diff --git a/hh.jl b/hh.jl deleted file mode 100644 index 8043135cd1e53a67aedea6f54b2c7476424d33ce..0000000000000000000000000000000000000000 --- a/hh.jl +++ /dev/null @@ -1,78 +0,0 @@ -using PyCall -neuronunit = pyimport("neuronunit") -#om = neuronunit#.optimisation.optimization.management -#neuronunit = pyimport("neuronunit") - -#] add https://github.com/AStupidBear/SpikingNeuralNetworks.jl - -# Pkg.add("https://github.com/AStupidBear/SpikingNeuralNetworks.jl") - - -using GR - - -import SpikingNeuralNetworks - - - -using Unitful - -using Plots, SpikingNeuralNetworks -SNN = SpikingNeuralNetworks -E = SNN.HH(;N = 1) -E.I = [0.003] - -SNN.monitor(E, [:v]) -SNN.sim!([E], []; dt = 0.01, duration = 102) - - -SNN.vecplot(E, :v) |> display - -#= -using Pkg -try - using UnicodePlotsi - #using NSGAII -catch - Pkg.add("UnicodePlots") - #Pkg.add("NSGAII") - using UnicodePlots - #using NSGAII -end - -using NSGAII, vOptSpecific, vOptGeneric, GLPK, GLPKMathProgInterface, PyPlot -m = vModel(solver = GLPKSolverMIP()) -id = load2UKP("2KP500-1A.DAT") - -p1, p2, w, c = id.P1, id.P2, id.W, id.C - -@variable(m, x[1:length(p1)], Bin) -@addobjective(m, Max, dot(x, p1)) -@addobjective(m, Max, dot(x, p2)) -@constraint(m, dot(x, w) <= c) - -function plot_pop(P, titre) - clf() - ax = gca() - ax[:set_xlim]([15800, 20570]) - ax[:set_ylim]([15630, 20877]) - p = plot(map(x -> x.y[1], P), map(x -> x.y[2], P), "bo", markersize=1, label="nsga") - title(titre) - !isinteractive() && show() - sleep(0.1) -end - -nsga(100, 5000, m, fplot = p->plot_pop(p, "without seed"), plotevery=500) - -solve(m, method=:dichotomy) - -Y_N = getY_N(m) -seed = [getvalue(x, 1), getvalue(x, length(Y_N)), getvalue(x, length(Y_N)÷2)] -nsga(100, 5000, m, fplot = p->plot_pop(p, "with seed"), seed=seed, plotevery=500) - -f1 = map(y -> y[1], Y_N) -f2 = map(y -> y[2], Y_N) -xlabel("z1") ; ylabel("z2") -p = plot(f1,f2,"kx", markersize = "2", label="exact") -legend() ; display(p) -=#