diff --git a/no_trig_rotation.cpp b/no_trig_rotation.cpp index 413b833483b422fca3cae93413581389a01991af..0cd36025434dedca052970ae63e6958443801bcb 100644 --- a/no_trig_rotation.cpp +++ b/no_trig_rotation.cpp @@ -45,7 +45,7 @@ class protractor using vector = geom::vector<Value,2>; // one approach is to approximate the circle with a regular polygon - // and the linear interpolate on that polygon to get angles + // and then linearly interpolate on that polygon to get angles // // we actually just need to approximate a half circle, since // our rotation doubles angles @@ -55,7 +55,7 @@ class protractor // the number of section will always be a power of two // since bisection is essentially multiplying them by two - // so out number of iteration/precision parameter is the exponent + // so our number of iteration/precision parameter is the exponent using array = std::array<vector, (size_t(1)<<Exponent) + 1>; static constexpr array circle = []() @@ -154,7 +154,6 @@ class protractor }; -bool request_draw = false; float2 angle = float2::one(1.f); float regular_angle = 0.f;