")
-    st.sidebar.text("Jesus saves@JCharisTech")
-
-
-if __name__ == "__main__":
-    main()
-
-
-import base64
-import os
-import json
-import pickle
-import uuid
-import re
-
-import streamlit as st
-import pandas as pd
-
-
-def download_button(
-    object_to_download, download_filename, button_text, pickle_it=False
-):
-    """
-    Generates a link to download the given object_to_download.
-    Params:
-    ------
-    object_to_download:  The object to be downloaded.
-    download_filename (str): filename and extension of file. e.g. mydata.csv,
-    some_txt_output.txt download_link_text (str): Text to display for download
-    link.
-    button_text (str): Text to display on download button (e.g. 'click here to download file')
-    pickle_it (bool): If True, pickle file.
-    Returns:
-    -------
-    (str): the anchor tag to download object_to_download
-    Examples:
-    --------
-    download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
-    download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
-    """
-    if pickle_it:
-        try:
-            object_to_download = pickle.dumps(object_to_download)
-        except pickle.PicklingError as e:
-            st.write(e)
-            return None
-
-    else:
-        if isinstance(object_to_download, bytes):
-            pass
-
-        elif isinstance(object_to_download, pd.DataFrame):
-            object_to_download = object_to_download.to_csv(index=False)
-
-        # Try JSON encode for everything else
-        else:
-            object_to_download = json.dumps(object_to_download)
-
-    try:
-        # some strings <-> bytes conversions necessary here
-        b64 = base64.b64encode(object_to_download.encode()).decode()
-
-    except AttributeError as e:
-        b64 = base64.b64encode(object_to_download).decode()
-
-    button_uuid = str(uuid.uuid4()).replace("-", "")
-    button_id = re.sub("\d+", "", button_uuid)
-
-    custom_css = f""" 
-        <style>
-            #{button_id} {{
-                background-color: rgb(255, 255, 255);
-                color: rgb(38, 39, 48);
-                padding: 0.25em 0.38em;
-                position: relative;
-                text-decoration: none;
-                border-radius: 4px;
-                border-width: 1px;
-                border-style: solid;
-                border-color: rgb(230, 234, 241);
-                border-image: initial;
-            }} 
-            #{button_id}:hover {{
-                border-color: rgb(246, 51, 102);
-                color: rgb(246, 51, 102);
-            }}
-            #{button_id}:active {{
-                box-shadow: none;
-                background-color: rgb(246, 51, 102);
-                color: white;
-                }}
-        </style> """
-
-    dl_link = (
-        custom_css
-        + f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br></br>'
-    )
-
-    return dl_link
-
-
-def file_selector(folder_path="."):
-    filenames = os.listdir(folder_path)
-    selected_filename = st.selectbox("Select a file", filenames)
-    return os.path.join(folder_path, selected_filename)
-
-
-def download_pickle():
-
-    # ---------------------
-    # Download from memory
-    # ---------------------
-    if st.checkbox("Download object from memory"):
-        st.write(
-            "~> Use if you want to save some data from memory (e.g. pd.DataFrame, dict, list, str, int)"
-        )
-
-        # Enter text for testing
-        s = st.selectbox(
-            "Select dtype",
-            [
-                "list",  # TODO: Add more
-                "str",
-                "int",
-                "float",
-                "dict",
-                "bool",
-                "pd.DataFrame",
-            ],
-        )
-
-        filename = st.text_input(
-            "Enter output filename and ext (e.g. my-dataframe.csv, my-file.json, my-list.txt)",
-            "my-file.json",
-        )
-
-        # Pickle Rick
-        pickle_it = st.checkbox("Save as pickle file")
-
-        sample_df = pd.DataFrame({"x": list(range(10)), "y": list(range(10))})
-        sample_dtypes = {
-            "list": [1, "a", [2, "c"], {"b": 2}],
-            "str": "Hello Streamlit!",
-            "int": 17,
-            "float": 17.0,
-            "dict": {1: "a", "x": [2, "c"], 2: {"b": 2}},
-            "bool": True,
-            "pd.DataFrame": sample_df,
-        }
-
-        # Display sample data
-        st.write(f"#### Sample `{s}` to be saved to `{filename}`")
-        st.code(sample_dtypes[s], language="python")
-
-        # Download sample
-        download_button_str = download_button(
-            sample_dtypes[s],
-            filename,
-            f"Click here to download {filename}",
-            pickle_it=pickle_it,
-        )
-        st.markdown(download_button_str, unsafe_allow_html=True)
-
-        if st.checkbox("Show code example "):
-            code_text = f"""
-                        s = {sample_dtypes[s]}
-                        download_button_str = download_button(s, '{filename}', 'Click here to download {filename}', pickle_it={pickle_it})
-                        st.markdown(download_button_str, unsafe_allow_html=True)"""
-
-            st.code(code_text, language="python")
-
-    # --------------------------
-    # Select a file to download
-    # --------------------------
-    if st.checkbox("Select a file to download"):
-        st.write("~> Use if you want to test uploading / downloading a certain file.")
-
-        # Upload file for testing
-        folder_path = st.text_input("Enter directory: deafult .", ".")
-        filename = file_selector(folder_path=folder_path)
-
-        # Load selected file
-        with open(filename, "rb") as f:
-            s = f.read()
-
-        download_button_str = download_button(
-            s, filename, f"Click here to download {filename}"
-        )
-        st.markdown(download_button_str, unsafe_allow_html=True)
-
-        if st.checkbox("Show code example"):
-            code_text = f"""
-                        with open('{filename}', 'rb') as f:
-                            s = f.read()
-                        download_button_str = download_button(s, '{filename}', 'Click here to download {filename}')
-                        st.markdown(download_button_str, unsafe_allow_html=True)"""
-
-            st.code(code_text, language="python")