diff --git a/.gitignore b/.gitignore index 7e74ef0b99c098396e1c9b3a7c040f6e279e2237..e3bbc5310213152a4f02ea8b5f43b48642448f18 100644 --- a/.gitignore +++ b/.gitignore @@ -5,3 +5,5 @@ *.bbl probabilities.tex *.Rproj +/*.tex +/*_files/ diff --git a/kerning.png b/kerning.png new file mode 100644 index 0000000000000000000000000000000000000000..3eeafecaa8662faa8ae7c5d538eb9ce732f5b811 Binary files /dev/null and b/kerning.png differ diff --git a/make-pdf.sh b/make-pdf.sh index 32b08fa87d8f384a3654e64f27f6e9dcf089cf50..39dacd466960efede6f6a17c432a74f9b9423548 100755 --- a/make-pdf.sh +++ b/make-pdf.sh @@ -1,2 +1,6 @@ #!/bin/sh -Rscript -e 'library(rmarkdown); rmarkdown::render("./probabilities.Rmd", "pdf_document")' +for file in *.Rmd +do + # do something on $file + Rscript -e "library(rmarkdown); rmarkdown::render('$file', 'pdf_document')" +done diff --git a/svm-ioslides-css.css b/svm-ioslides-css.css new file mode 100644 index 0000000000000000000000000000000000000000..df429d0a07a92fcf927ad75bdd0a95fee217b138 --- /dev/null +++ b/svm-ioslides-css.css @@ -0,0 +1,66 @@ +slides > slide.backdrop { + background: white; + border-bottom: 0px; + box-shadow: 0 0 0; +} + + +slides > slide { + font-family: 'Open Sans', Helvetica, Arial, sans-serif; + border-bottom: 3px solid #F66733; + box-shadow: 0 3px 0 #522D80; + +} + +.title-slide hgroup h1 { + color: #522D80; + font-size: 48px; + +} + +.title-slide hgroup h2 { + font-size: 28px; +} + + +h2 { + + color: #522D80; +} + +slides > slide.dark { + background: #522D80 !important; + border-bottom: 0; + box-shadow: 0 0 0; +} + +.segue h2 { + color: white; +} + +slides > slide.title-slide { + border-bottom: 0; + box-shadow: 0 0 0; +} + +ol, ul { + + padding-bottom: 10px; + +} + +slides > slide:not(.nobackground):before { + font-size: 12pt; + content: ""; + position: absolute; + bottom: 20px; + left: 60px; + background: no-repeat 0 50%; + -webkit-background-size: 30px 30px; + -moz-background-size: 30px 30px; + -o-background-size: 30px 30px; + background-size: 30px 30px; + padding-left: 40px; + height: 30px; + line-height: 1.9; + } diff --git a/svm-rmarkdown-anon-ms-example.Rmd b/svm-rmarkdown-anon-ms-example.Rmd index c1bf7d05180429ffd700bc545fd56a22c8984fd3..08ba8d2983a95fb262ff634d74ac47da6b56ac57 100644 --- a/svm-rmarkdown-anon-ms-example.Rmd +++ b/svm-rmarkdown-anon-ms-example.Rmd @@ -5,7 +5,7 @@ output: keep_tex: true fig_caption: true latex_engine: pdflatex - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-latex-anon-ms.tex + template: ./templates/svm-latex-anon-ms.tex title: "An Example Title with a Really Long Title: Also a Subtitle" runhead: "A Running Head" thanks: "Replication files are available on the author's Github account (http://github.com/svmiller). **Current version**: `r format(Sys.time(), '%B %d, %Y')`; **Corresponding author**: svmille@clemson.edu." @@ -18,7 +18,7 @@ date: "`r format(Sys.time(), '%B %d, %Y')`" geometry: margin=1in fontfamily: mathpazo fontsize: 11pt -bibliography: ~/Dropbox/master.bib +bibliography: ~./syncleus-white.bib biblio-style: apsr indent: yes colorlinks: true diff --git a/svm-rmarkdown-anon-ms-example.pdf b/svm-rmarkdown-anon-ms-example.pdf new file mode 100644 index 0000000000000000000000000000000000000000..403e3507b8071489708b8b8852d9cd6555eb2c61 Binary files /dev/null and b/svm-rmarkdown-anon-ms-example.pdf differ diff --git a/svm-rmarkdown-article-example.Rmd b/svm-rmarkdown-article-example.Rmd index 9563e784ae5d5d8896f2299d36348479e1ef23e2..503da877093f52724f850fc1ca347003806d26be 100644 --- a/svm-rmarkdown-article-example.Rmd +++ b/svm-rmarkdown-article-example.Rmd @@ -5,7 +5,7 @@ output: keep_tex: true fig_caption: true latex_engine: pdflatex - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm.latex.ms.tex + template: ./templates/svm-latex-ms.tex title: "A Pandoc Markdown Article Starter and Template" thanks: "Replication files are available on the author's Github account (http://github.com/svmiller). **Current version**: `r format(Sys.time(), '%B %d, %Y')`; **Corresponding author**: svmille@clemson.edu." author: @@ -18,7 +18,7 @@ geometry: margin=1in fontfamily: mathpazo fontsize: 11pt # spacing: double -bibliography: ~/Dropbox/master.bib +bibliography: ~./syncleus-white.bib biblio-style: apsr --- diff --git a/svm-rmarkdown-article-example.pdf b/svm-rmarkdown-article-example.pdf new file mode 100644 index 0000000000000000000000000000000000000000..aba33894d4c674566f3bfabadce10cb8076007f1 Binary files /dev/null and b/svm-rmarkdown-article-example.pdf differ diff --git a/svm-rmarkdown-beamer-example.Rmd b/svm-rmarkdown-beamer-example.Rmd index 93e34ac13e8740e66bead6da21c32e9b7d33e1b0..005e72d20e715119da78afe8c4216b0a6a276bd8 100644 --- a/svm-rmarkdown-beamer-example.Rmd +++ b/svm-rmarkdown-beamer-example.Rmd @@ -3,11 +3,11 @@ title: An Example R Markdown Document subtitle: (A Subtitle Would Go Here if This Were a Class) author: Steven V. Miller institute: Department of Political Science -titlegraphic: /Dropbox/teaching/clemson-academic.png +titlegraphic: ./kerning.png fontsize: 10pt output: beamer_presentation: - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-latex-beamer.tex + template: ./templates/svm-latex-beamer.tex keep_tex: true # toc: true slide_level: 3 diff --git a/svm-rmarkdown-beamer-example.pdf b/svm-rmarkdown-beamer-example.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4702cdf479920ef84f8dcf0d788f86c198946d22 Binary files /dev/null and b/svm-rmarkdown-beamer-example.pdf differ diff --git a/svm-rmarkdown-cv.Rmd b/svm-rmarkdown-cv.Rmd index 97af0fce04c793209d51c897819e44dea8c89695..74d904cbd6ba5c0f2857d42c89941114e7e9b081 100644 --- a/svm-rmarkdown-cv.Rmd +++ b/svm-rmarkdown-cv.Rmd @@ -2,7 +2,7 @@ output: pdf_document: latex_engine: pdflatex - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-latex-cv.tex + template: ./templates/svm-latex-cv.tex geometry: margin=1in title: "CV" diff --git a/svm-rmarkdown-cv.pdf b/svm-rmarkdown-cv.pdf new file mode 100644 index 0000000000000000000000000000000000000000..cb33f9648e1e068b25bf43dfa8f1ed0c66b612c7 Binary files /dev/null and b/svm-rmarkdown-cv.pdf differ diff --git a/svm-rmarkdown-ioslides-example.Rmd b/svm-rmarkdown-ioslides-example.Rmd index d71dec97e3f02aa77e27ee8e4b5d9c425a155d49..2c75a26225de3efdc23998f4937342aa3d7f81b6 100644 --- a/svm-rmarkdown-ioslides-example.Rmd +++ b/svm-rmarkdown-ioslides-example.Rmd @@ -3,15 +3,15 @@ title: An Example R Markdown Document subtitle: (A Subtitle Would Go Here if This Were a Class) author: Steven V. Miller institute: Department of Political Science -titlegraphic: /Dropbox/teaching/clemson-academic.png +titlegraphic: ./kerning.png fontsize: 10pt output: ioslides_presentation: smaller: true - logo: ~/Dropbox/teaching/clemson-paw-transparent.png - css: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-ioslides-css.css + logo: ./kerning.png + css: ./svm-ioslides-css.css beamer_presentation: - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-latex-beamer.tex + template: ./templates/svm-latex-beamer.tex keep_tex: true # toc: true slide_level: 2 diff --git a/svm-rmarkdown-ioslides-example.html b/svm-rmarkdown-ioslides-example.html new file mode 100644 index 0000000000000000000000000000000000000000..f75761ef6b296b9cd68b8b20040ce259f1b5ad07 --- /dev/null +++ b/svm-rmarkdown-ioslides-example.html @@ -0,0 +1,256 @@ +<!DOCTYPE html> +<html> +<head> + <title>An Example R Markdown Document</title> + + <meta charset="utf-8"> + <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> + <meta http-equiv="X-UA-Compatible" content="chrome=1"> + <meta name="generator" content="pandoc" /> + + + + + <meta name="viewport" content="width=device-width, initial-scale=1"> + <meta name="apple-mobile-web-app-capable" content="yes"> + + <base target="_blank"> + + <script type="text/javascript"> + var SLIDE_CONFIG = { + // Slide settings + settings: { + title: 'An Example R Markdown Document', + subtitle: '(A Subtitle Would Go Here if This Were a Class)', + useBuilds: true, + usePrettify: true, + enableSlideAreas: true, + enableTouch: true, + favIcon: 'kerning.png', + }, + + // Author information + presenters: [ + { + name: 'Steven V. Miller' , + company: '', + gplus: '', + twitter: '', + www: '', + github: '' + }, + ] + }; + </script> + + <link href="data:text/css;charset=utf-8,%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%3B%0Afont%2Dstyle%3A%20normal%3B%0Afont%2Dweight%3A%20400%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAQAQAABAAARkZUTVyseR0AAI5wAAAAHE9TLzKhPb8OAAABiAAAAGBjbWFwjOjcmQAABUAAAAGyY3Z0IA9NGKQAAA%2B0AAAAomZwZ21%2BYbYRAAAG9AAAB7RnYXNwABUAIwAAjmAAAAAQZ2x5ZqzBrbUAABIIAABRVGhlYWT5NhTaAAABDAAAADZoaGVhDrcE%2BgAAAUQAAAAkaG10eJh3VwIAAAHoAAADWGtlcm4Mlg8JAABjXAAAIwRsb2NhdpdjTAAAEFgAAAGubWF4cAJdAUoAAAFoAAAAIG5hbWXeiHLCAACGYAAABglwb3N0gnjp1QAAjGwAAAHycHJlcEO3lqQAAA6oAAABCQABAAAAARmaMibrIV8PPPUAHwgAAAAAAMnt2GAAAAAAye3YYP55%2FhAHrgdzAAAACAACAAAAAAAAAAEAAAiN%2FagAAAgA%2Fnn%2BeweuAAEAAAAAAAAAAAAAAAAAAADWAAEAAADWAEIABQA9AAQAAgAQAC8AXAAAAQ4AmQADAAEAAwROAZAABQAIBZoFMwAAAR8FmgUzAAAD0QBmAfEIAgILBgYDBQQCAgTgAALvQAAgWwAAACgAAAAAMUFTQwBAACAgrAYf%2FhQAhAiNAlggAAGfAAAAAARIBbYAAAAgAAEIAAAAAAAAAAQUAAACFAAAAiMAmAM1AIUFKwAzBJMAgwaWAGgF1wBxAcUAhQJeAFICXgA9BGoAVgSTAGgB9gA%2FApMAVAIhAJgC8AAUBJMAZgSTALwEkwBkBJMAXgSTACsEkwCFBJMAdQSTAF4EkwBoBJMAagIhAJgCIQA%2FBJMAaASTAHcEkwBoA28AGwcxAHkFEAAABS8AyQUMAH0F1QDJBHMAyQQhAMkF0wB9BecAyQI7AMkCI%2F9gBOkAyQQnAMkHOQDJBggAyQY7AH0E0QDJBjsAfQTyAMkEZABqBG0AEgXTALoEwwAAB2gAGwSeAAgEewAABJEAUgKiAKYC8AAXAqIAMwRWADEDlv%2F8BJ4BiQRzAF4E5wCwA88AcwTnAHMEfQBzArYAHQRiACcE6QCwAgYAogIG%2F5EEMwCwAgYAsAdxALAE6QCwBNUAcwTnALAE5wBzA0QAsAPRAGoC0wAfBOkApAQCAAAGOQAXBDEAJwQIAAIDvgBSAwgAPQRoAe4DCABIBJMAaAIUAAACIwCYBJMAvgSTAD8EkwB7BJMAHwRoAe4EIQB7BJ4BNQaoAGQC1QBGA%2FoAUgSTAGgCkwBUBqgAZAQA%2F%2FoDbQB%2FBJMAaALHADECxwAhBJ4BiQT0ALAFPQBxAiEAmAHRACUCxwBMAwAAQgP6AFAGPQBLBj0ALgY9ABoDbwAzBRAAAAUQAAAFEAAABRAAAAUQAAAFEAAABvz%2F%2FgUMAH0EcwDJBHMAyQRzAMkEcwDJAjsABQI7ALMCO%2F%2FHAjsABQXHAC8GCADJBjsAfQY7AH0GOwB9BjsAfQY7AH0EkwCFBjsAfQXTALoF0wC6BdMAugXTALoEewAABOMAyQT6ALAEcwBeBHMAXgRzAF4EcwBeBHMAXgRzAF4G3QBeA88AcwR9AHMEfQBzBH0AcwR9AHMCBv%2FaAgYAqQIG%2F7MCBv%2FsBMUAcQTpALAE1QBzBNUAcwTVAHME1QBzBNUAcwSTAGgE1QBzBOkApATpAKQE6QCkBOkApAQIAAIE5wCwBAgAAgIGALAHYgB9B4kAcQS8AQwEngFvBLwBCAQAAFIIAABSAVwAGQFcABkB9gA%2FAs0AGQLNABkDPQAZAwIApAJvAFICbwBQAQr%2BeQLHABQEuAA%2FAAAAAwAAAAMAAAAcAAEAAAAAAKwAAwABAAAAHAAEAJAAAAAgACAABAAAAH4A%2FwExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCs%2F%2F8AAAAgAKABMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrP%2F%2F%2F%2BP%2Fwv%2BR%2F3H9%2F%2F3s%2FevgteCy4LHgruCY4I%2FgYOApAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYAAAEAAAAAAAAAAQIAAAACAAAAAAAAAAAAAAAAAAAAAQAAAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7PD0%2BP0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGEAhoeJi5OYnqOipKalp6mrqqytr66wsbO1tLa4t7y7vb4AcmRladB4oXBrAHZqAIiaAHMAAGd3AAAAAABsfACouoFjbgAAAABtfQBigoWXw8TIyc3Oysu5AMEA09XR0gAAAHnMzwCEjIONio%2BQkY6VlgCUnJ2bwsXHcQAAxnoAAAAAAEBHW1pZWFVUU1JRUE9OTUxLSklIR0ZFRENCQUA%2FPj08Ozo5ODc2NTEwLy4tLCgnJiUkIyIhHxgUERAPDg0LCgkIBwYFBAMCAQAsILABYEWwAyUgEUZhI0UjYUgtLCBFGGhELSxFI0ZgsCBhILBGYLAEJiNISC0sRSNGI2GwIGAgsCZhsCBhsAQmI0hILSxFI0ZgsEBhILBmYLAEJiNISC0sRSNGI2GwQGAgsCZhsEBhsAQmI0hILSwBECA8ADwtLCBFIyCwzUQjILgBWlFYIyCwjUQjWSCw7VFYIyCwTUQjWSCwBCZRWCMgsA1EI1khIS0sICBFGGhEILABYCBFsEZ2aIpFYEQtLAGxCwpDI0NlCi0sALEKC0MjQwstLACwKCNwsQEoPgGwKCNwsQIoRTqxAgAIDS0sIEWwAyVFYWSwUFFYRUQbISFZLSxJsA4jRC0sIEWwAENgRC0sAbAGQ7AHQ2UKLSwgabBAYbAAiyCxLMCKjLgQAGJgKwxkI2RhXFiwA2FZLSyKA0WKioewESuwKSNEsCl65BgtLEVlsCwjREWwKyNELSxLUlhFRBshIVktLEtRWEVEGyEhWS0sAbAFJRAjIIr1ALABYCPt7C0sAbAFJRAjIIr1ALABYSPt7C0sAbAGJRD1AO3sLSywAkOwAVJYISEhISEbRiNGYIqKRiMgRopgimG4%2F4BiIyAQI4qxDAyKcEVgILAAUFiwAWG4%2F7qLG7BGjFmwEGBoATpZLSwgRbADJUZSS7ATUVtYsAIlRiBoYbADJbADJT8jITgbIRFZLSwgRbADJUZQWLACJUYgaGGwAyWwAyU%2FIyE4GyERWS0sALAHQ7AGQwstLCEhDGQjZIu4QABiLSwhsIBRWAxkI2SLuCAAYhuyAEAvK1mwAmAtLCGwwFFYDGQjZIu4FVViG7IAgC8rWbACYC0sDGQjZIu4QABiYCMhLSxLU1iKsAQlSWQjRWmwQIthsIBisCBharAOI0QjELAO9hshI4oSESA5L1ktLEtTWCCwAyVJZGkgsAUmsAYlSWQjYbCAYrAgYWqwDiNEsAQmELAO9ooQsA4jRLAO9rAOI0SwDu0birAEJhESIDkjIDkvL1ktLEUjRWAjRWAjRWAjdmgYsIBiIC0ssEgrLSwgRbAAVFiwQEQgRbBAYUQbISFZLSxFsTAvRSNFYWCwAWBpRC0sS1FYsC8jcLAUI0IbISFZLSxLUVggsAMlRWlTWEQbISFZGyEhWS0sRbAUQ7AAYGOwAWBpRC0ssC9FRC0sRSMgRYpgRC0sRSNFYEQtLEsjUVi5ADP%2F4LE0IBuzMwA0AFlERC0ssBZDWLADJkWKWGRmsB9gG2SwIGBmIFgbIbBAWbABYVkjWGVZsCkjRCMQsCngGyEhISEhWS0ssAJDVFhLUyNLUVpYOBshIVkbISEhIVktLLAWQ1iwBCVFZLAgYGYgWBshsEBZsAFhI1gbZVmwKSNEsAUlsAglCCBYAhsDWbAEJRCwBSUgRrAEJSNCPLAEJbAHJQiwByUQsAYlIEawBCWwAWAjQjwgWAEbAFmwBCUQsAUlsCngsCkgRWVEsAclELAGJbAp4LAFJbAIJQggWAIbA1mwBSWwAyVDSLAEJbAHJQiwBiWwAyWwAWBDSBshWSEhISEhISEtLAKwBCUgIEawBCUjQrAFJQiwAyVFSCEhISEtLAKwAyUgsAQlCLACJUNIISEhLSxFIyBFGCCwAFAgWCNlI1kjaCCwQFBYIbBAWSNYZVmKYEQtLEtTI0tRWlggRYpgRBshIVktLEtUWCBFimBEGyEhWS0sS1MjS1FaWDgbISFZLSywACFLVFg4GyEhWS0ssAJDVFiwRisbISEhIVktLLACQ1RYsEcrGyEhIVktLLACQ1RYsEgrGyEhISFZLSywAkNUWLBJKxshISFZLSwgiggjS1OKS1FaWCM4GyEhWS0sALACJUmwAFNYILBAOBEbIVktLAFGI0ZgI0ZhIyAQIEaKYbj%2FgGKKsUBAinBFYGg6LSwgiiNJZIojU1g8GyFZLSxLUlh9G3pZLSywEgBLAUtUQi0ssQIAQrEjAYhRsUABiFNaWLkQAAAgiFRYsgIBAkNgQlmxJAGIUVi5IAAAQIhUWLICAgJDYEKxJAGIVFiyAiACQ2BCAEsBS1JYsgIIAkNgQlkbuUAAAICIVFiyAgQCQ2BCWblAAACAY7gBAIhUWLICCAJDYEJZuUAAAQBjuAIAiFRYsgIQAkNgQlmxJgGIUVi5QAACAGO4BACIVFiyAkACQ2BCWblAAAQAY7gIAIhUWLICgAJDYEJZWVlZWVmxAAJDVFhACgVACEAJQAwCDQIbsQECQ1RYsgVACLoBAAAJAQCzDAENARuxgAJDUliyBUAIuAGAsQlAG7IFQAi6AYAACQFAWblAAACAiFW5QAACAGO4BACIVVpYswwADQEbswwADQFZWVlCQkJCQi0sRRhoI0tRWCMgRSBksEBQWHxZaIpgWUQtLLAAFrACJbACJQGwASM%2BALACIz6xAQIGDLAKI2VCsAsjQgGwASM%2FALACIz%2BxAQIGDLAGI2VCsAcjQrABFgEtLLCAsAJDULABsAJDVFtYISMQsCAayRuKEO1ZLSywWSstLIoQ5S1AmQkhSCBVIAEeVR9IA1UfHgEPHj8erx4DTUsmH0xLMx9LRiUfJjQQVSUzJFUZE%2F8fBwT%2FHwYD%2Fx9KSTMfSUYlHxMzElUFAQNVBDMDVR8DAQ8DPwOvAwNHRhkf60YBIzMiVRwzG1UWMxVVEQEPVRAzD1UPD08PAh8Pzw8CDw%2F%2FDwIGAgEAVQEzAFVvAH8ArwDvAAQQAAGAFgEFAbgBkLFUUysrS7gH%2F1JLsAlQW7ABiLAlU7ABiLBAUVqwBoiwAFVaW1ixAQGOWYWNjQBCHUuwMlNYsCAdWUuwZFNYsBAdsRYAQllzcysrXnN0dSsrKysrdCtzdCsrKysrKysrKysrKytzdCsrKxheAAAABhQAFwBOBbYAFwB1BbYFzQAAAAAAAAAAAAAAAAAABEgAFACRAAD%2F7AAAAAD%2F7AAAAAD%2F7AAA%2FhT%2F7AAABbYAE%2FyU%2F%2B3%2Bhf%2Fq%2Fqn%2F7AAY%2FrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAiwCBAN0AmACPAI4AmQCIAIEBDwCKAAAAAAAAAAAAAAAAADIAWADgAVwBzgJMAmYCkgK%2BAvoDJgNEA1oDfAOWA9gEAgREBKIE5AUwBY4FsAYgBn4GtAboBwgHMgdSB6oIMghyCM4JDAlICX4JrAn8Ci4KRApsCpwKugr4CzALdgu0DAgMVgyqDM4NAg0qDW4Nng3GDfIOFg4wDlQOdg6MDqwPCA9eD5oP7hA8EHwREBFOEXwRuhH4EhASaBKiEuQTOhOOE8IUFBRUFJIUuhUGFTYVcBWcFd4V9hY8FnYWdhaoFvQXRheUF%2BgYDhiKGMAZPBmKGcYZ5BnsGnYajBrEGuIbHBtsG4wbzBv8HB4cUBx4HLIc6h0AHRYdLB2KHZwdrh3AHdId5B3wHj4eSh5cHm4egB6SHqQeth7IHtofMh9EH1YfaB96H4wfnh%2FMIDggSiBcIG4ggCCSINQhPCFMIVwhbCF8IY4hoCIsIjgiSCJYImgieiKMIp4isCLCIyojOiNKI1ojaiN6I4wj0iQ4JEgkWCRoJHokiiTiJPQlDCVwJeomFCZKJoQmmiawJs4m7Cb0JyQnVidwJ5AntCfYJ%2FIoNCiqAAAAAgCY%2F%2BMBiQW2AAMADgArQBQDCQkCBAQPEAEBDAIMBk9ZDBYCAwA%2FPysREgA5GC8REgE5ETMzETMxMAEjAzMDNDMyFhUUBiMiJgFGaTPP4Xg6P0A5NEQBkwQj%2BrSIRkJARz8AAAIAhQOmArAFtgADAAcAH0ANAAMHBAMECAkGAgcDAwA%2FM80yERIBOTkRMxEzMTABAyMDIQMjAwE%2FKGkpAispaCkFtv3wAhD98AIQAAACADMAAAT2BbYAGwAfAJlAVQgfHBUEFAkRDAwJEg8OCwQKExMUFh0eBwQGFwQBABkEGAUFBhQGCiEDGhcDGAoYICEIBAwNDE5ZHAENHwAQERBOWRkVEU8NAU8RAQ0RDREFFxMDCgUALzM%2FMxI5OS8vXV0RMzMrEQAzMxEzMysRADMzERIBOTkRFzMREjk5ETMREhc5ERIXOREzERIXOTIyETMREhc5MTABAyEVIQMjEyEDIxMhNSETITUhEzMDIRMzAyEVASETIQPVQgEb%2Fs1UiVT%2B0VKIUP76AR9E%2FusBK1KLUgExVIZUAQj85QEvQv7RA4P%2BrIH%2BUgGu%2FlIBroEBVH8BtP5MAbT%2BTH%2F%2BrAFUAAMAg%2F%2BJBAwGEgAgACYALQBmQDUnESUdFwQEKhQNBSEAABkFEQkFLi8lDQYNTVkDBiQOKg5MWR0qKxwUHE1ZFyoUBhQGFAUWBQAvLxI5OS8vEjkyKxEAMxEzKxEAMxEzKxEAMxESARc5ETMRMzMzMxEzMzMRMzEwARQGBxUjNSImJzUeATMRLgE1NDY3NTMVFhcHJicRHgIHNCYnETYBFBYXEQ4BBAzMt4Fw0kNT2VnNpcungbirNJWanZxKqlmA2f3dWm9jZgHBiLEX6N8jH5wlLwG4QayIg6gStrQFRYM7C%2F5OMl97ZUhZLP57HgMHTFwpAYMQXQAABQBo%2F%2BwGLQXLAAkAFQAhAC0AMQBFQCQAEAUKFigcIiIuKAowEAYyMwMNHysNKw0rMDEGMBgZJRkHEwcAPzM%2FMz8%2FEjk5Ly8RMxEzERIBFzkRMxEzETMRMzEwExQWMzIRECMiBgUUBiMiJjU0NjMyFgEUFjMyNjU0JiMiBgUUBiMiJjU0NjMyFgkBIwHySlOkpFNKAcqZlIyblZKRnAGmSlRUUFBUVEoBy5mUjpmVko6f%2Fv781ZMDKwQCqqoBVAFSqKrk6e7f4%2Bbu%2FNurqaetq6Wlq%2BPp7t7j5usDIPpKBbYAAAAAAwBx%2F%2BwF0wXNAAsAFQA1AFFAMBMWAB0GIyorListIw4mGR0WCTY3MwxJWTMTDyctDjAFLwMZJgMqKiAvEiAJSlkgBAA%2FKwAYPxI5Lxc5Ehc5PysREgEXOREzETMRMxEzMTABFBYXPgE1NCYjIgYTMjcBDgIVFBYlNDY3LgI1NDYzMhYVFAYHAT4BNzMCBwEjJw4BIyImAZ5IV4FlZ1ZZb5vxn%2F5Lb1wsm%2F65i7RVPSTEr6K6iJ0BlzhDF6hEiQEr5bl29JbX7QSTRX1YS39TTWFg%2B52aAahEWWZBdYn6gshmX2JqOZaop5VrtV3%2BeT6nY%2F7ilP7dsmpc1AAAAQCFA6YBPwW2AAMAFLcAAwMEBQIDAwA%2FzRESATkRMzEwAQMjAwE%2FKGkpBbb98AIQAAAAAAEAUv68AiEFtgANABxADAcACgQABA4PCycDAwA%2FPxESATk5ETMRMzEwExASNzMGAhUUEhcjJgJSm5KikJGUi6CTmgIxAQkBzq7B%2FjL08P42vaoBxgAAAAABAD3%2BvAIMBbYADQAcQAwECgcACgAODwoDBCcAPz8REgE5OREzETMxMAEQAgcjNhI1NAInMxYSAgybkqCLlJGQopOaAjH%2B%2Bf46qLwBy%2FD0Ac7Br%2F4xAAAAAQBWAn8EDgYUAA4AMEAbAwUEAQcNCgkLCQ8QBAoBDQIMDA0KBwQGCA4AAD%2FEMhc5ETMRMxEzERIBFzkxMAEDJRcFEwcLAScTJTcFAwKRKwGOGv6D%2BKywoLDy%2FocdAYcrBhT%2BdW%2B2H%2F66XgFq%2FpZeAUYftm8BiwAAAQBoAOMEKQTDAAsAKEATAAQECQUFDA0DBwgHUFkADwgBCAAvXTMrEQAzERIBOREzMxEzMTABIRUhESMRITUhETMCjQGc%2FmSL%2FmYBmosDF4r%2BVgGqigGsAAEAP%2F74AW0A7gAIABG1BQAJCgUAAC%2FNERIBOTkxMCUXBgIHIzYSNwFeDxpiNX0bQQ3uF2T%2B93JoATJcAAEAVAHZAj8CcQADABG1AgAFBAABAC8zERIBOTkxMBM1IRVUAesB2ZiYAAAAAQCY%2F%2BMBiQDyAAsAGEALBgAADA0JA09ZCRYAPysREgE5ETMxMDc0NjMyFhUUBiMiJpg9OTpBQjkzQ2pDRUVDQUY%2FAAABABQAAALbBbYAAwATtwIABAUDAwISAD8%2FERIBOTkxMAkBIwEC2%2F3fpgIhBbb6SgW2AAAAAgBm%2F%2BwELQXNAAsAFwAoQBQSAAwGAAYZGAkVS1kJBwMPS1kDGQA%2FKwAYPysREgE5OREzETMxMAEQAiMiAhEQEjMyEgEQEjMyEhEQAiMiAgQt7%2Fbs9u707vf84ZakppWVpqSWAt3%2Bhf6KAX8BcgF%2BAXL%2Bfv6S%2FsH%2B3QEnATsBOwEl%2Ft8AAQC8AAACywW2AAoAJEAQCQABCAELDAQJBwcBCQYBGAA%2FPxI5LxI5ERIBOTkRMzMxMCEjETQ3DgEHJwEzAsuiCBU01FgBg4wEEoJ0FS6scgErAAAAAQBkAAAEJQXLABkAK0AXGAEHEwATDgEEGhsQCktZEAcBGExZARgAPysAGD8rERIBFzkRMxEzMTApATUBPgI1NCYjIgYHJzYzMhYVFAIHARUhBCX8PwGBsHA4jn5bo2RYyu7O6pzW%2FsAC8I8Bg7KYkFN1iTxPcajTsov%2B8ND%2BxwgAAAAAAQBe%2F%2BwEGwXLACcAQ0AkGwATBwcAAxYiDQYoKQMXFhcWS1kXFwolJR5LWSUHChFLWQoZAD8rABg%2FKxESADkYLysREgA5ERIBFzkRMxEzMTABFAYHFR4BFRQEISImJzUeATMgERAhIzUzMjY1NCYjIgYHJz4BMzIWA%2B6dkLCq%2Ft7%2B9XTBW1%2FXYAF7%2Fl6QkqvIk35gqm1UWuuC1ewEXoyyHggWtJLR4SMsni8xASkBCo%2BXhmt6NEZwR1HDAAACACsAAARqBb4ACgASADxAHhIFCQICCwcDAAMFAxMUAQUSBUxZCQ8HEhIDBwYDGAA%2FPxI5LxI5MysRADMREgEXOREzMzMRMxEzMTABIxEjESE1ATMRMyERNDcjBgcBBGrZn%2F05Araw2f6ICggwKv43AVD%2BsAFQkQPd%2FCkB5o%2B0YD%2F9dgABAIX%2F7AQdBbYAGgA6QB8PAxkUCBQXAwQcGwARS1kAAAYVFRhMWRUGBgxLWQYZAD8rABg%2FKxESADkYLysREgEXOREzETMxMAEyBBUUACMiJzUeATMyNjUQISIHJxMhFSEDNgIt5wEJ%2Ft%2F%2B94JG0GWww%2F6JX59WNwLX%2FbclcwN95cfj%2Fv5PoC0zpp0BMh03AqyZ%2FkkXAAAAAAIAdf%2FsBC8FywAWACQAREAjGhELISEAAAYRAyYlDAsOHU1ZCw4OFAMUF0tZFBkDCE1ZAwcAPysAGD8rERIAORgvOSsRADMREgEXOREzETMRMzEwExAAITIXFSYjIgIDMzYzMhYVFAIjIgAFMjY1NCYjIg4BFRQeAXUBTwFIcUFNY%2Bv4DAxu7sXj%2BdTj%2FvYB646dkpFalllQkwJxAa8BqxOPGf7b%2Fsas7szk%2FvsBVcizqZGmSoJGZ7JoAAAAAQBeAAAEKwW2AAYAH0AQAQUFAAIDBwgDAkxZAwYAGAA%2FPysREgEXOREzMTAhASE1IRUBAR0CXvzjA839qgUdmYX6zwADAGj%2F7AQpBcsAFgAiAC4ATUApFw8mFCwDHQkJAwYRFA8GLzAGESkgKSBLWSkpDAAMGk1ZDBkAI01ZAAcAPysAGD8rERIAORgvKxESADk5ERIBFzkRMxEzETMRMzEwATIWFRQGBx4BFRQGIyImNTQlLgE1NDYDFBYzMjY1NCYnDgEBIgYVFBYXPgE1NCYCSMjqhpOylv7d6vwBMop463enl5WmnMKVhgE6fY52n493kQXLuqRssklVu3u22c28%2B4xOtXCfvfumeIaMemGXR0CbA2d4ZFyEQjyKXGV3AAAAAAIAav%2FsBCUFywAXACUAQUAiGxEiCgoAAAQRAyYnDh5NWQsUDg4CFBQYS1kUBwIHTVkCGQA%2FKwAYPysREgA5GC8SOSsREgEXOREzETMRMzEwARAhIic1FjMyEhMjDgEjIiY1NAAzMhYSASIGFRQWMzI%2BATU0LgEEJf1odERQZvD1Cww3tnLC5AD%2F0JXfeP4Uj5yQk1uZWFKTA0b8phSPGgEpATNTV%2BjQ5AEImf7bATC4pJClSoBGabJmAAAAAgCY%2F%2BMBiQRkAAsAFQAoQBQQBgYMAAAWFw4TT1kOEAkDT1kJFgA%2FKwAYPysREgE5ETMzETMxMDc0NjMyFhUUBiMiJhE0MzIVFAYjIiaYPTk6QUI5M0N2e0I5M0NqQ0VFQ0FGPwO7h4dBRj8AAgA%2F%2FvgBhQRkAAgAEgAiQBABDQ0FCQkUEwsQT1kLEAUAAC%2FNPysREgE5ETMzETMxMCUXBgIHIzYSNwM0MzIVFAYjIiYBXg8aYjV9G0ENFXd7Qjk6Pe4XZP73cmgBMlwC74eHQUZGAAABAGgA8gQpBNkABgAVQAkEAAUBBAcIAwAALy8REgEXOTEwJQE1ARUJAQQp%2FD8DwfzyAw7yAaZiAd%2BV%2Fo3%2BuAAAAgB3AcEEGQPjAAMABwAqQBUHAgQAAgAJCAQFUFkEAQBQWQ8BAQEAL10rABgvKxESATk5ETMRMzEwEzUhFQE1IRV3A6L8XgOiA1qJif5niYkAAAAAAQBoAPIEKQTZAAYAFUAJBQECAAQHCAYDAC8vERIBFzkxMBMJATUBFQFoAw%2F88QPB%2FD8BiQFGAXWV%2FiFi%2FloAAAIAG%2F%2FjAzkFywAbACYAOUAdIRwbAAcTEwAcDgQnKAAAJBAkHk9ZJBYQCklZEAQAPysAGD8rERIAORgvERIBFzkRMxEzETMxMAE1NDY3PgE1NCYjIgYHJzYzMhYVFA4BBw4BHQEDNDMyFhUUBiMiJgEhSGKIR4N7T5ZhO73Ov9QnTH5lQbJ4Oj9AOTREAZM2dZdUc3RSZm8lMYdjvKtJb2NuVnJfIf7XiEZCQEc%2FAAAAAgB5%2F0YGuAW0ADUAPwBFQCIjLjYOOwcUGwAAKRQOLgVAQRg4OAQ9CBELEQsRKx8yAyYrAC8zPzMSOTkvLxI5MjMzETMREgEXOREzETMzETMRMzEwARQOASMiJicjDgEjIiY1NBIzMhYXAxUUMzI2NTQCJCMiBAIVEAAhMjcVBiMgABEQEiQhMgQSARQzMhsBJiMiBga4WKBoVnYLCCiVZpap7MBErEUZhVtylP7vsd%2F%2Btq4BQgEv0uLA9P6V%2Fm%2FWAYwBANcBT7f79sPPEg5IVYKTAtmO7IJoUVdizbDMAP8ZFv4qFrLXrLUBEJO5%2Fqnh%2Fs%2F%2BuFaFVAGPAWYBBAGW37X%2Bs%2F6k%2FgE5AQUUtAAAAAACAAAAAAUQBbwABwAOADlAHgIOCwgBBQADAAcDBAcEEA8OAklZCwUODgQFAwAEEgA%2FMz8SOS8SOSsREgE5OREzETMREhc5MTAhAyEDIwEzCQEDJicGBwMEYLb9trSsAkKPAj%2F%2BZaohIxYprAHR%2Fi8FvPpEAmoBxVZ9YHP%2BOwAAAAMAyQAABL4FtgAOABcAIABJQCYTBB0KDxkZDgoEBw4EISIIDxgPGEpZDw8OAA4ZSlkOEgAXSlkAAwA%2FKwAYPysREgA5GC8rERIAORESARc5ETMRMxEzETMxMBMhIAQVFAYHFQQRFAQjIRMhMjY1NCYrARkBITI2NTQmI8kBnQEjAQSRiwFN%2Fvfu%2FgKqARi0nrDA%2BgExsbO3uwW2rryCqRkKOf7bxNwDRHGGe239kf3diZKIgAAAAAABAH3%2F7ATPBcsAFgAmQBQDDhQJDgMXGBIASVkSBAsGSVkLEwA%2FKwAYPysREgEXOREzMTABIgAREAAzMjcVBiMgABE0EiQzMhcHJgM78f7pAQ35mcSY3%2F69%2FqGpAT%2FY5qxIpgUz%2Fr%2F%2B6f7h%2Fsc3lTkBiAFp4gFUuFSSTgAAAgDJAAAFWAW2AAgAEQAoQBQOBAkABAASEwUNSlkFAwQOSlkEEgA%2FKwAYPysREgE5OREzETMxMAEQACkBESEgAAMQACEjETMgAAVY%2Fnf%2Bj%2F5rAcABVQF6tP7h%2FuX3zwEwATIC6f6W%2FoEFtv6G%2FqcBHgEi%2B3ABKwAAAQDJAAAD%2BAW2AAsAOkAfBgoKAQQACAEEDA0GCUlZBgYBAgIFSVkCAwEKSVkBEgA%2FKwAYPysREgA5GC8rERIBFzkRMxEzMTApAREhFSERIRUhESED%2BPzRAy%2F9ewJe%2FaIChQW2l%2F4plv3mAAAAAQDJAAAD%2BAW2AAkAMkAaBgAAAQMIAQMKCwYJSVkGBgECAgVJWQIDARIAPz8rERIAORgvKxESARc5ETMRMzEwISMRIRUhESEVIQFzqgMv%2FXsCXv2iBbaX%2FemXAAABAH3%2F7AU9BcsAGwA6QB8UCBkCAg4bCAQcHQAbSVkAAAUMDBFJWQwEBRdJWQUTAD8rABg%2FKxESADkYLysREgEXOREzETMxMAEhEQ4BIyAAETQSJDMyFwcmIyAAERAAITI3ESEDTAHxdPCe%2FrT%2BjrcBWOfqykLGt%2F71%2FtQBIQEYmJH%2BuQL%2B%2FTklJgGLAWTkAVe1VpZU%2FsL%2B5v7Y%2Fs4jAcIAAQDJAAAFHwW2AAsAM0AZCQEBAAgEBAUABQ0MCANJWQgIBQoGAwEFEgA%2FMz8zEjkvKxESATk5ETMRMxEzETMxMCEjESERIxEzESERMwUfqvz%2BqqoDAqoCsP1QBbb9kgJuAAAAAAEAyQAAAXMFtgADABG2AAQFAQMAEgA%2FPxESATkxMDMRMxHJqgW2%2BkoAAAAAAf9g%2Fn8BaAW2AA0AHUANCwgIDg8JAwAFSVkAIgA%2FKwAYPxESATkRMzEwAyInNRYzMjY1ETMRFAYMXjZHTWNnqsD%2BfxuRFHhxBbb6WL7RAAABAMkAAATpBbYACwAqQBUIBAQFBQILCgAFDQwCCAUJBgMBBRIAPzM%2FMxI5ORESARc5ETMRMzEwISMBBxEjETMRATMBBOnI%2FeuZqqoCl8n9tALFiP3DBbb9KwLV%2FYUAAAABAMkAAAP4BbYABQAfQA4DAAAEBgcBAwADSVkAEgA%2FKwAYPxESATk5ETMxMDMRMxEhFcmqAoUFtvrkmgABAMkAAAZxBbYAEwAyQBgIBQUGCw4ODQYNFBUBChEDBgsHAw4ABhIAPzMzPzMSFzkREgE5OREzETMRMxEzMTAhASMWFREjESEBMwEzESMRNDcjAQNQ%2FhAIDp0BAAHPCAHT%2FqoOCP4MBRCa1PxeBbb7SgS2%2BkoDrqK%2B%2BvIAAQDJAAAFPwW2ABAALkAVCQYGBwEPDwAHABESCwMHDwgDAQcSAD8zPzMSOTkREgE5OREzETMRMxEzMTAhIwEjFhURIxEzATMmAjcRMwU%2FwvzhCBCdwAMdCAIOAp8Ey9i0%2FMEFtvs6GwElPwNHAAAAAAIAff%2FsBb4FzQALABcAKEAUEgAMBgAGGRgJFUlZCQQDD0lZAxMAPysAGD8rERIBOTkRMxEzMTABEAAhIAAREAAhIAABEBIzMhIREAIjIgIFvv6d%2FsT%2Bvf6hAWABRAE7AWL7c%2F3x8%2Fj38vP9At3%2Bof5uAYsBaAFlAYn%2BcP6g%2Ftf%2BzQEyASoBJwEx%2Fs0AAgDJAAAEaAW2AAkAEgA0QBoKBQUGDgAGABMUCgRKWQoKBgcHEkpZBwMGEgA%2FPysREgA5GC8rERIBOTkRMxEzETMxMAEUBCEjESMRISABMzI2NTQmKwEEaP7R%2FuasqgF7AiT9C5niyr7JvgQM3u%2F9wQW2%2FRuSoZGOAAAAAAIAff6kBb4FzQAPABsANEAbEAoWAAAEAwoEHB0DDQcNGUlZDQQHE0lZBQcTAD%2FGKwAYPysREgA5ERIBFzkRMxEzMTABEAIHASMBByAAERAAISAAARASMzISERACIyICBb7izgFc9%2F7jN%2F69%2FqEBYAFEATsBYvtz%2FfHz%2BPfy8%2F0C3f7n%2FoxC%2FpYBSgIBiwFoAWUBif5w%2FqD%2B1%2F7NATIBKgEnATH%2BzQAAAAIAyQAABM8FtgAMABUASEAlDQEBAgwJEQcLCgoHCQIEFhcJDQANAEpZDQ0CAwMVSVkDAwsCEgA%2FMz8rERIAORgvKxESADkREgEXOREzETMRMxEzETMxMAERIxEhIAQVEAUBIwElMzI2NTQmKwEBc6oBkQENAQH%2B2gGNyf6e%2Fs%2FptKirvd0CYP2gBbbOz%2F7eZv1vAmCSj4%2BRgAAAAAEAav%2FsBAIFywAkADRAGx4TDAAAGBMFBCUmDB4DFhYbSVkWBAMJSVkDEwA%2FKwAYPysREgA5ORESARc5ETMRMzEwARQEIyAnNR4BMzI2NTQuAScuATU0NjMyFwcmIyIGFRQeARceAQQC%2Fujw%2FvyMWtRoqqw9j5LMr%2F7R2rc1tauHmDiFieatAYXB2EOkJiyBc0xhUjRJyKGpyFCUTHRnTGFRMVK8AAAAAAEAEgAABFoFtgAHACRAEgABBQEDAwgJBwMEA0lZBAMBEgA%2FPysRADMREgEXOREzMTAhIxEhNSEVIQKLqv4xBEj%2BMQUfl5cAAAEAuv%2FsBRkFtgARACVAERABCgcBBxMSEQgDBA1JWQQTAD8rABg%2FMxESATk5ETMRMzEwAREUACEgADURMxEUFjMyNjURBRn%2B0v74%2Fvj%2B36rIwrnIBbb8Tvr%2B4gEg%2FAOu%2FEa3xMW4A7gAAQAAAAAEwwW2AAoAGkALAQQMCwgDAAQDAxIAPz8zEjkREgE5OTEwATMBIwEzARYXNjcEDLf98aj99LQBUDoiJDoFtvpKBbb8TqOaoqEAAAABABsAAAdMBbYAGQAkQBAZChsaFQ4OBQkYEQoDAQkSAD8zPzMzEjk5ETMREgE5OTEwISMBLgEnBgcBIwEzExYXNjcBMwEWFzY3EzMFxaj%2B2RU0ARYw%2FuKo%2Fnu05zAWGzUBBrQBEzAhEzXmtAPTQcYUhJ38MwW2%2FHm%2BmrevA3n8f5vDjswDhQAAAQAIAAAElgW2AAsAI0ASBAYFCwoABg0MAggECQYDAQQSAD8zPzMSOTkREgEXOTEwISMJASMJATMJATMBBJbB%2Fnf%2BcLQB5v47vAFrAW61%2FjsCg%2F19AvwCuv29AkP9TAAAAQAAAAAEewW2AAgAIEAPBAUCBQcDCQoABQEHAwUSAD8%2FMxI5ERIBFzkRMzEwCQEzAREjEQEzAj0Bhrj%2BGKz%2BGboC2wLb%2FIH9yQIvA4cAAAABAFIAAAQ%2FBbYACQArQBcIAQMHAAcEAQQKCwUESVkFAwEISVkBEgA%2FKwAYPysREgEXOREzETMxMCkBNQEhNSEVASEEP%2FwTAwj9EAO%2F%2FPgDHoUEmJmF%2B2kAAQCm%2FrwCbwW2AAcAIEAOBgEEAAEACAkFAgMGAScAPzM%2FMxESATk5ETMRMzEwASERIRUhESECb%2F43Acn%2B3wEh%2FrwG%2Bo36IQAAAQAXAAAC3QW2AAMAE7cDAQQFAwMCEgA%2FPxESATk5MTATASMBugIjpv3gBbb6SgW2AAAAAAEAM%2F68AfwFtgAHACBADgMAAQYABggJAAcnAwQDAD8zPzMREgE5OREzETMxMBchESE1IREhMwEh%2Ft8Byf43tgXfjfkGAAAAAAEAMQInBCMFwQAGABhACQADBwgFAgAEAgAvLzMSORESATk5MTATATMBIwkBMQGyYwHdmP6M%2FrICJwOa%2FGYC6f0XAAAAAf%2F8%2FsUDmv9IAAMAEbUABQEEAQIALzMRATMRMzEwASE1IQOa%2FGIDnv7FgwABAYkE2QMSBiEACQATtgAECwoGgAEALxrNERIBOTkxMAEjLgEnNTMeARcDEm5BsijLIHIsBNk0wD8VRbU1AAAAAgBe%2F%2BwDzQRaABkAJABHQCUiCAseHhkZEggDJSYBAgseR1kCCwsAFRUPRlkVEAUaRlkFFgAVAD8%2FKwAYPysREgA5GC85KxEAMxESARc5ETMRMxEzMTAhJyMOASMiJjUQJTc1NCYjIgcnPgEzMhYVESUyNj0BBw4BFRQWA1IhCFKjeqO5AhO6b3qJrTNRwWHEvf4Om7Gmxq9tnGdJqJsBTBAGRIF7VH8sMq7A%2FRR1qpljBwdtc1peAAIAsP%2FsBHUGFAATAB8AREAiChcXDw8MHQMMAyAhDQAMFRIRChEGAAYaRlkGFgAURlkAEAA%2FKwAYPysREgA5OREzGD8%2FERIBOTkRMxEzETMRMzEwATISERACIyImJyMHIxEzERQHMzYXIgYVFBYzMjY1NCYCrtjv8dZrsTwMI3emCAh0zKqWmqqZlpYEWv7Z%2FvL%2B8v7VT1KNBhT%2Bhn9lpIvD5%2BfH39HW0gAAAAABAHP%2F7AOLBFwAFgAmQBQPAwMVCQMYFwYNRlkGEAASRlkAFgA%2FKwAYPysREgEXOREzMTAFIgAREAAzMhYXBy4BIyARFBYzMjcVBgJm7v77AQn1T54tMzeCMv6yo6CJkG4UASUBDAETASwiF40WHf5Wytg7kzkAAAACAHP%2F7AQ3BhQAEgAfAEJAIR0GFwAODhEGESAhEhUPAAABAQwDCQkaRlkJEAMTRlkDFgA%2FKwAYPysREgA5OREzGD8%2FERIBOTkRMxEzMxEzMTAlIwYjIgIREBIzMhczLwERMxEjJTI2PQE0JiMiBhUUFgOaCXPl1%2B%2Fw1t93DQcEpof%2BnqqZm6qSm5qTpwEmAQ8BDwEsok9NAb757He5ziPpx%2BPP0tYAAAACAHP%2F7AQSBFwAEwAaADtAHxgKFwsDAxEKAxwbFwtGWRcXAAYGFEZZBhAADkZZABYAPysAGD8rERIAORgvKxESARc5ETMzETMxMAUiABEQADMyEh0BIR4BMzI3FQ4BAyIGByE0JgJ%2F8%2F7nAQXczvD9DQW5qLGtWJ2chJ0OAj2MFAEoAQcBCQE4%2FvHeacHISpQmIQPlrJidpwAAAAABAB0AAAMOBh8AFAA5QB0UDAwTAgIHAwUDFRYKD0ZZCgABBQcFRlkTBw8DFQA%2FPzMrEQAzGD8rERIBOTkRMzMRMzMSOTEwASERIxEjNTc1ECEyFwcmIyIGHQEhAp7%2B6abExAFhV3UrYEReWgEXA8f8OQPHSzw9AZQjhR99ikcAAAMAJ%2F4UBDEEXAAqADcAQQBuQD4rGTglDB89BTETARMFAioiHB8lGQpCQxwPNQ81RlkIO0dZCiIIKg8IDwgWKioCR1kqDyg%2FR1koEBYuR1kWGwA%2FKwAYPysAGD8rERIAOTkYLy8REjk5KysREgA5ERIBFzkRMxEzETMRMxEzMTABFQceARUUBiMiJwYVFBY7ATIWFRQEISImNTQ2Ny4BNTQ2Ny4BNTQ2MzIXARQWMzI2NTQmKwEiBhMUFjMyNTQjIgYEMcscLNzAMStqSlrCsr%2F%2B3P7o1%2BmAdCo5QEVVa9jGVkX%2BEZaM0clumMdxflqCdPP2dX4ESGkYI3FHocAIOFUtK5aPtr%2BgkmSSGhNQNTxaKiOobLTDFPsAWVx9a1lFbAM8c3bs934AAQCwAAAERAYUABYAM0AZDgwICAkAFgkWFxgOCRISBEZZEhAKAAAJFQA%2FMz8%2FKxESADkREgE5OREzETMRMzMxMCERNCYjIgYVESMRMxEUBzM%2BATMyFhURA556gq2fpqYICjG1dMnJAsWGhLzW%2FcMGFP4pVThPW7%2FQ%2FTUAAAIAogAAAWYF3wADAA8AI0ARCgAABAEBEBENB0hZDQIPARUAPz%2FOKxESATkRMzMRMzEwISMRMwM0NjMyFhUUBiMiJgFWpqa0OCooOjooKjgESAEpOTU2ODg3NwAAAv%2BR%2FhQBZgXfAAwAGAAsQBYTCwsNCAgZGhYQSFkWQAkPAAVGWQAbAD8rABg%2FGs4rERIBOREzMxEzMTATIic1FjMyNjURMxEQAzQ2MzIWFRQGIyImK187RUNOSaa0OCooOjooKjj%2BFBmHFFVXBPz7EP68B105NTY4ODc3AAEAsAAABB0GFAAQADZAGxAOCgoLCwgGBAUIBBESDAAAEBAICAMHCxUDDwA%2FPzMSOS85ETM%2FERIBFzkROREzETMzMTABNjcBMwkBIwEHESMRMxEUBwFUK1gBYsX%2BRAHbyf59faSkCAIxPWMBd%2F4t%2FYsCBmz%2BZgYU%2FMc3cwABALAAAAFWBhQAAwAWQAkAAQEEBQIAARUAPz8REgE5ETMxMCEjETMBVqamBhQAAAABALAAAAbLBFwAIwBGQCMVERESCAkAIwkSIwMkJRwWFRUSGQQNGQ1GWR8ZEBMPCQASFQA%2FMzM%2FPzMrEQAzERI5GC8zMxESARc5ETMRMxEzETMxMCERNCYjIgYVESMRNCYjIgYVESMRMxczPgEzIBczPgEzMhYVEQYlcHablKZwd5yRpocbCC%2BragEBTwgxune6uQLJg4Oyuf2cAsmDg7vV%2FcEESJZQWrpWZL%2FS%2FTUAAAEAsAAABEQEXAAUADFAGAAUDAgICRQJFhUMCRAQBEZZEBAKDwAJFQA%2FMz8%2FKxESADkREgE5OREzETMRMzEwIRE0JiMiBhURIxEzFzM%2BATMyFhURA556gqygpocbCDO4ccbIAsWGhLrW%2FcEESJZRWb%2FS%2FTUAAgBz%2F%2BwEYgRcAAwAGAAoQBQTAA0HAAcaGQoWRlkKEAMQRlkDFgA%2FKwAYPysREgE5OREzETMxMAEQACMiJgI1EAAzMgABFBYzMjY1NCYjIgYEYv7y7pPkfAEM7uYBD%2Fy9qKOjqamlo6YCJf70%2FtOKAQKtAQwBK%2F7O%2FvvS3NvT0dnWAAAAAgCw%2FhQEdQRcABQAIQA%2FQCAZCwQHBwgfEggSIiMECwAPDxVGWQ8QCQ8IGwAcRlkAFgA%2FKwAYPz8%2FKxESADk5ERIBOTkRMxEzETMzMzEwBSImJyMWFREjETMXMz4BMzISERACAyIGBxUUFjMyNjU0JgKua7E8DAymhxcIQKpu2u3x7qiWApqqjqGhFE9SYFb%2BPQY0llpQ%2Ftb%2B8%2F7y%2FtUD47rLJefH5srN2wAAAAIAc%2F4UBDcEXAAMAB8AREAiChAdFgMaGhkQGSAhGhsXDx0eHhYNExMHRlkTEA0ARlkNFgA%2FKwAYPysREgA5OREzGD8%2FERIBOTkRMxEzMzMRMzEwJTI2NzU0JiMiBhUUFhciAhEQEjMyFzM3MxEjETQ3IwYCTqaYBZypkpuZfdTu8NbheQkYg6YLDXN3stMl5srjz8%2FZiwEqAQsBDQEuqpb5zAHVZEanAAEAsAAAAycEXAAQACpAFA0JCQoKAhESCw8NAAoVAAVGWQAQAD8rABg%2FEjk%2FERIBOTkRMxEzMTABMhcHJiMiBhURIxEzFzM%2BAQKkSToXRDSFvaaJEwg9rARcDJoP2KH9tARIy2t0AAAAAQBq%2F%2BwDcwRcACQANkAcHhMMAAAYBRMEJSYMHgMWFhtGWRYQBgMJRlkDFgA%2FKwAYLz8rERIAOTkREgEXOREzETMxMAEUBiMiJzUeATMyNjU0JicuAjU0NjMyFwcmIyIGFRQeARceAQNz5M7aek%2B1VIKMb6GZgT%2FavrGpO6WGdngtZI7DiQErmaZFmiguU1VAWz45VWxLhptIh0RKQSw%2BODVHkAABAB%2F%2F7AKoBUYAFgA0QBsQFBQJCwkSAwQYFwoTEBNHWQ5AEA8HAEZZBxYAPysAGD8azSsRADMREgEXOREzETMxMCUyNjcVDgEjIBkBIzU%2FATMVIRUhERQWAhIsUhgbaSr%2Bwp2dRmABPv7CXnUNB38NEQFPAoxQRer%2Bgf17Y2oAAAEApP%2FsBDkESAAUADRAGQETBwwMChMKFRYMDQ0QCBQPEARGWRAWCxUAPz8rABg%2FMxI5ETMREgE5OREzETMRMzEwAREUFjMyNjURMxEjJyMOASMiJjURAUx6gqyfpokYCTO1dMjHBEj9OYaEvNUCQPu4k1FWvtECzQAAAAABAAAAAAQCBEgACwAYQAoBCgwNBQkBDwAVAD8%2FMzkREgE5OTEwIQEzExYXMzYSEzMBAaD%2BYLLsUA4IC3XMsv5gBEj9duRENQFNAjD7uAAAAAEAFwAABiMESAAcACxAFAkbHR4XFg4NAwQNBAgaEgkPAAgVAD8zPzMzEjk5ETMRMzMzERIBOTkxMCEDJicjBgcDIwEzGgEXMz4BNxMzExYXMz4BEzMBBC%2FJEzQIKB7PwP7VrmpvCAgLMRLJtMQ4FAgEI7%2Bs%2FtECgzvRr1%2F9fwRI%2FmP%2BUEs5tTUCdf2LrHUklgLc%2B7gAAAAAAQAnAAAECARIAAsAIkARBwUGAAEFDA0JAwEICxUEAQ8APzM%2FMxI5ORESARc5MTAJATMJATMJASMJASMBuP6DvQEhASC7%2FoMBkbz%2Bzf7KvAIxAhf%2BXAGk%2Fen9zwG8%2FkQAAQAC%2FhQEBgRIABUAJEASCQ8AAxYXBA0ADRJGWQ0bCAAPAD8yPysREgA5ERIBFzkxMBMzExYXMz4BEzMBDgEjIic1FjMyPwECsvBPEwgNU%2Bay%2FilGu4hMSjdEq0k9BEj9j9ZfM%2FcCfPsguZsRhQzAnAAAAAABAFIAAANtBEgACQArQBcIAQMHAAcEAQQKCwUER1kFDwEIR1kBFQA%2FKwAYPysREgEXOREzETMxMCkBNQEhNSEVASEDbfzlAlb9zwLn%2FbICXXEDVoGB%2FLoAAQA9%2FrwCwQW2ABwALEAVGRoaCxcAAA8HFAMDBwsDHR4TAwQnAD8%2FERIBFzkRMxEzMxEzETMRMzEwJRQWFxUuATURNCYjNT4BNRE0NjMVBhURFAcVFhUB23VxvtB%2BeIJ02Lbm398MZlwCjAKqmgEvaFmNAlxgATKbrIsGwf7Z1ycMJ9cAAQHu%2FhACewYUAAMAFkAJAgMDBAUDGwAAAD8%2FERIBOREzMTABMxEjAe6NjQYU9%2FwAAQBI%2FrwCywW2AB0ALEAVFQUKEhICGQAdHQ4OGQUDHh8VJwYDAD8%2FERIBFzkRMxEzETMzETMRMzEwASY1ETQnNTIWFREUFhcVIgYVERQGBzU%2BATURNDY3Agrf47jTdoJ6fs2%2Bb3RucQI%2FJ9cBJ8EGi66Z%2Fs5hWwKNWWj%2B0ZmrAowCXGYBKXJ4FAAAAAABAGgCUAQpA1QAFwAkQBEDDxgZEgxQWQMSDwYGAFBZBgAvKwAQGMQvxCsREgE5OTEwASIGBzU2MzIWFx4BMzI2NxUGIyImJy4BAVI1fzZkkERxWUJiLzaANmaOSH5IS1oCyUM2l20cJhwbQDmWbiEgIBgAAAIAmP6LAYkEXgADAA4AK0AUAgQEAwkJDxAAAAMMDAZPWQwQAyIAPz8rERIAORgvERIBOREzMxEzMTATMxMjExQjIiY1NDYzMhbbaTPP4Xk8PD85M0YCrPvfBUyHR0A%2FSEAAAAABAL7%2F7APbBcsAGwA%2BQB4WCA0DAwoEABAQBAgDHB0ZBQITCg0CDQINBAsHBBkAPz8SOTkvLxEzMxEzMxESARc5ETMRMzMRMxEzMTAlBgcVIzUmAjUQJTUzFR4BFwcmIyIGFRQWMzI3A8tpk4XLwQGMh0uOMTGFbayin6eNjvA2BsjOIAER%2BgH8PqykAyEXjDPT2dTLOwAAAAEAPwAABEQFyQAdAEhAJhgTCQ0NGhYRAgsWEwUeHwwYGRhOWQkZGRMAExBMWRMYAAVLWQAHAD8rABg%2FKxESADkYLzMrEQAzERIBFzkRMzMRMxEzMTABMhcHJiMiBhURIRUhFRQGByEVITU2PQEjNTMRNDYCqr6qPZqPe30Bpv5aQUoDG%2Fv7zcbG4AXJVIVNfIz%2B2X%2FdZIgsmo0v9N9%2FATyyzQAAAgB7AQYEFwSgABsAJwAgQA0cACIOAA4oKR8VFSUHAC8zMy8zERIBOTkRMxEzMTATNDcnNxc2MzIXNxcHFhUUBxcHJwYjIicHJzcmNxQWMzI2NTQmIyIGuEqHXodogn9miV%2BGSkqDXIlmf4Zkh1yFSoGddHSeoHJ0nQLTemuMXIVJSYVcinF2g2eHXIVHSYVciGt8cKCfcXKipAAAAQAfAAAEcQW2ABYAVkAuEg4HCwsQDAUJAgkDDBQOFQcXGAoODgcPBhISAwATFQ8THxMCDxMPEwwBFQYMGAA%2FPzMSOTkvL10REjkyMhEzETMzETMREgEXOREzETMzETMRMzEwCQEzASEVIRUhFSERIxEhNSE1ITUhATMCSAF7rv5gAQb%2BwwE9%2FsOk%2FsQBPP7EAQD%2BZbIC3wLX%2FP5%2Fqn%2F%2B9AEMf6p%2FAwIAAgHu%2FhACewYUAAMABwAkQBACBgYDBwcICQQDBAMHGwAAAD8%2FOTkvLxESATkRMzMRMzEwATMRIxEzESMB7o2NjY0GFPz4%2Fg389wAAAAIAe%2F%2F4A5YGHQAxAD0AQ0AmMgATBioeOBkZHgwGACMGPj8VAzs2HC0GIQkhJ0dZIRUJEEdZCQAAPysAGD8rERIAFzkREgEXOREzETMRMxEzMTATNDY3LgE1NDYzMhYXBy4BIyIGFRQWFx4BFRQGBxYVFAYjIic1HgEzMjY1NC4BJy4CNxQWHwE2NTQmJw4Bi1ZOSlTPxV6fYTVih0x0dHuaupZSSpnq1NqATsJSho0wbHOOhkKShKcxiZO5RFUDKVaJJShvVXmLHSeDJxs7QDxUN0SXa1qNKVGSjJlBlCUtTEcuOjorNFpyYk1pPRNQb1NwORNkAAAAAgE1BQ4DaAXTAAsAFwAeQAwGAAwSABIYGQ8DFQkALzPNMhESATk5ETMRMzEwATQ2MzIWFRQGIyImJTQ2MzIWFRQGIyImATU1JSY3NyYlNQF9NSUlNzclJTUFcTQuLjQyMTEyNC4uNDIxMQAAAwBk%2F%2BwGRAXLABYAJgA2AEZAJycXAw8vHx8UCQ8XBTc4BgwAEg8MHwwCABIQEgIMEgwSGysjEzMbBAA%2FMz8zEjk5Ly9dXREzETMREgEXOREzETMRMzEwASIGFRQWMzI3FQ4BIyImNTQ2MzIXByYBNBIkMzIEEhUUAgQjIiQCNxQSBDMyJBI1NAIkIyIEAgN9fYd%2Fg1Z9MGVGwtDdv4B2Omz8l8gBXsrIAV7Kwv6i0M%2F%2BosNprgEtrK4BKq%2Bu%2Ftewrv7WrwQjrpqooi18FBzx2NH2PHYz%2FrjIAV7KyP6iysX%2BptDPAVrGrf7Tra4BKbCuASqvrv7XAAACAEYDFAJxBccAFgAfADdAHBcGGwoBARYWEAYDICEcCgoSGRYAAxADAgMNEh8APzPUXcQzEjkvMxESARc5ETMRMzMRMzEwAScGIyImNTQ2PwE1NCMiByc2MzIWFRElFDMyPQEHDgECFBhcjF9vmqV1lGRoK3KFgon%2BUHDJYnBnAyFUYWNmZmkGBCeFM2A4aXn%2BPLxktDEEBDkAAAACAFIAdQOqA74ABgANAClAEwMGCg0CBAsJCQQNBgQODwwFCAEALzMvMxESARc5ETMRMxEzETMxMBMBFwkBBwElARcJAQcBUgFWd%2F7fASF3%2FqoBiwFYdf7hAR91%2FqgCJwGXRf6i%2FqFHAZcbAZdF%2FqL%2BoUcBlwAAAAABAGgBCAQpAxcABQAbQAwCAQQBBgcFBFBZBQIALy8rERIBOTkRMzEwAREjESE1BCmJ%2FMgDF%2F3xAYWKAP%2F%2FAFQB2QI%2FAnESBgAQAAAABABk%2F%2BwGRAXLAAgAFgAmADYAXUAzJxcAERESBAkvHx8NCQwSFwY3OAwQEAAADhMOEggTDxIfEgIAExATAhITEhMbKyMTMxsEAD8zPzMSOTkvL11dETMRMxESOS8zETMREgEXOREzETMRMxEzETMxMAEzMjY1NCYrAQUUBgcTIwMjESMRITIWATQSJDMyBBIVFAIEIyIkAjcUEgQzMiQSNTQCJCMiBAIC02xQYVZdagGyVU3uqM%2BHlAEFppv738gBXsrIAV7Kwv6i0M%2F%2BosNprgEtrK4BKq%2Bu%2Ftewrv7WrwL6U0BLQYhQex7%2BdQFi%2Fp4De4L%2BxcgBXsrI%2FqLKxf6m0M8BWsat%2FtOtrgEpsK4BKq%2Bu%2FtcAAf%2F6BhQEBgaTAAMAEbUABQEEAQIALzMRATMRMzEwASE1IQQG%2B%2FQEDAYUfwACAH8DXALuBcsADAAYACFADg0AEwYABhkaEArAFgMEAD8zGswyERIBOTkRMxEzMTATNDYzMhYVFA4BIyImNxQWMzI2NTQmIyIGf7WCgrZSklSCtXN1UVBzcVJTcwSTgra1g1SPVLSDUnJxU1RxcgAAAgBoAAEEKQTDAAMADwAANzUhFQEhFSERIxEhNSERM2gDwf5kAZz%2BZIv%2BZgGaiwGKigMWiv5WAaqKAawAAQAxAkoCjQXJABgAI0ARBxMXAQEOEwAEGhkKEB8XASAAPzM%2FMxESARc5ETMRMzEwASE1Nz4CNTQmIyIGByc2MzIWFRQGDwEhAo39pOxZUiFQPzRiRUKDmISTWZOuAbgCSmjmVmFMNkRFJjJYb4JwUJeKpQABACECOQKNBckAIwA5QCIPBQUAAxIeCgYkJRJdE20TAkwTAQsTGxMCExMIGiEfDQghAD8zPzMSOS9dXV0zERIBFzkRMzEwARQGBxYVFAYjIic1FjMyNTQrATUzMjY1NCYjIgYHJz4BMzIWAnNSRLC4qJh0k3vT53V3Z2NQQ0JwOEU%2FjF6InQTnUGcXL6KAjzh7RKKRa09EPUQrI1otNncAAQGJBNkDEgYhAAkAE7YJBAoLBIAJAC8azRESATk5MTABPgE3MxUOAQcjAYkwbyDKLK5AbwTyPrBBFUG%2BNAAAAAEAsP4UBEQESAAWADVAGgUKCggQABMTFAgUGBcGFQ8UGw0CRlkNFgkVAD8%2FKwAYPz8zERIBOTkRMxEzMxEzETMxMAEQMzI2NREzESMnIwYjIicjFhURIxEzAVb%2Bq5%2BmiBoKb%2BWWWAoKpqYBff76vdQCQPu4k6dcVKD%2BwAY0AAAAAQBx%2FvwEYAYUAA8AJ0ASBAUBAAAFCwMQEQgIBQMPBQEFAC8zPzMSOS8REgEXOREzETMxMAEjESMRIxEGIyImNRA2MyEEYHLVcz5U2Mva6AIt%2FvwGsPlQAzMS%2BvsBBP4AAQCYAkwBiQNaAAsAF0AKBgAADQwDCU9ZAwAvKxESATkRMzEwEzQ2MzIWFRQGIyImmD44OkFCOTNDAtNCRUVCQUY%2FAAABACX%2BFAG0AAAAEgAkQBARDgsAAA4FAxMUDhERCAMQAC%2FMMjkvMxESARc5ETMRMzEwARQGIyInNRYzMjY1NCYnNzMHFgG0mZYzLS07T1FPbVhuN7T%2B32FqCWoIKDYrNRGycycAAQBMAkoB4QW2AAoAIEAOAgADAwoMCwkJAyAGAB4APzI%2FOS8REgE5OREzMzEwATMRIxE0Nw4BBycBUo%2BFBhY2h0MFtvyUAkNbWhYtX2AAAAACAEIDFAK%2BBccACwAXACVAEgwGEgAGABgZDwADEAMCAxUJHwA%2FM8RdMhESATk5ETMRMzEwARQGIyImNTQ2MzIWBRQWMzI2NTQmIyIGAr6rlpKpqJeYpf3%2BW2hpXFxpZ1wEb6S3uqGjtbaienp6ent2dgAAAAIAUAB1A6gDvgAGAA0AI0ARCwkEAgADBwIKCQYODwwFCAEALzMvMxESARc5ETMRMzEwCQEnCQE3AQUBJwkBNwEDqP6odQEf%2FuF1AVj%2Bdf6odQEf%2FuF1AVgCDP5pRwFfAV5F%2Fmkb%2FmlHAV8BXkX%2Baf%2F%2FAEsAAAXRBbYQJwDTAoMAABAmAHv%2FABEHANQDHf23AAmzAwISGAA%2FNTUA%2F%2F8ALgAABdsFthAnANMCPwAAECYAe%2BIAEQcAdANO%2FbcAB7ICEBgAPzUAAAD%2F%2FwAaAAAGIQXJECYAdfkAECcA0wLfAAARBwDUA239twAJswMCKxgAPzU1AAACADP%2BdwNUBF4AHQAoAEFAIggUHiMBHA8cIxQEKSoAHQEMAx0dESYmIE9ZJhARC0lZESMAPysAGD8rERIAORgvX15dERIBFzkRMxEzETMxMAEVFAYHDgIVFBYzMjY3FwYjIiY1ND4CNz4BPQETFCMiJjU0NjMyFgJOS2F5PRmEelCWYjvFxr7YI0BZNmVBtHk7PkI3M0YCrDN6lFRqS004ZHEmMIdguqpGaVlSL1h0XR8BK4dFQkBHQAAA%2F%2F8AAAAABRAHcxImACQAABEHAEP%2FwgFSAAizAhAFJgArNQAA%2F%2F8AAAAABRAHcxImACQAABEHAHYAhQFSAAizAhgFJgArNQAA%2F%2F8AAAAABRAHcxImACQAABEHAMUAIwFSAAizAh0FJgArNQAA%2F%2F8AAAAABRAHLxImACQAABEHAMcABAFSAAizAhgFJgArNQAA%2F%2F8AAAAABRAHJRImACQAABEHAGoANwFSAAq0AwIkBSYAKzU1%2F%2F8AAAAABRAHBhImACQAABAHAMYAOQCBAAL%2F%2FgAABoEFtgAPABMATkAsCg4OEQEACAwBEAUFFQUUCRMGE0lZEANJWQoNSVkQChAKAQYDBRIBDklZARIAPysAGD8%2FEjk5Ly8rKysRADMRATMREhc5ETMzETMxMCkBESEDIwEhFSERIRUhESEBIREjBoH9Ev3%2B47ACugPJ%2FbwCHf3jAkT7VAG%2BdgHR%2Fi8Ftpf%2BKZb95gHSArUA%2F%2F8Aff4UBM8FyxImACYAABAHAHoCAgAA%2F%2F8AyQAAA%2FgHcxImACgAABEHAEP%2FtwFSAAizAQ0FJgArNQAA%2F%2F8AyQAAA%2FgHcxImACgAABEHAHYAPwFSAAizARUFJgArNQAA%2F%2F8AyQAAA%2FgHcxImACgAABEHAMX%2F%2BwFSAAizARoFJgArNQAA%2F%2F8AyQAAA%2FgHJRImACgAABEHAGoAEgFSAAq0AgEhBSYAKzU1%2F%2F8ABQAAAY4HcxImACwAABEHAEP%2BfAFSAAizAQUFJgArNQAA%2F%2F8AswAAAjwHcxImACwAABEHAHb%2FKgFSAAizAQ0FJgArNQAA%2F%2F%2F%2FxwAAAmkHcxImACwAABEHAMX%2BuwFSAAizARIFJgArNQAA%2F%2F8ABQAAAjgHJRImACwAABEHAGr%2B0AFSAAq0AgEZBSYAKzU1AAIALwAABUgFtgAMABcAV0AyERUVCAQNAAATBAYEGBkUBgcGSVkRDwc%2FB68HzwffBwULAwcHBAkJEEpZCQMEFUpZBBIAPysAGD8rERIAORgvX15dMysRADMREgEXOREzETMzETMxMAEQACkBESM1MxEhIAADECEjESEVIREzIAVI%2Fnf%2Bj%2F57mpoBsgFRAXy1%2FcfnAXv%2Bhb4CYgLp%2Fpb%2BgQKJlgKX%2Fon%2BpAJA%2FfyW%2Fgr%2F%2FwDJAAAFPwcvEiYAMQAAEQcAxwCTAVIACLMBGgUmACs1AAD%2F%2FwB9%2F%2BwFvgdzEiYAMgAAEQcAQwB5AVIACLMCGQUmACs1AAD%2F%2FwB9%2F%2BwFvgdzEiYAMgAAEQcAdgEKAVIACLMCIQUmACs1AAD%2F%2FwB9%2F%2BwFvgdzEiYAMgAAEQcAxQC0AVIACLMCJgUmACs1AAD%2F%2FwB9%2F%2BwFvgcvEiYAMgAAEQcAxwCaAVIACLMCIQUmACs1AAD%2F%2FwB9%2F%2BwFvgclEiYAMgAAEQcAagDVAVIACrQDAi0FJgArNTUAAQCFARAEDASYAAsAGUAJBwkDAQkBDA0IABkvERIBOTkRMxEzMTABFwkBBwkBJwkBNwEDrGD%2BoAFeYP6e%2FqRlAV7%2BoGQBYQSYY%2F6e%2FqBjAV%2F%2BoWMBYAFgZf6dAAADAH3%2FwwW%2BBfYAEwAbACMATkAsFh8XHgQcFBwKFAAAEg8FCAoGJCUWHiEZDSFJWQ8SCAUEAxANBAMZSVkGAxMAP8YrABg%2FxhIXOSsREgA5ORESARc5ETMRMxESFzkxMAEQACEiJwcnNyYREAAhMhc3FwcWAxAnARYzMhIBEBcBJiMiAgW%2B%2Fp3%2BxOuUZXhssgFgAUTRnWF4asC0bv1gc7Dz%2BPwnZQKdaqjz%2FQLd%2FqH%2BbmSNT5rGAW0BZQGJXodQlMr%2BlQEQmvxMUgEyASr%2B%2BpoDr0n%2BzQAAAP%2F%2FALr%2F7AUZB3MSJgA4AAARBwBDAEYBUgAIswETBSYAKzUAAP%2F%2FALr%2F7AUZB3MSJgA4AAARBwB2AM8BUgAIswEbBSYAKzUAAP%2F%2FALr%2F7AUZB3MSJgA4AAARBwDFAH0BUgAIswEgBSYAKzUAAP%2F%2FALr%2F7AUZByUSJgA4AAARBwBqAJgBUgAKtAIBJwUmACs1Nf%2F%2FAAAAAAR7B3MSJgA8AAARBwB2ADEBUgAIswESBSYAKzUAAAACAMkAAAR5BbYADAAVADZAHA0JBQUGEQAGABYXDQRKWQkVSlkNCQ0JBgcDBhIAPz8SOTkvLysrERIBOTkRMxEzETMzMTABFAQhIxEjETMRMyAEATMyNjU0JisBBHn%2B0f7huKqq1wEZARb8%2Bqjiyr7KzAMQ4%2B7%2BwQW2%2FwDP%2FeqPpJWKAAABALD%2F7AScBh8AMABBQCIpKgUdIwAXDAwAHREqBTEyEhIqLi4mRlkuACoVDxVGWQ8WAD8rABg%2FPysREgA5GC8REgEXOREzETMRMxEzMTABFAcOARUUHgEXHgEVFAYjIic1HgEzMjU0JicuATU0Njc%2BATU0JiMgFREjETQ2MzIWBBmPWDgbR06MZsKzvGs%2FnEjXU25%2FYEVHS0CIf%2F7sptzezuEE8odzRkMhICo5M1%2BdZaCrRZonL7ZLa0ZSe1Q%2FajU5WjVQVd%2F7TASysrudAAD%2F%2FwBe%2F%2BwDzQYhEiYARAAAEQYAQ44AAAizAiYRJgArNf%2F%2FAF7%2F7APNBiESJgBEAAARBgB2KwAACLMCLhEmACs1%2F%2F8AXv%2FsA80GIRImAEQAABEGAMXYAAAIswIzESYAKzX%2F%2FwBe%2F%2BwDzQXdEiYARAAAEQYAx70AAAizAi4RJgArNf%2F%2FAF7%2F7APNBdMSJgBEAAARBgBq4gAACrQDAjoRJgArNTUAAP%2F%2FAF7%2F7APNBoUSJgBEAAARBgDG9wAACrQDAigRJgArNTUAAAADAF7%2F7AZzBFwAKQA0ADsAYUAzKgAkETA4GRkEMDkYGB8wCwAFPD0bLSctRlkZMQQxR1k4JCcRBAQOIicWNQgOCEZZFA4QAD8zKxEAMxg%2FMxI5LzkSOTMrEQAzKxEAMxESARc5ETMRMzMRMxI5OREzMTATNDY%2FATU0JiMiByc%2BATMyFhc%2BATMyEh0BIRIhMjY3FQ4BIyAnDgEjIiY3FBYzMjY9AQcOAQEiBgchNCZe%2BP64dHeQozRKx2KCpSk1q27A6P1DCAE6W51UVpVl%2Ft99UcWGo7mua1iRqJ66pAO9eYsLAgeAAS%2BhswgGRIF7VH8pNVdfWGD%2B9d5r%2FnUjJ5QmIel%2FaqqXX1mpmmMHCG0CMqaenKgAAAD%2F%2FwBz%2FhQDiwRcEiYARgAAEAcAegFGAAD%2F%2FwBz%2F%2BwEEgYhEiYASAAAEQYAQ7UAAAizAhwRJgArNf%2F%2FAHP%2F7AQSBiESJgBIAAARBgB2TgAACLMCJBEmACs1%2F%2F8Ac%2F%2FsBBIGIRImAEgAABEGAMX3AAAIswIpESYAKzX%2F%2FwBz%2F%2BwEEgXTEiYASAAAEQYAagoAAAq0AwIwESYAKzU1AAD%2F%2F%2F%2FaAAABYwYhEiYAwgAAEQcAQ%2F5RAAAACLMBBREmACs1AAD%2F%2FwCpAAACMgYhEiYAwgAAEQcAdv8gAAAACLMBDREmACs1AAD%2F%2F%2F%2BzAAACVQYhEiYAwgAAEQcAxf6nAAAACLMBEhEmACs1AAD%2F%2F%2F%2FsAAACHwXTEiYAwgAAEQcAav63AAAACrQCARkRJgArNTUAAgBx%2F%2BwEYgYhABsAJgBKQCshBgwcHAAAGBkWDhETEAYJJygJH0ZZCwMWERkODwUUCQkDFxQBAyRGWQMWAD8rABg%2FMxI5LxIXORI5KxESARc5ETMRMxEzMTABEAAjIgA1NAAzMhc3JicFJzcmJzcWFzcXBxYSAzQmIyARFBYzMjYEYv77997%2B6QEH3OJkCDnN%2FvFJ6VxeRZxm7kzPmKWotJz%2Br6%2Bir6ECM%2F7n%2FtIBDeLmAQZ5BNa%2Fm2yFPjF1SUuKa3eP%2FnL%2B6JOq%2Fpint8kA%2F%2F8AsAAABEQF3RImAFEAABEGAMcOAAAIswEeESYAKzX%2F%2FwBz%2F%2BwEYgYhEiYAUgAAEQYAQ9QAAAizAhoRJgArNf%2F%2FAHP%2F7ARiBiESJgBSAAARBgB2VgAACLMCIhEmACs1%2F%2F8Ac%2F%2FsBGIGIRImAFIAABEGAMUOAAAIswInESYAKzX%2F%2FwBz%2F%2BwEYgXdEiYAUgAAEQYAx%2FEAAAizAiIRJgArNf%2F%2FAHP%2F7ARiBdMSJgBSAAARBgBqGwAACrQDAi4RJgArNTUAAAADAGgA%2FAQpBKgAAwAPABsAM0AYFgoKEAQCBAEDHB0ZExMBBw0NAQEAUFkBAC8rEQAzGC8zETMvMxESARc5ETMzETMxMBM1IRUBNDYzMhYVFAYjIiYRNDYzMhYVFAYjIiZoA8H9rjs2NDo7MzQ9OzY0OjszND0CjYqK%2Fug8PT86OUA%2FAvQ8PT86OUA%2FAAMAc%2F%2B8BGIEhwATABsAIwBLQCkXHxwUFAocAAASDwUICgYkJRYeIRkNGUZZDxIIBQQDEA0QAyFGWQYDFgA%2FxisAGD%2FGEhc5KxESADk5ERIBFzkRMxEzERI5OTEwARAAIyInByc3JhEQADMyFzcXBxYFFBcBJiMiBgU0JwEWMzI2BGL%2B8u6acFRyXoEBDO6adFR1YX%2F8vTUB0Utyo6YClzP%2BL0dxo6kCJf70%2FtNFdU6DmAEAAQwBK0x3TIWY%2BatmAoY11tSkZP19M9sA%2F%2F8ApP%2FsBDkGIRImAFgAABEGAEPEAAAIswEWESYAKzX%2F%2FwCk%2F%2BwEOQYhEiYAWAAAEQYAdnEAAAizAR4RJgArNf%2F%2FAKT%2F7AQ5BiESJgBYAAARBgDFEgAACLMBIxEmACs1%2F%2F8ApP%2FsBDkF0xImAFgAABEGAGohAAAKtAIBKhEmACs1NQAA%2F%2F8AAv4UBAYGIRImAFwAABEGAHYSAAAIswEfESYAKzUAAgCw%2FhQEdQYUABYAIgA%2BQB8gBhsUEBARBhEkIxIAERsMFgkDCR5GWQkWAxdGWQMQAD8rABg%2FKxESADk5GD8%2FERIBOTkRMxEzMxEzMTABPgEzMhIREAIjIicjFxYVESMRMxEUByUiBgcVFBYzIBE0JgFYQqpq1%2FDx1t56DAQIpqYGAUiomAKaqgEvlAO0WU%2F%2B1P71%2FvT%2B06EiTT%2F%2BNQgA%2Fi40Whu4ySnnxwGw19EAAP%2F%2FAAL%2BFAQGBdMSJgBcAAARBgBqtQAACrQCASsRJgArNTUAAAABALAAAAFWBEgAAwAWQAkAAQEFBAIPARUAPz8REgE5ETMxMCEjETMBVqamBEgAAAACAH3%2F7AbnBc0AFAAfAFNALhgGDxMTHQANER0GBSAhDxJJWQ8PAAsLDklZCwMJFUlZCQQDG0lZAxIAE0lZABIAPysAGD8rABg%2FKwAYPysREgA5GC8rERIBFzkRMxEzETMxMCkBBiMgABEQACEyFyEVIREhFSERIQEiABEQADMyNxEmBuf9AGZc%2Frn%2BnwFcAUBmWgMO%2FbMCJ%2F3ZAk38RPn%2B%2FwEB93BXVxQBiQFqAWgBhheX%2FimW%2FeYEnf7P%2Ftn%2B1%2F7NIQR1HgAAAAMAcf%2FsBx8EWgAeACoAMQBVQC0fCA4CFhYlLxUVHCUIBDIzKygLKEZZLhZGWQIFDgsuLgURCxAYIgUiRlkABRYAPzMrEQAzGD8zEjkvEjkSOSsrEQAzERIBFzkRMxEzEjk5ETMxMAUgJw4BIyIAERAAMzIWFz4BMzISHQEhEiEyNjcVDgEBFBYzMjY1NCYjIgYlIgYHITQmBZb%2B230%2B0Ynf%2FvQBBuuDzT46wH7J7v0nCAFKXqFXWJj7IZino5mbpaaVBEd%2FkQwCIIQU63R3ATEBCAEJASx3cnB5%2Fvfiaf53IyeUJyACOdPb1dHd1djYpJ6epAABAQwE2QOuBiEADgAYQAkHABAPCwSADgkALzMazTIREgE5OTEwAT4BNzMeARcVIyYnBgcjAQx%2FZhemFm19d1iFiFNzBPCIgCkqhYIXN4OGNAAAAAACAW8E2QMtBoUACwAXAB5ADBIGDAAGABgZDwkVAwAvM8wyERIBOTkRMxEzMTABFAYjIiY1NDYzMhYHNCYjIgYVFBYzMjYDLXtmZXh5ZGV8bEIzM0I8OTRBBbJid3ViYnN3Xjg9PTg4PT0AAAABAQgE2QPwBd0AFwAkQA8JFRgZEQAFDAAMAAwVgAkALxrMOTkvLxEzETMREgE5OTEwASIuAiMiBgcjPgEzMh4CMzI2NzMOAQMUK1JPSSIyMw5iDXNbLlZOSCAxMA9jDXEE2yUtJTw9eYklLSU7PnmJAAAAAAEAUgHZA64CcQADABG1AAIEBQABAC8zERIBOTkxMBM1IRVSA1wB2ZiYAAAAAQBSAdkHrgJxAAMAEbUAAgQFAAEALzMREgE5OTEwEzUhFVIHXAHZmJgAAAABABkDwQFEBbYABwAStgEFCAkABAMAP80REgE5OTEwEyc2EjczBgclDBZiOHtCJQPBFloBDHn%2B9wAAAAABABkDwQFEBbYABwAStgUBCAkFBwMAP8YREgE5OTEwARcGAgcjEjcBNQ8aYjV6RiAFthZk%2FvdyAR3YAP%2F%2FAD%2F%2B%2BAFtAO4SBgAPAAAAAgAZA8ECtAW2AAcADwAaQAwEAQ0JBBARAAgDDAMAPzPNMhESARc5MTABJzYTMwYCByEnNhI3MwYHAZYPOHp7HjsN%2FdcMFmI4e0IlA8EW1wEIc%2F7fYRZaAQx5%2FvcAAAAAAgAZA8ECtAW2AAcAEAAaQAwJDQEFBBESDQUQBwMAPzPGMhESARc5MTABFwYCByMSNyEXBgIHIzYSNwE1DxpiNXpGIAInDhhgOH0aQg0FthZk%2FvdyAR3YFlv%2B9npkATRdAAAA%2F%2F8AGf75ArQA7hEHAM4AAPs4ACC3AQAHQA0NSAe4%2F8CzDAxIB7j%2FwLMJCUgHABErKys1NQABAKQB9AJeA%2BMACwATtgYAAAwNCQMAL80REgE5ETMxMBM0NjMyFhUUBiMiJqRxbGl0c2prcgLseX58e3eBgwAAAQBSAHUCHwO%2BAAYAGkAKBAIDBgIGCAcFAQAvLxESATk5ETMRMzEwEwEXCQEHAVIBVnf%2B3wEhd%2F6qAicBl0X%2Bov6hRwGXAAAAAQBQAHUCHQO%2BAAYAGkAKAwAEAgACCAcFAQAvLxESATk5ETMRMzEwCQEnCQE3AQId%2Fqh1AR%2F%2B4XUBWAIM%2FmlHAV8BXkX%2BaQAAAf55AAACjwW2AAMAE7cABQIEAwMCEgA%2FPxEBMxEzMTAJASMBAo%2F8eY8DhwW2%2BkoFtgAAAAIAFAJKArQFvAAKABQAPEAfFAULBwMDCQIAAgUDFRYBBQUJDxQfFAIUFAMOBx8DIAA%2FPzMSOS9dMzMRMxESARc5ETMzETMzETMxMAEjFSM1ITUBMxEzITU0Nw4DDwECtH2R%2Fm4BmIt9%2FvIGBRgeHguoAxTKymUCQ%2F3Nw4ZLDCctLRH2AAEAP%2F%2FsBIkFywAmAHFAPx0XHxYWGgsCBwcaJBEEChoXBicoCxcYF05ZCBgFHR4dTlkCHg8eHx4vHgMJAxgeGB4TIiIATFkiBxMOTFkTGQA%2FKwAYPysREgA5ORgvL19eXREzKxEAMxEzKxEAMxESARc5ETMRMzMRMxEzETMxMAEgAyEVIQcVFyEVIR4BMzI3FQYjIgADIzUzJzU3IzUzEgAzMhcHJgMb%2FsFPAf799AICAc%2F%2BQSXLqpyZkqvt%2Ft8uppgCApikJwEk7cmlR6YFNf5tgTlALYG0xUKWQQENAQGBKixQgQEFASRhi1YAAAABAAAjAAABBdMYAAAKCvIABQAk%2F3EABQA3ACkABQA5ACkABQA6ACkABQA8ABQABQBE%2F64ABQBG%2F4UABQBH%2F4UABQBI%2F4UABQBK%2F8MABQBQ%2F8MABQBR%2F8MABQBS%2F4UABQBT%2F8MABQBU%2F4UABQBV%2F8MABQBW%2F8MABQBY%2F8MABQCC%2F3EABQCD%2F3EABQCE%2F3EABQCF%2F3EABQCG%2F3EABQCH%2F3EABQCfABQABQCi%2F4UABQCj%2F64ABQCk%2F64ABQCl%2F64ABQCm%2F64ABQCn%2F64ABQCo%2F64ABQCp%2F4UABQCq%2F4UABQCr%2F4UABQCs%2F4UABQCt%2F4UABQC0%2F4UABQC1%2F4UABQC2%2F4UABQC3%2F4UABQC4%2F4UABQC6%2F4UABQC7%2F8MABQC8%2F8MABQC9%2F8MABQC%2B%2F8MABQDE%2F4UACgAk%2F3EACgA3ACkACgA5ACkACgA6ACkACgA8ABQACgBE%2F64ACgBG%2F4UACgBH%2F4UACgBI%2F4UACgBK%2F8MACgBQ%2F8MACgBR%2F8MACgBS%2F4UACgBT%2F8MACgBU%2F4UACgBV%2F8MACgBW%2F8MACgBY%2F8MACgCC%2F3EACgCD%2F3EACgCE%2F3EACgCF%2F3EACgCG%2F3EACgCH%2F3EACgCfABQACgCi%2F4UACgCj%2F64ACgCk%2F64ACgCl%2F64ACgCm%2F64ACgCn%2F64ACgCo%2F64ACgCp%2F4UACgCq%2F4UACgCr%2F4UACgCs%2F4UACgCt%2F4UACgC0%2F4UACgC1%2F4UACgC2%2F4UACgC3%2F4UACgC4%2F4UACgC6%2F4UACgC7%2F8MACgC8%2F8MACgC9%2F8MACgC%2B%2F8MACgDE%2F4UACwAtALgADwAm%2F5oADwAq%2F5oADwAy%2F5oADwA0%2F5oADwA3%2F3EADwA4%2F9cADwA5%2F4UADwA6%2F4UADwA8%2F4UADwCJ%2F5oADwCU%2F5oADwCV%2F5oADwCW%2F5oADwCX%2F5oADwCY%2F5oADwCa%2F5oADwCb%2F9cADwCc%2F9cADwCd%2F9cADwCe%2F9cADwCf%2F4UADwDD%2F5oAEAA3%2F64AEQAm%2F5oAEQAq%2F5oAEQAy%2F5oAEQA0%2F5oAEQA3%2F3EAEQA4%2F9cAEQA5%2F4UAEQA6%2F4UAEQA8%2F4UAEQCJ%2F5oAEQCU%2F5oAEQCV%2F5oAEQCW%2F5oAEQCX%2F5oAEQCY%2F5oAEQCa%2F5oAEQCb%2F9cAEQCc%2F9cAEQCd%2F9cAEQCe%2F9cAEQCf%2F4UAEQDD%2F5oAJAAF%2F3EAJAAK%2F3EAJAAm%2F9cAJAAq%2F9cAJAAtAQoAJAAy%2F9cAJAA0%2F9cAJAA3%2F3EAJAA5%2F64AJAA6%2F64AJAA8%2F4UAJACJ%2F9cAJACU%2F9cAJACV%2F9cAJACW%2F9cAJACX%2F9cAJACY%2F9cAJACa%2F9cAJACf%2F4UAJADD%2F9cAJADL%2F3EAJADO%2F3EAJQAP%2F64AJQAR%2F64AJQAk%2F9cAJQA3%2F8MAJQA5%2F%2BwAJQA6%2F%2BwAJQA7%2F9cAJQA8%2F%2BwAJQA9%2F%2BwAJQCC%2F9cAJQCD%2F9cAJQCE%2F9cAJQCF%2F9cAJQCG%2F9cAJQCH%2F9cAJQCf%2F%2BwAJQDM%2F64AJQDP%2F64AJgAm%2F9cAJgAq%2F9cAJgAy%2F9cAJgA0%2F9cAJgCJ%2F9cAJgCU%2F9cAJgCV%2F9cAJgCW%2F9cAJgCX%2F9cAJgCY%2F9cAJgCa%2F9cAJgDD%2F9cAJwAP%2F64AJwAR%2F64AJwAk%2F9cAJwA3%2F8MAJwA5%2F%2BwAJwA6%2F%2BwAJwA7%2F9cAJwA8%2F%2BwAJwA9%2F%2BwAJwCC%2F9cAJwCD%2F9cAJwCE%2F9cAJwCF%2F9cAJwCG%2F9cAJwCH%2F9cAJwCf%2F%2BwAJwDM%2F64AJwDP%2F64AKAAtAHsAKQAP%2F4UAKQAR%2F4UAKQAiACkAKQAk%2F9cAKQCC%2F9cAKQCD%2F9cAKQCE%2F9cAKQCF%2F9cAKQCG%2F9cAKQCH%2F9cAKQDM%2F4UAKQDP%2F4UALgAm%2F9cALgAq%2F9cALgAy%2F9cALgA0%2F9cALgCJ%2F9cALgCU%2F9cALgCV%2F9cALgCW%2F9cALgCX%2F9cALgCY%2F9cALgCa%2F9cALgDD%2F9cALwAF%2F1wALwAK%2F1wALwAm%2F9cALwAq%2F9cALwAy%2F9cALwA0%2F9cALwA3%2F9cALwA4%2F%2BwALwA5%2F9cALwA6%2F9cALwA8%2F8MALwCJ%2F9cALwCU%2F9cALwCV%2F9cALwCW%2F9cALwCX%2F9cALwCY%2F9cALwCa%2F9cALwCb%2F%2BwALwCc%2F%2BwALwCd%2F%2BwALwCe%2F%2BwALwCf%2F8MALwDD%2F9cALwDL%2F1wALwDO%2F1wAMgAP%2F64AMgAR%2F64AMgAk%2F9cAMgA3%2F8MAMgA5%2F%2BwAMgA6%2F%2BwAMgA7%2F9cAMgA8%2F%2BwAMgA9%2F%2BwAMgCC%2F9cAMgCD%2F9cAMgCE%2F9cAMgCF%2F9cAMgCG%2F9cAMgCH%2F9cAMgCf%2F%2BwAMgDM%2F64AMgDP%2F64AMwAP%2FvYAMwAR%2FvYAMwAk%2F5oAMwA7%2F9cAMwA9%2F%2BwAMwCC%2F5oAMwCD%2F5oAMwCE%2F5oAMwCF%2F5oAMwCG%2F5oAMwCH%2F5oAMwDM%2FvYAMwDP%2FvYANAAP%2F64ANAAR%2F64ANAAk%2F9cANAA3%2F8MANAA5%2F%2BwANAA6%2F%2BwANAA7%2F9cANAA8%2F%2BwANAA9%2F%2BwANACC%2F9cANACD%2F9cANACE%2F9cANACF%2F9cANACG%2F9cANACH%2F9cANACf%2F%2BwANADM%2F64ANADP%2F64ANwAP%2F4UANwAQ%2F64ANwAR%2F4UANwAiACkANwAk%2F3EANwAm%2F9cANwAq%2F9cANwAy%2F9cANwA0%2F9cANwA3ACkANwBE%2F1wANwBG%2F3EANwBH%2F3EANwBI%2F3EANwBK%2F3EANwBQ%2F5oANwBR%2F5oANwBS%2F3EANwBT%2F5oANwBU%2F3EANwBV%2F5oANwBW%2F4UANwBY%2F5oANwBZ%2F9cANwBa%2F9cANwBb%2F9cANwBc%2F9cANwBd%2F64ANwCC%2F3EANwCD%2F3EANwCE%2F3EANwCF%2F3EANwCG%2F3EANwCH%2F3EANwCJ%2F9cANwCU%2F9cANwCV%2F9cANwCW%2F9cANwCX%2F9cANwCY%2F9cANwCa%2F9cANwCi%2F3EANwCj%2F1wANwCk%2F1wANwCl%2F1wANwCm%2F1wANwCn%2F1wANwCo%2F1wANwCp%2F3EANwCq%2F3EANwCr%2F3EANwCs%2F3EANwCt%2F3EANwC0%2F3EANwC1%2F3EANwC2%2F3EANwC3%2F3EANwC4%2F3EANwC6%2F3EANwC7%2F5oANwC8%2F5oANwC9%2F5oANwC%2B%2F5oANwC%2F%2F9cANwDD%2F9cANwDE%2F3EANwDI%2F64ANwDJ%2F64ANwDM%2F4UANwDP%2F4UAOAAP%2F9cAOAAR%2F9cAOAAk%2F%2BwAOACC%2F%2BwAOACD%2F%2BwAOACE%2F%2BwAOACF%2F%2BwAOACG%2F%2BwAOACH%2F%2BwAOADM%2F9cAOADP%2F9cAOQAP%2F5oAOQAR%2F5oAOQAiACkAOQAk%2F64AOQAm%2F%2BwAOQAq%2F%2BwAOQAy%2F%2BwAOQA0%2F%2BwAOQBE%2F9cAOQBG%2F9cAOQBH%2F9cAOQBI%2F9cAOQBK%2F%2BwAOQBQ%2F%2BwAOQBR%2F%2BwAOQBS%2F9cAOQBT%2F%2BwAOQBU%2F9cAOQBV%2F%2BwAOQBW%2F%2BwAOQBY%2F%2BwAOQCC%2F64AOQCD%2F64AOQCE%2F64AOQCF%2F64AOQCG%2F64AOQCH%2F64AOQCJ%2F%2BwAOQCU%2F%2BwAOQCV%2F%2BwAOQCW%2F%2BwAOQCX%2F%2BwAOQCY%2F%2BwAOQCa%2F%2BwAOQCi%2F9cAOQCj%2F9cAOQCk%2F9cAOQCl%2F9cAOQCm%2F9cAOQCn%2F9cAOQCo%2F9cAOQCp%2F9cAOQCq%2F9cAOQCr%2F9cAOQCs%2F9cAOQCt%2F9cAOQC0%2F9cAOQC1%2F9cAOQC2%2F9cAOQC3%2F9cAOQC4%2F9cAOQC6%2F9cAOQC7%2F%2BwAOQC8%2F%2BwAOQC9%2F%2BwAOQC%2B%2F%2BwAOQDD%2F%2BwAOQDE%2F9cAOQDM%2F5oAOQDP%2F5oAOgAP%2F5oAOgAR%2F5oAOgAiACkAOgAk%2F64AOgAm%2F%2BwAOgAq%2F%2BwAOgAy%2F%2BwAOgA0%2F%2BwAOgBE%2F9cAOgBG%2F9cAOgBH%2F9cAOgBI%2F9cAOgBK%2F%2BwAOgBQ%2F%2BwAOgBR%2F%2BwAOgBS%2F9cAOgBT%2F%2BwAOgBU%2F9cAOgBV%2F%2BwAOgBW%2F%2BwAOgBY%2F%2BwAOgCC%2F64AOgCD%2F64AOgCE%2F64AOgCF%2F64AOgCG%2F64AOgCH%2F64AOgCJ%2F%2BwAOgCU%2F%2BwAOgCV%2F%2BwAOgCW%2F%2BwAOgCX%2F%2BwAOgCY%2F%2BwAOgCa%2F%2BwAOgCi%2F9cAOgCj%2F9cAOgCk%2F9cAOgCl%2F9cAOgCm%2F9cAOgCn%2F9cAOgCo%2F9cAOgCp%2F9cAOgCq%2F9cAOgCr%2F9cAOgCs%2F9cAOgCt%2F9cAOgC0%2F9cAOgC1%2F9cAOgC2%2F9cAOgC3%2F9cAOgC4%2F9cAOgC6%2F9cAOgC7%2F%2BwAOgC8%2F%2BwAOgC9%2F%2BwAOgC%2B%2F%2BwAOgDD%2F%2BwAOgDE%2F9cAOgDM%2F5oAOgDP%2F5oAOwAm%2F9cAOwAq%2F9cAOwAy%2F9cAOwA0%2F9cAOwCJ%2F9cAOwCU%2F9cAOwCV%2F9cAOwCW%2F9cAOwCX%2F9cAOwCY%2F9cAOwCa%2F9cAOwDD%2F9cAPAAP%2F4UAPAAR%2F4UAPAAiACkAPAAk%2F4UAPAAm%2F9cAPAAq%2F9cAPAAy%2F9cAPAA0%2F9cAPABE%2F5oAPABG%2F5oAPABH%2F5oAPABI%2F5oAPABK%2F9cAPABQ%2F8MAPABR%2F8MAPABS%2F5oAPABT%2F8MAPABU%2F5oAPABV%2F8MAPABW%2F64APABY%2F8MAPABd%2F9cAPACC%2F4UAPACD%2F4UAPACE%2F4UAPACF%2F4UAPACG%2F4UAPACH%2F4UAPACJ%2F9cAPACU%2F9cAPACV%2F9cAPACW%2F9cAPACX%2F9cAPACY%2F9cAPACa%2F9cAPACi%2F5oAPACj%2F5oAPACk%2F5oAPACl%2F5oAPACm%2F5oAPACn%2F5oAPACo%2F5oAPACp%2F5oAPACq%2F5oAPACr%2F5oAPACs%2F5oAPACt%2F5oAPAC0%2F5oAPAC1%2F5oAPAC2%2F5oAPAC3%2F5oAPAC4%2F5oAPAC6%2F5oAPAC7%2F8MAPAC8%2F8MAPAC9%2F8MAPAC%2B%2F8MAPADD%2F9cAPADE%2F5oAPADM%2F4UAPADP%2F4UAPQAm%2F%2BwAPQAq%2F%2BwAPQAy%2F%2BwAPQA0%2F%2BwAPQCJ%2F%2BwAPQCU%2F%2BwAPQCV%2F%2BwAPQCW%2F%2BwAPQCX%2F%2BwAPQCY%2F%2BwAPQCa%2F%2BwAPQDD%2F%2BwAPgAtALgARAAF%2F%2BwARAAK%2F%2BwARADL%2F%2BwARADO%2F%2BwARQAF%2F%2BwARQAK%2F%2BwARQBZ%2F9cARQBa%2F9cARQBb%2F9cARQBc%2F9cARQBd%2F%2BwARQC%2F%2F9cARQDL%2F%2BwARQDO%2F%2BwARgAFACkARgAKACkARgDLACkARgDOACkASAAF%2F%2BwASAAK%2F%2BwASABZ%2F9cASABa%2F9cASABb%2F9cASABc%2F9cASABd%2F%2BwASAC%2F%2F9cASADL%2F%2BwASADO%2F%2BwASQAFAHsASQAKAHsASQDLAHsASQDOAHsASwAF%2F%2BwASwAK%2F%2BwASwDL%2F%2BwASwDO%2F%2BwATgBG%2F9cATgBH%2F9cATgBI%2F9cATgBS%2F9cATgBU%2F9cATgCi%2F9cATgCp%2F9cATgCq%2F9cATgCr%2F9cATgCs%2F9cATgCt%2F9cATgC0%2F9cATgC1%2F9cATgC2%2F9cATgC3%2F9cATgC4%2F9cATgC6%2F9cATgDE%2F9cAUAAF%2F%2BwAUAAK%2F%2BwAUADL%2F%2BwAUADO%2F%2BwAUQAF%2F%2BwAUQAK%2F%2BwAUQDL%2F%2BwAUQDO%2F%2BwAUgAF%2F%2BwAUgAK%2F%2BwAUgBZ%2F9cAUgBa%2F9cAUgBb%2F9cAUgBc%2F9cAUgBd%2F%2BwAUgC%2F%2F9cAUgDL%2F%2BwAUgDO%2F%2BwAUwAF%2F%2BwAUwAK%2F%2BwAUwBZ%2F9cAUwBa%2F9cAUwBb%2F9cAUwBc%2F9cAUwBd%2F%2BwAUwC%2F%2F9cAUwDL%2F%2BwAUwDO%2F%2BwAVQAFAFIAVQAKAFIAVQBE%2F9cAVQBG%2F9cAVQBH%2F9cAVQBI%2F9cAVQBK%2F%2BwAVQBS%2F9cAVQBU%2F9cAVQCi%2F9cAVQCj%2F9cAVQCk%2F9cAVQCl%2F9cAVQCm%2F9cAVQCn%2F9cAVQCo%2F9cAVQCp%2F9cAVQCq%2F9cAVQCr%2F9cAVQCs%2F9cAVQCt%2F9cAVQC0%2F9cAVQC1%2F9cAVQC2%2F9cAVQC3%2F9cAVQC4%2F9cAVQC6%2F9cAVQDE%2F9cAVQDLAFIAVQDOAFIAVwAFACkAVwAKACkAVwDLACkAVwDOACkAWQAFAFIAWQAKAFIAWQAP%2F64AWQAR%2F64AWQAiACkAWQDLAFIAWQDM%2F64AWQDOAFIAWQDP%2F64AWgAFAFIAWgAKAFIAWgAP%2F64AWgAR%2F64AWgAiACkAWgDLAFIAWgDM%2F64AWgDOAFIAWgDP%2F64AWwBG%2F9cAWwBH%2F9cAWwBI%2F9cAWwBS%2F9cAWwBU%2F9cAWwCi%2F9cAWwCp%2F9cAWwCq%2F9cAWwCr%2F9cAWwCs%2F9cAWwCt%2F9cAWwC0%2F9cAWwC1%2F9cAWwC2%2F9cAWwC3%2F9cAWwC4%2F9cAWwC6%2F9cAWwDE%2F9cAXAAFAFIAXAAKAFIAXAAP%2F64AXAAR%2F64AXAAiACkAXADLAFIAXADM%2F64AXADOAFIAXADP%2F64AXgAtALgAggAF%2F3EAggAK%2F3EAggAm%2F9cAggAq%2F9cAggAtAQoAggAy%2F9cAggA0%2F9cAggA3%2F3EAggA5%2F64AggA6%2F64AggA8%2F4UAggCJ%2F9cAggCU%2F9cAggCV%2F9cAggCW%2F9cAggCX%2F9cAggCY%2F9cAggCa%2F9cAggCf%2F4UAggDD%2F9cAggDL%2F3EAggDO%2F3EAgwAF%2F3EAgwAK%2F3EAgwAm%2F9cAgwAq%2F9cAgwAtAQoAgwAy%2F9cAgwA0%2F9cAgwA3%2F3EAgwA5%2F64AgwA6%2F64AgwA8%2F4UAgwCJ%2F9cAgwCU%2F9cAgwCV%2F9cAgwCW%2F9cAgwCX%2F9cAgwCY%2F9cAgwCa%2F9cAgwCf%2F4UAgwDD%2F9cAgwDL%2F3EAgwDO%2F3EAhAAF%2F3EAhAAK%2F3EAhAAm%2F9cAhAAq%2F9cAhAAtAQoAhAAy%2F9cAhAA0%2F9cAhAA3%2F3EAhAA5%2F64AhAA6%2F64AhAA8%2F4UAhACJ%2F9cAhACU%2F9cAhACV%2F9cAhACW%2F9cAhACX%2F9cAhACY%2F9cAhACa%2F9cAhACf%2F4UAhADD%2F9cAhADL%2F3EAhADO%2F3EAhQAF%2F3EAhQAK%2F3EAhQAm%2F9cAhQAq%2F9cAhQAtAQoAhQAy%2F9cAhQA0%2F9cAhQA3%2F3EAhQA5%2F64AhQA6%2F64AhQA8%2F4UAhQCJ%2F9cAhQCU%2F9cAhQCV%2F9cAhQCW%2F9cAhQCX%2F9cAhQCY%2F9cAhQCa%2F9cAhQCf%2F4UAhQDD%2F9cAhQDL%2F3EAhQDO%2F3EAhgAF%2F3EAhgAK%2F3EAhgAm%2F9cAhgAq%2F9cAhgAtAQoAhgAy%2F9cAhgA0%2F9cAhgA3%2F3EAhgA5%2F64AhgA6%2F64AhgA8%2F4UAhgCJ%2F9cAhgCU%2F9cAhgCV%2F9cAhgCW%2F9cAhgCX%2F9cAhgCY%2F9cAhgCa%2F9cAhgCf%2F4UAhgDD%2F9cAhgDL%2F3EAhgDO%2F3EAhwAF%2F3EAhwAK%2F3EAhwAm%2F9cAhwAq%2F9cAhwAtAQoAhwAy%2F9cAhwA0%2F9cAhwA3%2F3EAhwA5%2F64AhwA6%2F64AhwA8%2F4UAhwCJ%2F9cAhwCU%2F9cAhwCV%2F9cAhwCW%2F9cAhwCX%2F9cAhwCY%2F9cAhwCa%2F9cAhwCf%2F4UAhwDD%2F9cAhwDL%2F3EAhwDO%2F3EAiAAtAHsAiQAm%2F9cAiQAq%2F9cAiQAy%2F9cAiQA0%2F9cAiQCJ%2F9cAiQCU%2F9cAiQCV%2F9cAiQCW%2F9cAiQCX%2F9cAiQCY%2F9cAiQCa%2F9cAiQDD%2F9cAigAtAHsAiwAtAHsAjAAtAHsAjQAtAHsAkgAP%2F64AkgAR%2F64AkgAk%2F9cAkgA3%2F8MAkgA5%2F%2BwAkgA6%2F%2BwAkgA7%2F9cAkgA8%2F%2BwAkgA9%2F%2BwAkgCC%2F9cAkgCD%2F9cAkgCE%2F9cAkgCF%2F9cAkgCG%2F9cAkgCH%2F9cAkgCf%2F%2BwAkgDM%2F64AkgDP%2F64AlAAP%2F64AlAAR%2F64AlAAk%2F9cAlAA3%2F8MAlAA5%2F%2BwAlAA6%2F%2BwAlAA7%2F9cAlAA8%2F%2BwAlAA9%2F%2BwAlACC%2F9cAlACD%2F9cAlACE%2F9cAlACF%2F9cAlACG%2F9cAlACH%2F9cAlACf%2F%2BwAlADM%2F64AlADP%2F64AlQAP%2F64AlQAR%2F64AlQAk%2F9cAlQA3%2F8MAlQA5%2F%2BwAlQA6%2F%2BwAlQA7%2F9cAlQA8%2F%2BwAlQA9%2F%2BwAlQCC%2F9cAlQCD%2F9cAlQCE%2F9cAlQCF%2F9cAlQCG%2F9cAlQCH%2F9cAlQCf%2F%2BwAlQDM%2F64AlQDP%2F64AlgAP%2F64AlgAR%2F64AlgAk%2F9cAlgA3%2F8MAlgA5%2F%2BwAlgA6%2F%2BwAlgA7%2F9cAlgA8%2F%2BwAlgA9%2F%2BwAlgCC%2F9cAlgCD%2F9cAlgCE%2F9cAlgCF%2F9cAlgCG%2F9cAlgCH%2F9cAlgCf%2F%2BwAlgDM%2F64AlgDP%2F64AlwAP%2F64AlwAR%2F64AlwAk%2F9cAlwA3%2F8MAlwA5%2F%2BwAlwA6%2F%2BwAlwA7%2F9cAlwA8%2F%2BwAlwA9%2F%2BwAlwCC%2F9cAlwCD%2F9cAlwCE%2F9cAlwCF%2F9cAlwCG%2F9cAlwCH%2F9cAlwCf%2F%2BwAlwDM%2F64AlwDP%2F64AmAAP%2F64AmAAR%2F64AmAAk%2F9cAmAA3%2F8MAmAA5%2F%2BwAmAA6%2F%2BwAmAA7%2F9cAmAA8%2F%2BwAmAA9%2F%2BwAmACC%2F9cAmACD%2F9cAmACE%2F9cAmACF%2F9cAmACG%2F9cAmACH%2F9cAmACf%2F%2BwAmADM%2F64AmADP%2F64AmgAP%2F64AmgAR%2F64AmgAk%2F9cAmgA3%2F8MAmgA5%2F%2BwAmgA6%2F%2BwAmgA7%2F9cAmgA8%2F%2BwAmgA9%2F%2BwAmgCC%2F9cAmgCD%2F9cAmgCE%2F9cAmgCF%2F9cAmgCG%2F9cAmgCH%2F9cAmgCf%2F%2BwAmgDM%2F64AmgDP%2F64AmwAP%2F9cAmwAR%2F9cAmwAk%2F%2BwAmwCC%2F%2BwAmwCD%2F%2BwAmwCE%2F%2BwAmwCF%2F%2BwAmwCG%2F%2BwAmwCH%2F%2BwAmwDM%2F9cAmwDP%2F9cAnAAP%2F9cAnAAR%2F9cAnAAk%2F%2BwAnACC%2F%2BwAnACD%2F%2BwAnACE%2F%2BwAnACF%2F%2BwAnACG%2F%2BwAnACH%2F%2BwAnADM%2F9cAnADP%2F9cAnQAP%2F9cAnQAR%2F9cAnQAk%2F%2BwAnQCC%2F%2BwAnQCD%2F%2BwAnQCE%2F%2BwAnQCF%2F%2BwAnQCG%2F%2BwAnQCH%2F%2BwAnQDM%2F9cAnQDP%2F9cAngAP%2F9cAngAR%2F9cAngAk%2F%2BwAngCC%2F%2BwAngCD%2F%2BwAngCE%2F%2BwAngCF%2F%2BwAngCG%2F%2BwAngCH%2F%2BwAngDM%2F9cAngDP%2F9cAnwAP%2F4UAnwAR%2F4UAnwAiACkAnwAk%2F4UAnwAm%2F9cAnwAq%2F9cAnwAy%2F9cAnwA0%2F9cAnwBE%2F5oAnwBG%2F5oAnwBH%2F5oAnwBI%2F5oAnwBK%2F9cAnwBQ%2F8MAnwBR%2F8MAnwBS%2F5oAnwBT%2F8MAnwBU%2F5oAnwBV%2F8MAnwBW%2F64AnwBY%2F8MAnwBd%2F9cAnwCC%2F4UAnwCD%2F4UAnwCE%2F4UAnwCF%2F4UAnwCG%2F4UAnwCH%2F4UAnwCJ%2F9cAnwCU%2F9cAnwCV%2F9cAnwCW%2F9cAnwCX%2F9cAnwCY%2F9cAnwCa%2F9cAnwCi%2F5oAnwCj%2F5oAnwCk%2F5oAnwCl%2F5oAnwCm%2F5oAnwCn%2F5oAnwCo%2F5oAnwCp%2F5oAnwCq%2F5oAnwCr%2F5oAnwCs%2F5oAnwCt%2F5oAnwC0%2F5oAnwC1%2F5oAnwC2%2F5oAnwC3%2F5oAnwC4%2F5oAnwC6%2F5oAnwC7%2F8MAnwC8%2F8MAnwC9%2F8MAnwC%2B%2F8MAnwDD%2F9cAnwDE%2F5oAnwDM%2F4UAnwDP%2F4UAoAAP%2FvYAoAAR%2FvYAoAAk%2F5oAoAA7%2F9cAoAA9%2F%2BwAoACC%2F5oAoACD%2F5oAoACE%2F5oAoACF%2F5oAoACG%2F5oAoACH%2F5oAoADM%2FvYAoADP%2FvYAogAF%2F%2BwAogAK%2F%2BwAogDL%2F%2BwAogDO%2F%2BwAowAF%2F%2BwAowAK%2F%2BwAowDL%2F%2BwAowDO%2F%2BwApAAF%2F%2BwApAAK%2F%2BwApADL%2F%2BwApADO%2F%2BwApQAF%2F%2BwApQAK%2F%2BwApQDL%2F%2BwApQDO%2F%2BwApgAF%2F%2BwApgAK%2F%2BwApgDL%2F%2BwApgDO%2F%2BwApwAF%2F%2BwApwAK%2F%2BwApwDL%2F%2BwApwDO%2F%2BwAqgAF%2F%2BwAqgAK%2F%2BwAqgBZ%2F9cAqgBa%2F9cAqgBb%2F9cAqgBc%2F9cAqgBd%2F%2BwAqgC%2F%2F9cAqgDL%2F%2BwAqgDO%2F%2BwAqwAF%2F%2BwAqwAK%2F%2BwAqwBZ%2F9cAqwBa%2F9cAqwBb%2F9cAqwBc%2F9cAqwBd%2F%2BwAqwC%2F%2F9cAqwDL%2F%2BwAqwDO%2F%2BwArAAF%2F%2BwArAAK%2F%2BwArABZ%2F9cArABa%2F9cArABb%2F9cArABc%2F9cArABd%2F%2BwArAC%2F%2F9cArADL%2F%2BwArADO%2F%2BwArQAF%2F%2BwArQAK%2F%2BwArQBZ%2F9cArQBa%2F9cArQBb%2F9cArQBc%2F9cArQBd%2F%2BwArQC%2F%2F9cArQDL%2F%2BwArQDO%2F%2BwAsgAF%2F%2BwAsgAK%2F%2BwAsgBZ%2F9cAsgBa%2F9cAsgBb%2F9cAsgBc%2F9cAsgBd%2F%2BwAsgC%2F%2F9cAsgDL%2F%2BwAsgDO%2F%2BwAtAAF%2F%2BwAtAAK%2F%2BwAtABZ%2F9cAtABa%2F9cAtABb%2F9cAtABc%2F9cAtABd%2F%2BwAtAC%2F%2F9cAtADL%2F%2BwAtADO%2F%2BwAtQAF%2F%2BwAtQAK%2F%2BwAtQBZ%2F9cAtQBa%2F9cAtQBb%2F9cAtQBc%2F9cAtQBd%2F%2BwAtQC%2F%2F9cAtQDL%2F%2BwAtQDO%2F%2BwAtgAF%2F%2BwAtgAK%2F%2BwAtgBZ%2F9cAtgBa%2F9cAtgBb%2F9cAtgBc%2F9cAtgBd%2F%2BwAtgC%2F%2F9cAtgDL%2F%2BwAtgDO%2F%2BwAuAAF%2F9cAuAAK%2F9cAuADL%2F9cAuADO%2F9cAugAF%2F%2BwAugAK%2F%2BwAugBZ%2F9cAugBa%2F9cAugBb%2F9cAugBc%2F9cAugBd%2F%2BwAugC%2F%2F9cAugDL%2F%2BwAugDO%2F%2BwAvwAFAFIAvwAKAFIAvwAP%2F64AvwAR%2F64AvwAiACkAvwDLAFIAvwDM%2F64AvwDOAFIAvwDP%2F64AwAAF%2F%2BwAwAAK%2F%2BwAwABZ%2F9cAwABa%2F9cAwABb%2F9cAwABc%2F9cAwABd%2F%2BwAwAC%2F%2F9cAwADL%2F%2BwAwADO%2F%2BwAwQAFAFIAwQAKAFIAwQAP%2F64AwQAR%2F64AwQAiACkAwQDLAFIAwQDM%2F64AwQDOAFIAwQDP%2F64AwwAtAHsAyAA3%2F64AyQA3%2F64AygAk%2F3EAygA3ACkAygA5ACkAygA6ACkAygA8ABQAygBE%2F64AygBG%2F4UAygBH%2F4UAygBI%2F4UAygBK%2F8MAygBQ%2F8MAygBR%2F8MAygBS%2F4UAygBT%2F8MAygBU%2F4UAygBV%2F8MAygBW%2F8MAygBY%2F8MAygCC%2F3EAygCD%2F3EAygCE%2F3EAygCF%2F3EAygCG%2F3EAygCH%2F3EAygCfABQAygCi%2F4UAygCj%2F64AygCk%2F64AygCl%2F64AygCm%2F64AygCn%2F64AygCo%2F64AygCp%2F4UAygCq%2F4UAygCr%2F4UAygCs%2F4UAygCt%2F4UAygC0%2F4UAygC1%2F4UAygC2%2F4UAygC3%2F4UAygC4%2F4UAygC6%2F4UAygC7%2F8MAygC8%2F8MAygC9%2F8MAygC%2B%2F8MAygDE%2F4UAywAk%2F3EAywA3ACkAywA5ACkAywA6ACkAywA8ABQAywBE%2F64AywBG%2F4UAywBH%2F4UAywBI%2F4UAywBK%2F8MAywBQ%2F8MAywBR%2F8MAywBS%2F4UAywBT%2F8MAywBU%2F4UAywBV%2F8MAywBW%2F8MAywBY%2F8MAywCC%2F3EAywCD%2F3EAywCE%2F3EAywCF%2F3EAywCG%2F3EAywCH%2F3EAywCfABQAywCi%2F4UAywCj%2F64AywCk%2F64AywCl%2F64AywCm%2F64AywCn%2F64AywCo%2F64AywCp%2F4UAywCq%2F4UAywCr%2F4UAywCs%2F4UAywCt%2F4UAywC0%2F4UAywC1%2F4UAywC2%2F4UAywC3%2F4UAywC4%2F4UAywC6%2F4UAywC7%2F8MAywC8%2F8MAywC9%2F8MAywC%2B%2F8MAywDE%2F4UAzAAm%2F5oAzAAq%2F5oAzAAy%2F5oAzAA0%2F5oAzAA3%2F3EAzAA4%2F9cAzAA5%2F4UAzAA6%2F4UAzAA8%2F4UAzACJ%2F5oAzACU%2F5oAzACV%2F5oAzACW%2F5oAzACX%2F5oAzACY%2F5oAzACa%2F5oAzACb%2F9cAzACc%2F9cAzACd%2F9cAzACe%2F9cAzACf%2F4UAzADD%2F5oAzQAk%2F3EAzQA3ACkAzQA5ACkAzQA6ACkAzQA8ABQAzQBE%2F64AzQBG%2F4UAzQBH%2F4UAzQBI%2F4UAzQBK%2F8MAzQBQ%2F8MAzQBR%2F8MAzQBS%2F4UAzQBT%2F8MAzQBU%2F4UAzQBV%2F8MAzQBW%2F8MAzQBY%2F8MAzQCC%2F3EAzQCD%2F3EAzQCE%2F3EAzQCF%2F3EAzQCG%2F3EAzQCH%2F3EAzQCfABQAzQCi%2F4UAzQCj%2F64AzQCk%2F64AzQCl%2F64AzQCm%2F64AzQCn%2F64AzQCo%2F64AzQCp%2F4UAzQCq%2F4UAzQCr%2F4UAzQCs%2F4UAzQCt%2F4UAzQC0%2F4UAzQC1%2F4UAzQC2%2F4UAzQC3%2F4UAzQC4%2F4UAzQC6%2F4UAzQC7%2F8MAzQC8%2F8MAzQC9%2F8MAzQC%2B%2F8MAzQDE%2F4UAzwAm%2F5oAzwAq%2F5oAzwAy%2F5oAzwA0%2F5oAzwA3%2F3EAzwA4%2F9cAzwA5%2F4UAzwA6%2F4UAzwA8%2F4UAzwCJ%2F5oAzwCU%2F5oAzwCV%2F5oAzwCW%2F5oAzwCX%2F5oAzwCY%2F5oAzwCa%2F5oAzwCb%2F9cAzwCc%2F9cAzwCd%2F9cAzwCe%2F9cAzwCf%2F4UAzwDD%2F5oAAAAaAT4AAQAAAAAAAAA5AHQAAQAAAAAAAQAJAMIAAQAAAAAAAgAHANwAAQAAAAAAAwAeASIAAQAAAAAABAAJAVUAAQAAAAAABQAMAXkAAQAAAAAABgAIAZgAAQAAAAAABwBSAkcAAQAAAAAACAAUAsQAAQAAAAAACwAcAxMAAQAAAAAADAAuA44AAQAAAAAADQAuBBsAAQAAAAAADgAqBKAAAwABBAkAAAByAAAAAwABBAkAAQASAK4AAwABBAkAAgAOAMwAAwABBAkAAwA8AOQAAwABBAkABAASAUEAAwABBAkABQAYAV8AAwABBAkABgAQAYYAAwABBAkABwCkAaEAAwABBAkACAAoApoAAwABBAkACwA4AtkAAwABBAkADABcAzAAAwABBAkADQBcA70AAwABBAkADgBUBEoARABpAGcAaQB0AGkAegBlAGQAIABkAGEAdABhACAAYwBvAHAAeQByAGkAZwBoAHQAIACpACAAMgAwADEAMAAtADIAMAAxADEALAAgAEcAbwBvAGcAbABlACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAC4AAERpZ2l0aXplZCBkYXRhIGNvcHlyaWdodCCpIDIwMTAtMjAxMSwgR29vZ2xlIENvcnBvcmF0aW9uLgAATwBwAGUAbgAgAFMAYQBuAHMAAE9wZW4gU2FucwAAUgBlAGcAdQBsAGEAcgAAUmVndWxhcgAAQQBzAGMAZQBuAGQAZQByACAALQAgAE8AcABlAG4AIABTAGEAbgBzACAAQgB1AGkAbABkACAAMQAwADAAAEFzY2VuZGVyIC0gT3BlbiBTYW5zIEJ1aWxkIDEwMAAATwBwAGUAbgAgAFMAYQBuAHMAAE9wZW4gU2FucwAAVgBlAHIAcwBpAG8AbgAgADEALgAxADAAAFZlcnNpb24gMS4xMAAATwBwAGUAbgBTAGEAbgBzAABPcGVuU2FucwAATwBwAGUAbgAgAFMAYQBuAHMAIABpAHMAIABhACAAdAByAGEAZABlAG0AYQByAGsAIABvAGYAIABHAG8AbwBnAGwAZQAgAGEAbgBkACAAbQBhAHkAIABiAGUAIAByAGUAZwBpAHMAdABlAHIAZQBkACAAaQBuACAAYwBlAHIAdABhAGkAbgAgAGoAdQByAGkAcwBkAGkAYwB0AGkAbwBuAHMALgAAT3BlbiBTYW5zIGlzIGEgdHJhZGVtYXJrIG9mIEdvb2dsZSBhbmQgbWF5IGJlIHJlZ2lzdGVyZWQgaW4gY2VydGFpbiBqdXJpc2RpY3Rpb25zLgAAQQBzAGMAZQBuAGQAZQByACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAABBc2NlbmRlciBDb3Jwb3JhdGlvbgAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tLwAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwB0AHkAcABlAGQAZQBzAGkAZwBuAGUAcgBzAC4AaAB0AG0AbAAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tL3R5cGVkZXNpZ25lcnMuaHRtbAAATABpAGMAZQBuAHMAZQBkACAAdQBuAGQAZQByACAAdABoAGUAIABBAHAAYQBjAGgAZQAgAEwAaQBjAGUAbgBzAGUALAAgAFYAZQByAHMAaQBvAG4AIAAyAC4AMAAATGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMAAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcABhAGMAaABlAC4AbwByAGcALwBsAGkAYwBlAG4AcwBlAHMALwBMAEkAQwBFAE4AUwBFAC0AMgAuADAAAGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMAAAAAAAAgAAAAAAAP9mAGYAAAAAAAAAAAAAAAAAAAAAAAAAAADWAAAAAQACAAMABAAFAAYABwAIAAkACgALAAwADQAOAA8AEAARABIAEwAUABUAFgAXABgAGQAaABsAHAAdAB4AHwAgACEAIgAjACQAJQAmACcAKAApACoAKwAsAC0ALgAvADAAMQAyADMANAA1ADYANwA4ADkAOgA7ADwAPQA%2BAD8AQABBAEIAQwBEAEUARgBHAEgASQBKAEsATABNAE4ATwBQAFEAUgBTAFQAVQBWAFcAWABZAFoAWwBcAF0AXgBfAGAAYQCsAKMAhACFAL0AlgDoAIYAjgCLAJ0AqQCkAQIAigEDAIMAkwDyAPMAjQCXAIgAwwDeAPEAngCqAPUA9AD2AKIArQDJAMcArgBiAGMAkABkAMsAZQDIAMoAzwDMAM0AzgDpAGYA0wDQANEArwBnAPAAkQDWANQA1QBoAOsA7QCJAGoAaQBrAG0AbABuAKAAbwBxAHAAcgBzAHUAdAB2AHcA6gB4AHoAeQB7AH0AfAC4AKEAfwB%2BAIAAgQDsAO4AugDXALAAsQDYAN0A2QCyALMAtgC3AMQAtAC1AMUAhwC%2BAL8AvAEEAQUHdW5pMDBBRAlvdmVyc2NvcmUMZm91cnN1cGVyaW9yBEV1cm8AAAABAAMACAAKAA0AB%2F%2F%2FAA8AAAABAAAAAMmJbzEAAAAAyTUxiwAAAADJ7dhg%29%20format%28%27truetype%27%29%3B%0A%7D%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%3B%0Afont%2Dstyle%3A%20normal%3B%0Afont%2Dweight%3A%20600%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAQAQAABAAARkZUTVzEMhEAAJKkAAAAHE9TLzKiDbgUAAABiAAAAGBjbWFwjOjcmQAABUAAAAGyY3Z0IBCRGjQAAA%2FAAAAApmZwZ21%2BYbYRAAAG9AAAB7RnYXNwAAgAGwAAkpgAAAAMZ2x5ZhQyYgAAABIYAABUuGhlYWT5NRTiAAABDAAAADZoaGVhDrUE%2BgAAAUQAAAAkaG10eLHEUI0AAAHoAAADWGtlcm4Mlg8JAABm0AAAIwRsb2Nh0PO82gAAEGgAAAGubWF4cAJSAT8AAAFoAAAAIG5hbWUEDhKHAACJ1AAABs9wb3N0gnjp1QAAkKQAAAHycHJlcHism24AAA6oAAABGAABAAAAARmawtwUTF8PPPUAHwgAAAAAAMnt2GIAAAAAye3YYv53%2FhQHrgdzAAEACAACAAAAAAAAAAEAAAiN%2FagAAAgA%2Fnf%2BeweuAAEAAAAAAAAAAAAAAAAAAADWAAEAAADWAEQABQA%2FAAQAAgAQAC8AXAAAAQMAigADAAEAAwRsAlgABQAIBZoFMwAAAR8FmgUzAAAD0QBmAfYAAAILBwYDCAQCAgTgAALvQAAgWwAAACgAAAAAMUFTQwAgACAgrAYf%2FhQAhAiNAlggAAGfAAAAAARSBbYAAAAgAAEIAAAAAAAAAAQUAAACFAAAAjUAhQN9AIUFKwAvBJEAbwblAFQF7ABgAfIAhQKJAFICiQA9BGIASgSRAGACIwA%2FApMASAIzAIUDHwAQBJEAWASRAJoEkQBaBJEAVgSRACcEkQB1BJEAXgSRAEoEkQBYBJEAVgIzAIUCOQA%2FBJEAYASRAGYEkQBgA6AAEAcvAG8FSgAABUgAwQUSAHkF3wDBBHcAwQRCAMEFzwB5BgIAwQJxAMECZP9kBR0AwQRWAMEHYgDBBkQAwQZMAHkE7ADBBkwAeQUdAMEEZgBkBIcAHQXwALQE%2BgAAB5EADAT6AAQEvAAABJoAQgKkAJoDHwAQAqQAMwRMAB0Db%2F%2F8BLwBagSkAFoE%2FACoA%2FYAZgT8AGYEnABmAucAIwRzABcFFACoAjsAmgI7%2F4cEkwCoAjsAqAemAKgFFACoBOMAZgT8AKgE%2FABmA3MAqAPlAGIDJQAnBRQAngRIAAAGiQAUBGgAGQRKAAAD0wBEAxcALQRoAdkC%2BAAtBJEAYAIUAAACNQCFBJEApgSRAEgEkQB1BJEAEgRoAdkEAgBzBLwBJQaoAGQC8gA5BHMAUgSRAGACkwBIBqgAZAQA%2F%2FoDbQBtBJEAYALnADMC5wAtBLwBagUdAKgFPQBxAjMAhQG6AAAC5wBUAwwAPQRzAFAGpAA8BqQALgakADcDoAA3BUoAAAVKAAAFSgAABUoAAAVKAAAFSgAAB0z%2F%2FgUSAHkEdwDBBHcAwQR3AMEEdwDBAnH%2F%2BgJxALMCcf%2B1AnEAAQXZAC8GRADBBkwAeQZMAHkGTAB5BkwAeQZMAHkEkQCDBkwAeQXwALQF8AC0BfAAtAXwALQEvAAABPQAwQVUAKgEpABaBKQAWgSkAFoEpABaBKQAWgSkAFoHGQBaA%2FYAZgScAGYEnABmBJwAZgScAGYCO%2F%2B7AjsAnAI7%2F5wCO%2F%2FnBNsAZgUUAKgE4wBmBOMAZgTjAGYE4wBmBOMAZgSRAGAE4wBmBRQAngUUAJ4FFACeBRQAngRKAAAE%2FACoBEoAAAI7AKgHlgB5B64AZgTLAOMEngFgBMsA7AQAAFIIAABSAYsAGQGLABkCJQA%2FAy0AGQMtABkDsAArAwIAgwKwAFICsABQAQr%2BdwLnABAEpAA%2FAAAAAwAAAAMAAAAcAAEAAAAAAKwAAwABAAAAHAAEAJAAAAAgACAABAAAAH4A%2FwExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCs%2F%2F8AAAAgAKABMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrP%2F%2F%2F%2BP%2Fwv%2BR%2F3H9%2F%2F3s%2FevgteCy4LHgruCY4I%2FgYOApAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYAAAEAAAAAAAAAAQIAAAACAAAAAAAAAAAAAAAAAAAAAQAAAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7PD0%2BP0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGEAhoeJi5OYnqOipKalp6mrqqytr66wsbO1tLa4t7y7vb4AcmRladB4oXBrAHZqAIiaAHMAAGd3AAAAAABsfACouoFjbgAAAABtfQBigoWXw8TIyc3Oysu5AMEA09XR0gAAAHnMzwCEjIONio%2BQkY6VlgCUnJ2bwsXHcQAAxnoAAAAAAEBHW1pZWFVUU1JRUE9OTUxLSklIR0ZFRENCQUA%2FPj08Ozo5ODc2NTEwLy4tLCgnJiUkIyIhHxgUERAPDg0LCgkIBwYFBAMCAQAsILABYEWwAyUgEUZhI0UjYUgtLCBFGGhELSxFI0ZgsCBhILBGYLAEJiNISC0sRSNGI2GwIGAgsCZhsCBhsAQmI0hILSxFI0ZgsEBhILBmYLAEJiNISC0sRSNGI2GwQGAgsCZhsEBhsAQmI0hILSwBECA8ADwtLCBFIyCwzUQjILgBWlFYIyCwjUQjWSCw7VFYIyCwTUQjWSCwBCZRWCMgsA1EI1khIS0sICBFGGhEILABYCBFsEZ2aIpFYEQtLAGxCwpDI0NlCi0sALEKC0MjQwstLACwKCNwsQEoPgGwKCNwsQIoRTqxAgAIDS0sIEWwAyVFYWSwUFFYRUQbISFZLSxJsA4jRC0sIEWwAENgRC0sAbAGQ7AHQ2UKLSwgabBAYbAAiyCxLMCKjLgQAGJgKwxkI2RhXFiwA2FZLSyKA0WKioewESuwKSNEsCl65BgtLEVlsCwjREWwKyNELSxLUlhFRBshIVktLEtRWEVEGyEhWS0sAbAFJRAjIIr1ALABYCPt7C0sAbAFJRAjIIr1ALABYSPt7C0sAbAGJRD1AO3sLSywAkOwAVJYISEhISEbRiNGYIqKRiMgRopgimG4%2F4BiIyAQI4qxDAyKcEVgILAAUFiwAWG4%2F7qLG7BGjFmwEGBoATpZLSwgRbADJUZSS7ATUVtYsAIlRiBoYbADJbADJT8jITgbIRFZLSwgRbADJUZQWLACJUYgaGGwAyWwAyU%2FIyE4GyERWS0sALAHQ7AGQwstLCEhDGQjZIu4QABiLSwhsIBRWAxkI2SLuCAAYhuyAEAvK1mwAmAtLCGwwFFYDGQjZIu4FVViG7IAgC8rWbACYC0sDGQjZIu4QABiYCMhLSxLU1iKsAQlSWQjRWmwQIthsIBisCBharAOI0QjELAO9hshI4oSESA5L1ktLEtTWCCwAyVJZGkgsAUmsAYlSWQjYbCAYrAgYWqwDiNEsAQmELAO9ooQsA4jRLAO9rAOI0SwDu0birAEJhESIDkjIDkvL1ktLEUjRWAjRWAjRWAjdmgYsIBiIC0ssEgrLSwgRbAAVFiwQEQgRbBAYUQbISFZLSxFsTAvRSNFYWCwAWBpRC0sS1FYsC8jcLAUI0IbISFZLSxLUVggsAMlRWlTWEQbISFZGyEhWS0sRbAUQ7AAYGOwAWBpRC0ssC9FRC0sRSMgRYpgRC0sRSNFYEQtLEsjUVi5ADP%2F4LE0IBuzMwA0AFlERC0ssBZDWLADJkWKWGRmsB9gG2SwIGBmIFgbIbBAWbABYVkjWGVZsCkjRCMQsCngGyEhISEhWS0ssAJDVFhLUyNLUVpYOBshIVkbISEhIVktLLAWQ1iwBCVFZLAgYGYgWBshsEBZsAFhI1gbZVmwKSNEsAUlsAglCCBYAhsDWbAEJRCwBSUgRrAEJSNCPLAEJbAHJQiwByUQsAYlIEawBCWwAWAjQjwgWAEbAFmwBCUQsAUlsCngsCkgRWVEsAclELAGJbAp4LAFJbAIJQggWAIbA1mwBSWwAyVDSLAEJbAHJQiwBiWwAyWwAWBDSBshWSEhISEhISEtLAKwBCUgIEawBCUjQrAFJQiwAyVFSCEhISEtLAKwAyUgsAQlCLACJUNIISEhLSxFIyBFGCCwAFAgWCNlI1kjaCCwQFBYIbBAWSNYZVmKYEQtLEtTI0tRWlggRYpgRBshIVktLEtUWCBFimBEGyEhWS0sS1MjS1FaWDgbISFZLSywACFLVFg4GyEhWS0ssAJDVFiwRisbISEhIVktLLACQ1RYsEcrGyEhIVktLLACQ1RYsEgrGyEhISFZLSywAkNUWLBJKxshISFZLSwgiggjS1OKS1FaWCM4GyEhWS0sALACJUmwAFNYILBAOBEbIVktLAFGI0ZgI0ZhIyAQIEaKYbj%2FgGKKsUBAinBFYGg6LSwgiiNJZIojU1g8GyFZLSxLUlh9G3pZLSywEgBLAUtUQi0ssQIAQrEjAYhRsUABiFNaWLkQAAAgiFRYsgIBAkNgQlmxJAGIUVi5IAAAQIhUWLICAgJDYEKxJAGIVFiyAiACQ2BCAEsBS1JYsgIIAkNgQlkbuUAAAICIVFiyAgQCQ2BCWblAAACAY7gBAIhUWLICCAJDYEJZuUAAAQBjuAIAiFRYsgIQAkNgQlmxJgGIUVi5QAACAGO4BACIVFiyAkACQ2BCWblAAAQAY7gIAIhUWLICgAJDYEJZWVlZWVmxAAJDVFhACgVACEAJQAwCDQIbsQECQ1RYsgVACLoBAAAJAQCzDAENARuxgAJDUliyBUAIuAGAsQlAG7IFQAi6AYAACQFAWblAAACAiFW5QAACAGO4BACIVVpYswwADQEbswwADQFZWVlCQkJCQi0sRRhoI0tRWCMgRSBksEBQWHxZaIpgWUQtLLAAFrACJbACJQGwASM%2BALACIz6xAQIGDLAKI2VCsAsjQgGwASM%2FALACIz%2BxAQIGDLAGI2VCsAcjQrABFgEtLLCAsAJDULABsAJDVFtYISMQsCAayRuKEO1ZLSywWSstLIoQ5S1ApQkhSCBVIAEeVR9IHlUfHgEPHj8erx4DT0YcH05NGx9NRhofJjQQVSUkSB8ZE%2F8fBwT%2FHwYD%2Fx9MSxwfS0YbHxMzElUFAQNVBDMDVR8DAQ8DPwOvAwPLSttK60oDy0kBSEYSH0dGEh9JRgEjSCJVHDMbVRYzFVURAQ9VEDMPVc8PAR8PAQ8P3w%2F%2FDwMGAgEAVQEzAFVvAH8ArwDvAAQQAAGAFgEFAbgBkLFUUysrS7gH%2F1JLsAlQW7ABiLAlU7ABiLBAUVqwBoiwAFVaW1ixAQGOWYWNjQBCHUuwMlNYsCAdWUuwZFNYsBAdsRYAQllzcysrXnN0dCsrKysrdCsrc3NzdCsrKysrKysrKysrKytzdCsrKxheBhQAFwBOBbYAFwB1BbYFzQAAAAAAAAAAAAAAAAAABFIAFACGAAD%2F7AAAAAD%2F7AAAAAD%2F7AAA%2FhT%2F7AAABbYAGfyU%2F%2B3%2Be%2F%2Fy%2Fqj%2BngAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAwAC4ALAAowCUAMAAzQDFAM8AugCaATEAsgAAAAAAAAAAAAAAAAA0AFoA2AFWAc4CTAJmApICwALyAyADQgNaA3wDmgPcBAQESgSmBO4FPAWYBb4GJgaGBr4G%2BAcgB0oHcgfOCFgImAjyCTIJagmiCdQKIgpUCmoKkgrMCuoLMgtuC7QL8gxKDJYM6A0MDUANcg3IDgQOMg5mDooOqA7KDvQPCg8qD4oP3hAYEGoQwBECEZwR2hISElwSnBK0EwwTRhOGE9oULhReFKwU8BUqFVoVshXsFiwWYBawFsgXGhdgF2AXkhfkGDwYmBjuGRQZjhnEGkAakhrOGvAa%2BBuCG5gb0BwMHEYclhy2HPwdMB1SHYgdsh3sHiYePB5SHmgeyB7aHuwe%2Fh8QHyIfNB%2BOH5ofrB%2B%2BH9Af4h%2F0IAYgGCAqIHwgjiCgILIgxCDWIOghGCGCIZQhpiG4Icoh3CImIpIioiKyIsIi0iLkIvYjhCOQI6AjsCPAI9Ij5CP2JAgkGiSGJJYkpiS2JMYk1iToJTAlmCWoJbolyiXcJewmRCZWJm4m0idYJ4YnwCf%2BKBQoKihKKGoojCi%2BKO4pIilCKWQpiCmmKeYqXAAAAAIAhf%2FjAa4FtgADAA8AKUATCgMEAwICERABAQ0CAw0HUVkNEwA%2FKwAYPxI5LxESATkRMzMRMzEwASMDIQE0NjMyFhUUBiMiJgFzrjQBFf7fTkhHTE1GR08BvAP6%2BsdKTVBHR1NQAAAAAgCFA6YC%2BAW2AAMABwAfQA0HBAADBAMJCAYCBwMDAD8zzTIREgE5OREzETMxMAEDIwMhAyMDAW0plikCcymWKQW2%2FfACEP3wAhAAAAIALwAABPoFtAAbAB8AikBKCB8cFQQUCREMDAkSDw4LBAoTExQWHR4HBAYXBAEAGQQYBQUGFAYKIQMaFwMYChggIQgEDAwcAQ0fABAQGRURDRENEQUXEwMKBRIAPzM%2FMxI5OS8vETMzMxEzMxEzMzMRMzMREgE5OREXMxESOTkRMxESFzkREhc5ETMREhc5MjIRMxESFzkxMAEDIRUhAyMTIwMjEyM1IRMhNSETMwMzEzMDMxUBMxMjA903AQ7%2B0VCyUPhQrkz6ARs5%2FvgBJVC0UPxQrlD8%2FQD6OfoDZv7kqP5eAaL%2BXgGiqAEcqAGm%2FloBpv5aqP7kARwAAAMAb%2F%2BJBCcGEgAgACYALQBnQDkMFBcdJSoGBAQFIQAnEQAFCBEZBS8uBQYWQA8SSBYXQB0NJAMqKgYXJQwGDE9ZAwYrHBQXFxxPWRcALysRADMRMxgvMysRADMREjkRFzMaGBDNKxDNERIBFzkRMxEzETMSFzkxMAEUBgcVIzUmJzUeARcRJy4BNTQ2NzUzFRYXByYnERceAQc0JicRNgEUFhcRDgEEJ9TIhfifVuZbVKSX17iFy7ZJnZtMvpLsUV%2Bw%2FidHXVBUAcWRvBbZ0wRI0yo5AQF2Hz%2BvgYqyE6ilB0u3Pgz%2BlB1JooQ6SyP%2BwRsC4zlMJQE3DEoAAAUAVP%2FsBpEFywAJABQAHgApAC0AV0AwLSorLBofFSUFCgAQChAfJSosBi8uHKAnAScnLQNgDQGvDQENDSwtAywSBxIEGCITAD8zPzM%2FPxI5L11xMxE5L10zERIBFzkRMxEzETMRMxEzETMxMAEUFjMyERAjIgYFFAYjIiY1ECEyFgEUFjMyERAjIgYFFAYjIiY1ECEyFgkBIwEBFzpChIRCOgHCpaGYpwE%2FnakB9jtCg4NCOwHCpp%2BYqAFAmqv%2B1%2FzVwgMrBACVkgEnASeSk%2Bbn794Bye382pWUASkBJZCV5ubt3wHJ7AMh%2BkoFtgAAAAMAYP%2FsBekFywALABQAMgBUQC4sKxIVJygGIQAbKxUbISgFNDMlDi0qBCwnAyQYAw8nHiwSHglLWR4EMAxMWTATAD8rABg%2FKwAYPxI5ERc5ERIXORESARc5ETMRMxEzETMRMzEwARQWFz4BNTQmIyIGEzI3AQ4BFRQWJTQ2Ny4BNTQ2MzIWFRQGBwE2NzMCBwEhJw4BIyIkAcNDPHFbV0hPXZW3gv6BalCL%2Fn2Ap19F2bexyoeeAVpRNvJGmgEt%2FtGVZueM5v76BHs%2FcD9Ab0VBTlH792sBeUR3TGJ7zYPDYG%2BZUpiwq5Fyul3%2BsmvP%2FuSz%2Ft2RUlPaAAAAAAEAhQOmAW0FtgADABS3AAMDBQQCAwMAP80REgE5ETMxMAEDIwMBbSmWKQW2%2FfACEAAAAAABAFL%2BvAJMBbYADQAfQA4DBAsDCgcACgAPDgsDAwA%2FLxESATk5ETMRFzMxMBMQEjczBgIVFBIXIyYCUpuSzYuUlInLk5oCMQEJAc6uvP4t9PT%2BNrmqAcYAAQA9%2FrwCNwW2AA0AH0AOAwoLAwQHAAQADw4ECgMAPy8REgE5OREzERczMTABEAIHIzYSNTQCJzMWEgI3m5LLipOUi82TmgIx%2Fvn%2BOqi7Acj09QHRva%2F%2BMQAAAAABAEoCagQUBhQADgAbQA8DBQQBBw0KCQsJDxAIDgAAP8QREgEXOTEwAQMlFwUTBwsBJxMlNwUDAqApAYEc%2Fpjsx6aVzef%2BmiMBeCkGFP6CbNkd%2FslrAVL%2BrmsBNx3ZbAF%2BAAAAAQBgAOMEMQTDAAsALEAWBgMKCgsLAQgDDQwJAQIBUlkGLwIBAgAvXTMrEQAzERIBFzkRMxI5OTEwASE1IREzESEVIREjAe7%2BcgGOtAGP%2FnG0AnmyAZj%2BaLL%2BagABAD%2F%2B%2BAGcAO4ABgAeQA8ABQMFCAcDQAZQBtAGAwYAL13NERIBOTkRMzEwJQYDIxI3MwGcMICtRSLn17r%2B2wEO6AAAAAEASAHBAkoCiQADABVACQMABQQBAE1ZAQAvKxESATk5MTATNSEVSAICAcHIyAAAAAEAhf%2FjAa4BFAALABhACwYAAA0MCQNRWQkTAD8rERIBOREzMTA3NDYzMhYVFAYjIiaFTEhJTE1ISEx9SU5RRkdTUgAAAQAQAAADDgW2AAMAHEAMAwABAgIABQQDAwISAD8%2FERIBOTkRMxEzMTAJASMBAw794N4CIQW2%2BkoFtgAAAgBY%2F%2BwEOQXNAAsAFwAoQBQSAAwGBgAZGAkVTVkJBwMPTVkDGQA%2FKwAYPysREgE5OREzETMxMAEQAiMiAhEQEjMyEgEQEjMyEhEQAiMiAgQ59fz0%2FPX79fz9DXuHh319h4d7Atv%2Bg%2F6OAX4BcQGDAW%2F%2BgP6O%2FtX%2FAAEEAScBJgEH%2Fv4AAQCaAAADDAW2AAoAIUAQAAQICQQBAQwLBAcBCQYBGAA%2FPxI5ORESATkRFzMxMCEjETQ3DgEHJwEzAwzrCBdDv3YBrsQDsKljGDqblQFSAAABAFoAAAQ5BcsAGwAxQBoHFBoCAg4UGwQdHBEKTVkRBwIaAQEaTlkBGAA%2FKxESADkYPysREgEXOREzETMxMCkBNQE%2BAjU0JiMiBgcnPgEzMhYVFA4BDwEVIQQ5%2FCEBeadtMndpVJ1nf3rmgsz2R5Or%2FgK2sgF7q49%2BSGNyPlGbZ1bVtGOyvaH2CgAAAAEAVv%2FsBC0FywAmAENAJBMHGwAABAcNFyIGKCcDFxgYF09ZGBgKJCQeTVkkBwoQTVkKGQA%2FKwAYPysREgA5GC8rERIAORESARc5ETMRMzEwARQGBxUeARUUBCEiJzUeATMyNjU0JisBNTMgNTQmIyIGByc2ITIWBAKik7Cw%2Ftb%2B7fOnXdBgqqi6x3%2BBAV56d1OaaXPJAQrd%2BARmi7kgCBavkdPlT9EuMn6EdW6%2F8l5mL0SklL4AAAACACcAAARtBboACgASAEhAJwkBAQ4LBwQSBQUEAAMUEwEFEgVNWQkGUBIBDxIfEgISEgMPBwYDGAA%2FPzMSOS9dXTMzKxEAMxESARc5ETMRMzMzMxEzMTABIxEjESE1ATMRMyERNDcjBgcBBG3F5f1kApzlxf5WCggcPP6VAT%2F%2BwQE%2FtQPG%2FEgBb8R9Ql798AABAHX%2F7AQpBbYAHAA6QB8PAxoVAwgVGAQeHQARTVkAAAYWFhlOWRYGBgxNWQYZAD8rABg%2FKxESADkYLysREgEXOREzETMxMAEyBBUUACEiJzUeATMyNjUQISIGBycTIRUhAz4BAkrdAQL%2B2%2F7y9YxR0lqfpv6yL4o0aTgC%2BP3XISNlA5Hqyur%2B%2BU%2FVLjKOiQEGEww%2BAsrR%2FpYGEAACAF7%2F7AQ%2FBckAFwAkAERAIxsRIgoKAAAFEQMmJQoUDg4eT1kODhQCAgdPWQIHFBhNWRQZAD8rABg%2FKxESADkYLysREgA5ERIBFzkRMxEzETMxMBMQITIXFSYjIgYDMz4BMzIWFRQAIyImAgUyNjU0JiMiDgEVFBZeArtuTExk6%2BwKDC%2Bqc8fe%2Fv%2Feneh9Af55g3t7TIBKmQJvA1oRxBb8%2FupRWfTR5v71lwEh9pyRfpBBcTuNwQAAAQBKAAAEPQW0AAYAJUASBgABBQACBQMIBwAYAwJOWQMGAD8rABg%2FERIBFzkRMxEzMTAhASE1IRUBAQACQv0IA%2FP9wQTlz6T68AAAAAMAWP%2FsBDkFyQAWACMAMAA3QB0DCA4UKyEGMjEFESEhKysLAAAkT1kABwsaT1kLGQA%2FKwAYPysREgA5GC8zEjk5ERIBFzkxMAEyFhUUBR4BFRQEIyIkNTQ2Ny4BNTQ2AxQWMzI2NTQmLwEOAQEiBhUUHgEXPgE1NCYCSNDy%2FvKskf724%2B7%2B%2BomchnL6RpJ9gY%2BEhh2EdAENZHosVGR4Y3sFyb%2Bg4YVWvnW12sy7esNMULJvn737smhzd2ZRhjkNOosDP2NVNFJDLzV1TlVjAAACAFb%2F7AQ3BckAGAAlAERAIyIMDAAcEgAGEgMnJgwPFQ8fT1kPDwMVFRlNWRUHAwhPWQMZAD8rABg%2FKxESADkYLysREgA5ERIBFzkRMxEzETMxMAEQACEiJzUWMzISEyMOASMiJjU0ADMyFhIlIgYVFBYzMjY1NC4BBDf%2BpP6ihTpZWu7qCww7p3DC3gEB3pzofv4CeoJ5e3eiRXwDRv5Q%2FlYQxRkBAAESWlDy0%2BUBD5j%2B3%2FafkH2Pjl9Zm1oAAAACAIX%2F4wGuBGoACwAWAChAFBEMBgYAABgXDhRRWQ4QCQNRWQkTAD8rABg%2FKxESATkRMxI5OTEwNzQ2MzIWFRQGIyImETQzMhYVFAYjIiaFTEhJTE1ISEyUS0pNSEhMfUlOUUZHU1IDnpdQR0dTUgAAAgA%2F%2FvgBrARqAAYAEQAyQBsMBwEGBgQHAxMSBAAGEAaQBgMNAwYJD1FZCRAAPysAGC9fXl3GERIBFzkRMxEzMTAlFwYDIxI3AzQzMhYVFAYjIiYBjQ8wgK1FIiOUS0pNSEhM7he6%2FtsBDugC5ZdQR0dTUgABAGAA3QQxBOwABgAmQBYFAQABBAMIBwAPAwE%2FA28DjwPvAwQDAC9dccYREgEXOREzMTAlATUBFQkBBDH8LwPR%2FSMC3d0BrnkB6MP%2BqP7RAAIAZgGwBCkD8gADAAcALUAbBAcAAwQJCAQFUlkEAQEAUlkPAS8BTwFvAQQBAC9dKwAYEMYrERIBFzkxMBM1IRUBNSEVZgPD%2FD0DwwM%2Fs7P%2BcbKyAAEAYADdBDEE7AAGACZAFgEFAgUGAwgHBg8DAT8DbwOPA%2B8DBAMAL11xxhESARc5ETMxMBMJATUBFQFgAt39IwPR%2FC8BogEvAVjD%2Fhh5%2FlIAAgAQ%2F%2BMDbQXLABsAJgBBQCEhHBsABxMADhMcBCgnBBcXEAAAJBAQCktZEAQkHlFZJBMAPysAGD8rERIAORgvEjkRMxESARc5ETMRMxEzMTABNTQ2Nz4BNTQmIyIGByc2MzIWFRQOAQcOAR0BAzQzMhYVFAYjIiYBG1Bkd0VwaV%2BiTVTL6MTmLFltXT%2Ftk0hMTUdHTAG8QG6STl5oSFRaNiawccCpS3VqVUlgUS3%2BwZdPSEdTUQAAAAIAb%2F9WBr4FvgA1AD8ATEAmGwA7FDoHFjYOIy4ADhQWKC4GQUAICz0RETIYODgECwsrHzIDJisALzM%2FMxI5LzMzETMROS8zEjkREgEXOREzETMRMzMRMxEzMTABFA4BIyImJyMOASMiJjU0EjMyFhcDFRQzMjY1NAIkIyIEAhUQACEyNxUGIyAAERASJDMyBBIBFDMyEzcmIyIGBr5ao2tPdBQMMZBao7v40Uy5SBZoT12M%2Fv6n1f7FpgE2ASLd8NL3%2Fo7%2BYuABjfvZAVO7%2B%2Fy3wRIMP0iAjwLjj%2B2EVEhOTtKzzgEBGxj%2BLxigzJ6rAQOMsP652P7e%2FshapFYBjwFlAQUBl9i0%2FrP%2Bp%2BkBJe8RqgAAAAIAAAAABUoFvAAHAA8AN0AeBgUMAAcDBAECBAcIDA8HERAPAkxZDw8FAAQSDAUDAD8zPzMSOS8rERIBFzkRMxEzETMzMTAhAyEDIwEhCQEDLgEnBgcDBEyS%2FdGP%2FAIjAQQCI%2F4xiQ81Chs0hAGW%2FmoFvPpEAmQBjiisKHuS%2FoMAAwDBAAAE2QW2AA8AGAAhAElAJhQEHgsQGhoPBAgLDwQjIggZEBAZS1kQEA8AABhMWQADDxpMWQ8SAD8rABg%2FKxESADkYLysREgA5ERIBFzkRMxEzETMRMzEwEyEgBBUUBgcVHgEVFAQjIRMzMjY1NCYrARkBMzI2NTQmI8EBsgEuAQ2EfJqR%2Fu31%2FfDv5paKlaLP%2FpaZnJ8FtrC%2BgKoWCh2rksXfA1pfcmdc%2Far%2BMXN8cm4AAQB5%2F%2BwEzwXLABgAJkAUAw8JDxUDGhkTAExZEwQMBkxZDBMAPysAGD8rERIBFzkRMzEwASICERASMzI2NxUGIyAAETQSJDMyFwcuAQMvzuzj112uXqza%2Fr%2F%2BqKcBPNXgvlZKpQT%2B%2Ftz%2B%2F%2F7z%2FuwlHc1BAYUBauQBVrZexyM1AAACAMEAAAVmBbYACAAPAChAFA0ECQAEABARBQxMWQUDBA1MWQQSAD8rABg%2FKxESATk5ETMRMzEwARAAKQERISAAAxAhIxEzIAVm%2Fm7%2Bhv5nAcQBXQGE%2FP4Vz6oCEALp%2Fpb%2BgQW2%2Foj%2BowIN%2B9sAAAAAAQDBAAAD%2FAW2AAsAPUAgBAAGCgoBAAEIAw0MBglMWQYGAQICBUxZAgMBCkxZARIAPysAGD8rERIAORgvKxESARc5ETMRMxEzMTApAREhFSERIRUhESED%2FPzFAzv9tAIn%2FdkCTAW2yv5yyP41AAAAAAEAwQAAA%2FoFtgAJADhAHgYAAAEEBwEDCgsGCUxZDwYBCwMGBgIBEgIFTFkCAwA%2FKwAYPxI5L19eXSsREgEXOREzETMxMCEjESEVIREhFSEBru0DOf20Aif92QW2yv43ywAAAAABAHn%2F7AUxBcsAGgA6QB8YAhMIAggaDQQcGwAaTFkAAAULCxBMWQsEBRZMWQUTAD8rABg%2FKxESADkYLysREgEXOREzETMxMAEhEQ4BIyAAERAAITIXByYjIgAVEBIzMjcRIQMXAhqE843%2BtP6YAZYBZOXNVLKy6v7w9eZ0hP7RAxn9IiskAYkBZgFhAY9Yx1L%2B2v%2F%2B9P7pHQF5AAABAMEAAAVCBbYACwAzQBkIBAQFCQEBAAUADA0IA0xZCAgFCgYDAQUSAD8zPzMSOS8rERIBOTkRMxEzETMRMzEwISMRIREjETMRIREzBULw%2FV7v7wKi8AKT%2FW0Ftv2qAlYAAAAAAQDBAAABsAW2AAMAEbYABQQBAwASAD8%2FERIBOTEwMxEzEcHvBbb6SgAAAAAB%2F2T%2BaAGqBbYADAAfQA4KAwcHDg0IAwAFTFkAIwA%2FKwAYPxESATkRMzMxMBMiJzUWMzI1ETMRFAYIYkJUPsTw1f5oGckV%2BAWJ%2Bn%2Fg7QAAAAEAwQAABR0FtgAOADVAHAsMAQAIBAQFAAIFDA4FEA8CDgMIBAULBgMBBRIAPzM%2FMxIXORESARc5ETMRMxEzETMxMCkBAQcRIxEzETY3ASEABwUd%2Fuv%2BNY3v72JhAYsBEP6BpgKWc%2F3dBbb9RnhvAdP%2BPr8AAQDBAAAEGwW2AAUAH0AOAwAFAAcGAQMAA0xZABIAPysAGD8REgE5OREzMTAzETMRIRXB7wJrBbb7F80AAQDBAAAGogW2ABQAPkAfEgsODg0UAAkCCAUFBgYJDQMWFQISCQMGCwcDAA4GEgA%2FMzM%2FMxIXORESARc5ETMRMzMRMzMRMxEzMzEwIQEjEhURIxEhATMBIREjETQSNyMBAzn%2BWAgR2QFRAZYGAaIBUuYLBAj%2BSQTF%2FvDu%2FTkFtvt1BIv6SgLTbQFeJfs9AAAAAQDBAAAFgwW2ABEAMkAXDAEQEAADCgcHCAgAExIDDAgQCQMBCBIAPzM%2FMxI5ORESATk5ETMRMzMRMxEzMzEwKQEBIxcWFREjESEBMyYCNREzBYP%2B2%2F0xCAUO2QEiAs0GAgzbBI1Bupr9CAW2%2B3kXASFRAv4AAAAAAgB5%2F%2BwF0wXNAAsAFwAoQBQMBhIABgAYGQkVTFkJBAMPTFkDEwA%2FKwAYPysREgE5OREzETMxMAEQACEgABEQACEgAAEQEjMyEhEQAiMiAgXT%2Fpv%2Buf61%2Fp0BZQFLAUYBZPuk2tbV2dfV19sC3f6b%2FnQBiQFqAWoBhP52%2Fpr%2B8v7pARQBEQENARb%2B6gACAMEAAASJBbYACgATADJAGQ8ACwUFBgYAFRQLBExZCwsHBhIHE0xZBwMAPysAGD8SOS8rERIBOTkRMxEzETMxMAEUBCEjESMRISAEATMyNjU0JisBBIn%2B1P7rmO8BpQESARH9J3%2B4rJqjpgP85fT93QW24P4WgIh%2BfAAAAgB5%2FqQF0wXNAA8AGwA7QB8FBAMGFgAQCgAEBgoEHRwNGUxZDQQFBwMHBxNMWQcTAD8rEQAzGBDGPysREgEXOREzETMRMxEzMTABEAIHASEBIyAAERAAISAAARASMzISERACIyICBdPLwgFe%2Fr7%2B7Cf%2Btf6dAWUBSwFGAWT7pNrW1dnX1dfbAt3%2B9v6USv6HAUgBiQFqAWoBhP52%2Fpr%2B8v7pARQBEQENARb%2B6gAAAAACAMEAAAUKBbYACAAVAERAIxIVBBAUEwAKCgsLEBMVBBcWEgkACUtZAAAMFAsSDAhMWQwDAD8rABg%2FMxI5LysRADMREgEXOREzETMRMxEzETMxMAEzMjY1NCYrARkBIxEhIAQVEAUBIQEBsKanlqKjnu8BnQEbARD%2B5AGd%2FvD%2BogMOfHp8bP1c%2FbgFttTW%2Fu90%2FXkCSAAAAAEAZP%2FsBAwFywAkADRAGwwAHRIFEhcABCYlDB0DFRUaTFkVBAMJTFkDEwA%2FKwAYPysREgA5ORESARc5ETMRMzEwARQEIyInNR4BMzI2NTQmJy4BNTQkMzIXByYjIgYVFB4BFx4CBAz%2B5vj4nmThYY6HfMLIpAEE29LQTMOZdHgwbo%2BhlkYBjcPeTeIvNmxbUnJOUdCSt9Jcw1JlUzlRSDtDdJIAAQAdAAAEaAW2AAcAJUASAAEBAwYDCQgBEgcDBANMWQQDAD8rEQAzGD8REgEXOREzMTAhIxEhNSEVIQK67%2F5SBEv%2BUgTpzc0AAQC0%2F%2BwFOwW2ABEAJUAREAELCAgBExIRCQMFDkxZBRMAPysAGD8zERIBOTkRMxEzMTABERQGBCMgADURMxEUFjMgGQEFO4v%2B%2Bbf%2B8P7S8KiuAVIFtvxOovODASD8A678Y7WsAWMDmwABAAAAAAT6BbYADAAqQBQDAgkAAQUEAQQJAw4NCQMABAMDEgA%2FPzMSORESARc5ETMRMxEzMzEwATMBIwEzAR4BFz4BNwQC%2BP4A%2FP4C9gExGDYIDTYRBbb6SgW2%2FHNBzTJMyDAAAQAMAAAHgwW2ABwAQEAhAQAYCgkQFRQFGxwNDAUMEBgcBR4dEAUYAwobFAwDAQoSAD8zPzMzEhc5ERIBFzkRMxEzETMzETMzETMzMTApAQMuAScOAQcDIQsBMxMWFz4BNxMzExYXNjcTMwYG%2Fvz4EDAFCi0P8v78vcD00TEVCywS7u30IycPOdDyA2g51ypAzDL8nALcAtr8rM2dVdJBA1b8pnftj90DUgAAAAEABAAABPYFtgALADVAHAEACQoHBgMEBAACBQYICgsIDQwCCAQJBgMBBBIAPzM%2FMxI5ORESARc5ETMRMxEzETMxMCkBCQEhCQEhCQEhAQT2%2Fu3%2Bkv6P%2FwAB5f46AQoBUgFSAQL%2BNwJW%2FaoC9gLA%2FdcCKf08AAAAAAEAAAAABLwFtgAIACxAFQECCAcABAQFAgUHAwoJAAUBBwMFEgA%2FPzMSORESARc5ETMSOREzETMxMAkBIQERIxEBIQJeAVoBBP4Z8P4bAQQDGwKb%2FIH9yQIvA4cAAQBCAAAEWAW2AAkAOEAdAwcIAgACBAcECwoHBAUFBExZBQMCCAEBCExZARIAPysREgA5GD8rERIAORESARc5ETMRMzEwKQE1ASE1IRUBIQRY%2B%2BoC4f0zA%2B79HAL4pgRDzaj7vwAAAAABAJr%2BvAJxBbYABwAfQA0EAAYBAQAJCAYBBQIDAD8zLzMREgE5OREzETMxMAEhESEVIREhAnH%2BKQHX%2FwABAP68Bvqw%2BmcAAAABABAAAAMOBbYAAwAcQAwCAQADAwEFBAMDAhIAPz8REgE5OREzETMxMBMBIwHuAiDd%2Fd8FtvpKBbYAAAABADP%2BvAIIBbYABwAfQA0DAAEGBgAJCAAHAwQDAD8zLzMREgE5OREzETMxMBchESE1IREhMwEA%2FwAB1f4rkwWZsPkGAAEAHQIXBC8FvgAGACdAEgIBBQQDBgAAAwUDCAcFAAQCAwA%2FzTI5ERIBFzkRMxEzETMzMTATATMBIwkBHQG0eQHlwv6j%2Fs0CFwOn%2FFkCtv1KAAAAAAH%2F%2FP7BA3P%2FSAADABG1AwUCBAECAC8zEQEzETMxMAEhNSEDc%2FyJA3f%2BwYcAAQFqBNkDUAYhAAkAE7YIAwsKBYAAAC8azRESATk5MTABLgEnNSEeARcVArJF0zABESaDLATZNMU6FUa2MxkAAAIAWv%2FsBAQEZgAbACYASUAmDAEfHxskCAgUGwMoJwIFFwwgSlkMDAUXABUXEEhZFxAFHEhZBRYAPysAGD8rABg%2FERI5LysREgA5ERIBFzkRMxEzETMzMTAhJyMOASMiJjU0NiU3NTQmIyIGByc%2BATMyFhURJTI2PQEHDgEVFBYDXC8IUKJ%2Fo7f%2BAQS%2FY2hVnEhMWtZf09f9%2BoCbjqaXWJplSbChq64IBjtqaTIiqC8xuMX9F6CPgWAGBmNmSlEAAAIAqP%2FsBJMGFAATAB8AQEAhCRgRAw0eAw0LCwMhIAgRBgAMAAsVABRGWQAQBhtGWQYWAD8rABg%2FKwAYPz8REjk5ERIBOTkRMxEzERczMTABMhIREAIjIicjByMRMxEUBgczNhciBgcVFBYzMjY1EALdz%2Bfq0NJ0ECuw6wgCCnCdjn0CgJF9gQRm%2FtT%2B8f7w%2FtGXgwYU%2Fo4pohalwKfEEMq1xrsBeQAAAAEAZv%2FsA7QEZgAVACZAFA0DAwgSAxcWBgtGWQYQABBGWQAWAD8rABg%2FKxESARc5ETMxMAUiABEQACEyFwcmIyARFBYzMjcVDgECZvv%2B%2BwERAQKvjEeVYf7hj4qdjD%2BPFAElARIBFwEsQb06%2FoO6u07NJSAAAgBm%2F%2BwEVAYUABIAHwBAQCEQFwkDDAwOHQMOAyEgCREABgwADxUGGkZZBhAAE0ZZABYAPysAGD8rABg%2FPxESOTkREgE5OREzETMRFzMxMAUiAhEQEjMyFzMmNREzESMnIwYnMjY3NTQmIyIGFRQWAh3P6OvQ2nIMEey4KQtxm5GEAoiRfIaCFAEsAQ8BEAEvoXdFAZP57JGlvqO3IdGwybq4wQACAGb%2F7AQ5BGYAFAAbAEdAJxkKGAsLAwMKEQMdHBgLSFkMGBwYAhADGBgABgYVSFkGEAAOR1kAFgA%2FKwAYPysREgA5GC9fXl0rERIBFzkRMxEzETMxMAUgABEQADMyEh0BIR4BMzI2NxUOAQMiBgchLgECi%2F7%2B%2Ft0BDuzb%2Fv0fBaSVYqlhVrCccIcNAfYCgBQBLQEIAQ8BNv726X%2BhrSUrvykiA8iOiImNAAAAAQAjAAADQgYfABUAO0AeDRQUBwICAwADBQMXFgMVCxBGWQsABQEUAUhZBxQPAD8zKxEAMxg%2FKwAYPxESARc5ETMSOTkRMzEwASERIxEjNTc1NDYzMhcHJiMiBh0BIQLT%2FvLstra4vXx4PldPUEkBDgOg%2FGADoG5ISMS9KbIcY2NIAAAAAwAX%2FhQETgRmACsAOABDAHJAPSsCJT4FOSUMHzITLBkABRMZHyUGRUQiCAg8SlkICBYoHDYPDzZGWQ8PFigoQUpZKBArAklZKw8WL0lZFhsAPysAGD8rABg%2FKxESADkYLysREgA5ERI5GC8rEQAzERIBFzkRMxEzETMRMxEzEjk5MTABFQceARUUBiMiJwYVFBY7ATIWFRQEISImNTQ2Ny4BNTQ2Ny4BNTQ2MzIWFwEUFjMyNjU0JisBIgYTFBYzMjU0JiMiBgROvRoi7M81K0xHX8G3vv7K%2Ftvi7oF0Lz1GRVZr49IvZxr%2BGol8wLxnjLJld2VrZMxlZ2ZpBFKBIyNmOavECC8%2FJiack7zMoJRmixsUWTE%2BViolp3C0xg0H%2BwJMUm5bSD1fA0docNpsdXQAAAABAKgAAAR1BhQAFQAzQBkBAA8NCQkKAAoXFg8KExMFRlkTEAsAAQoVAD8zPz8rERIAORESATk5ETMRMzMRMzEwISMRNCYjIgYVESMRMxEUBzM%2BATMgEQR17GdwlIvr6wwPMKtyAZICqIB%2BsdD92wYU%2FnVfbFBY%2FmsAAAAAAgCaAAABogX6AAMADwA2QCIKAAQAAQEREA0fBy8HAl8Hbwd%2FB58HrwffB%2B8HBwcCDwEVAD8%2FL11xzRESATkRMzMRMzEwISMRMwM0NjMyFhUUBiMiJgGT6%2Bv5RUA%2BRUU%2BQEUEUgElP0REPzxFRQAAAAL%2Fh%2F4UAaIF%2BgAMABgAQ0AqEwoKDQMDBwcaGRZADxAfEC8QTxBfEI8QnxDPEN8QCQ4DEAgPAAVGWQAbAD8rABg%2FL19eXRrNERIBOREXMxEzMTATIic1FjMyNREzERQGAzQ2MzIWFRQGIyImN2pGREeW67NGRUA%2BRUU%2BQEX%2BFBm6EqoE0%2Fsdq7AHYz9ERD88RUUAAAABAKgAAASJBhQADgA6QB8CAwYFDgwJCQoDBAUHCgUQDw4IBwQECgILAAIPBgoVAD8zPz8REhc5ERIBFzkRMxEzMxEzETMxMAE3ASEJASEBBxEjETMRBwGLhQFOAQ%2F%2BQwHZ%2Fuz%2BnYHp6QwCSKYBZP4l%2FYkB5Wr%2BhQYU%2FQnVAAAAAAEAqAAAAZMGFAADABZACQABAQUEAgABFQA%2FPxESATkRMzEwISMRMwGT6%2BsGFAAAAAEAqAAABwYEZgAjAEZAIxwbEwAAAQ0JCQoBChsDJSQUDQoRCw8cAQoVIAURBUZZFxEQAD8zKxEAMxg%2FMzM%2FERI5ORESARc5ETMRMxEzEjkRMzEwISMRNCYjIgYVESMRMxczPgEzIBczPgEzMhYVESMRNCYjIgYVBEzsYGaIf%2Bu4IQwur2kA%2F1MQMbJzxrXrYWaJfwKqf32xzv3ZBFKRT1auUlzIzf0vAqp%2FfauxAAAAAQCoAAAEdQRmABMAMUAYDQkJCgEACgAUFQ0KEREFRlkREAsPAQoVAD8zPz8rERIAORESATk5ETMRMxEzMTAhIxE0JiMiBhURIxEzFzM%2BATMgEQR17GdwlYrruCEMMrhwAY4CqIB%2BsM%2F92QRSkU9W%2FmsAAAACAGb%2F7AR9BGYADAAVAChAFA0HEQAHABYXChNGWQoQAw9GWQMWAD8rABg%2FKxESATk5ETMRMzEwARAAIyImAjUQADMyAAEQISARECEiBgR9%2Fur4m%2B6AART78AEY%2FNsBGwEY%2FuaUhQIr%2FvH%2B0IwBBq0BDQEu%2Fsv%2B%2Bv6BAX8Be8QAAAIAqP4UBJMEZgATACAAP0AgGAsDBgYHHhEHESEiAwsADg4URlkOEAgPBxsAG0ZZABYAPysAGD8%2FPysREgA5ORESATk5ETMRMxEzMzMxMAUiJyMWFREjETMWFzM2MzISERACASIGHQEUFjMyNjU0JgLZ0nQODuu%2BCBkMbtzP5%2Bv%2B%2BIyBgJF6hIMUl4we%2FjsGPh91qP7U%2FvH%2B8f7QA7qktCPKtci5ur8AAAIAZv4UBFQEZgALACAAQEAgHhYDGhoZCg8ZDyIhGhsXDx8WDBISB0ZZEhAMAEZZDBYAPysAGD8rERIAOTkYPz8REgE5OREzETMRMzMzMTAlMjY9ATQmIyIGFRAXIgIREBIzMhYXMzczESMRNDY3IwYCXpSBhZR%2BhMPN6OzPaKVBCBrD7AgDDWioq60lzbTIu%2F6FvAEtAQ4BDgExTViR%2BcIB1SxiGqUAAAEAqAAAA04EZgAQACNAEA0JCQoCChIRCw8NChUFABAAPzI%2FOT8REgE5OREzETMxMAEyFwcmIyIGFREjETMXMz4BAtlHLhcyNo2v67gfDDexBGYK2wy4k%2F2%2BBFLDY3QAAAEAYv%2FsA48EZgAhADRAGwoAGxEABhEWBCMiChsDFBQZR1kUEAMISFkDFgA%2FKwAYPysREgA5ORESARc5ETMRMzEwARQGIyInNRYzMjU0LgEnLgE1NDYzMhcHJiMiFRQWFx4CA4%2Fs3N2Gw6jZMG5iv4flxcOuTLN6umGjiXw8ATuirUPLWoMqODwmSpR2jp1PsUpqNEg%2FNVhzAAAAAAEAJ%2F%2FsAvAFSAAVAD1AHw8MExMIAggKEQQXFg0PQAkSDA8PEkhZDw8GAEZZBhYAPysAGD8rEQAzETMaGBDNERIBFzkRMxI5OTEwJTI3FQ4BIyAZASM1PwEzFSEVIREUFgJEVlYne0L%2BspeiUJEBO%2F7FVaobsREXAWACVGhW6vay%2FbBVUQAAAAABAJ7%2F7ARtBFIAFAAwQBcBEREUCwgUCBYVAgUSCQ8AFQUORlkFFgA%2FKwAYPz8zEjkREgE5OREzETMRMzEwIScjDgEjIiY1ETMRFBYzMjY1ETMRA7QhDDG1dMnG7WhvlIvskU1YyMsC0%2F1Wf3%2Bx0AIn%2B64AAAEAAAAABEgEUgALAChAEwkKAgELAAUBCgUDDQwJAQ8FABUAPzI%2FMxESARc5ETMzETMRMzEwIQEzExYXMzY3EzMBAaT%2BXPjhOgwICT3h%2Bv5aBFL9faJkSL4Cg%2FuuAAAAAAEAFAAABnMEUgAdAD5AIR0AFxMSBAgHDhscCgkECQ4XHAUfHgANFwMIFQkbBAMSDwA%2FFzM%2FFzMREgEXOREzETMRMzMRMzMRMzMxMCEDJgMjAgcDIQEzExYXMz4BNxMhEx4BFzM2NxMzAQQzjxpECToik%2F78%2FsrwjTAUBgopD6gBAqMPLQQIDzeP7P7IAgRSASv%2B8nH9%2FgRS%2Fd%2FKkEm9LwJG%2Fboxyjh73QIh%2B64AAAAAAQAZAAAETgRSAAsAM0AaCAcEBQIBCgsAAQUGBwsGDQwJAwsEAQ8ICxUAPzM%2FMxI5ORESARc5ETMRMxEzETMxMAkBIRsBIQkBIQkBIQGe%2Fo0BDPz%2BAQr%2BjAGH%2Fvb%2B7%2F7w%2FvYCNQId%2Fn0Bg%2F3j%2FcsBnv5iAAABAAD%2BFARKBFIAFAAzQBoUCgQICQEAAAQJDwQWFQQUFQgADwwRRlkMGwA%2FKwAYPzM%2FMxESARc5ETMRMxEzMzEwESETFhczPgETMwECISInNRYzMj8BAQDhMxEICTDm%2Fv4ngf7TTko1RKpFKQRS%2FY2GdjedApv7G%2F6nEboMxWgAAAEARAAAA4sEUgAJADhAHQMHCAICBAcJBAsKBwQFBQRIWQUPAggBAQhIWQEVAD8rERIAORg%2FKxESADkREgEXOREzETMxMCkBNQEhNSEVASEDi%2Fy5Ai%2F98wMV%2Fd0CM5EDDbSk%2FQYAAAAAAQAt%2FrwC6QW2ABwARUAnCxgSAg4HFRUcAhgcAx4dEQICDwN%2FA48DrwO%2FA88DBgMDChgZCwoDAD8zLzMSOS9dMxI5ERIBFzkRMxI5ORE5ETMxMAE0ITUyNjURNDYzFQ4BFREUBxUWFREUFhcVLgE1ATf%2B9oeD2dlyZ%2BXlZnPnywEfur9bXQE3nJO2BVNS%2FtfHJwwkyf7VUlQCtwKZqwAAAAEB2f4fAo0GEAADABS3AgMDBQQDAAAAPy8REgE5ETMxMAEzESMB2bS0BhD4DwAAAAEALf68AssFtgAeAEVAJwsbEgQXDgcHAAAEGwMgHwwbGw8afxqPGq8avxrPGgYaGhMEAxITAwA%2FMy8zEjkvXTMSORESARc5ETMSOTkRMxE5MTAFFAYHNT4BNRE0Njc1JjURNCYnNTIWFREUFjMVIgYVAc%2FH219qanvlW27fw399e4EUnJICtwFLXAEGeYQVDCfHASlSUwW2ma7%2B4WRUv1VlAAAAAQBgAjsEMQNoABUAQEAkDwMXFg4GAxERC1JZABEQEQIJAxEGQAYAUlkPBh8GPwZvBgQGAC9dKwAaGBDNX15dKwAQGMQQxhESATk5MTABIgYHNTYzMhYXFjMyNjcVBiMiJicmAUoyez1jl0J2WINZNH06aZFBfVR%2FArQ8Pb9sGiU3Pjq%2Bbx8jNwAAAAACAIX%2BjQGuBF4AAwAPAChAEgQCCgIDAxEQAAANAw0HUVkNEAA%2FKwAYLxI5LxESATkRMzMRMzEwEzMTIQEUBiMiJjU0NjMyFsGuM%2F7rASFLSkhMTEhITQKF%2FAgFOEpOT0lFVFEAAQCm%2F%2BwD9gXLABwASkApDgILAgUWCAUIEBwEHh0FAgIZTVkAAhACAhADAgQZDhNNWQuQDgEODAcAP81dMisAGD%2FFX15dKxEAMxESARc5ETMRMzMRMzEwJQYHFSM1JgI1NBI3NTMVFhcHJiMiBhUUFjMyNjcD23eLnM%2FIyc6emINGkmiSjJCKS4dX7jsFwsgfARj6%2FgEeIKqiBT28O77BwrIeJQABAEgAAARWBckAHQBVQC4aCAsLFw8TAgkQExcYBh8eCxgZGE9ZCA8ZAQsDGRkSAAAFTVkABxMPEg9OWRIYAD8rEQAzGD8rERIAORgvX15dMysRADMREgEXOREzETMSOTkxMAEyFwcmIyIdASEVIRUUBgchFSE1PgE9ASM1MxE0NgKywrVMonrNAY3%2Bc0JQAvT78mJevLzjBclStkfb9Ky2W4Atz8MehHC4rAEAvNQAAAIAdQECBBsEpAAbACcAOkAlIg4cAAACBQkMDhATFxoKKSgJDBATFxoCBQgfFSUPBx8HbwcDBwAvXTPEMhc5ERIBFzkRMxEzMTATNDcnNxc2MzIXNxcHFhUUBxcHJwYjIicHJzcmNxQWMzI2NTQmIyIGukCFeYNkc3NihXmDPz%2BBd4Vjcn5Zg3eDQKiIXmGIiGFdiQLTbWiFd4E%2FQYN1hWRzd2KBd4E9PX93gWN0YoWFYmGIiAAAAAABABIAAAR9BbYAFgBbQDMABxADCwsMAgUJDA4SFQcYFwYSExJQWQADDxMfEwIJAxMTDBUKDg8OUFkHDw8MARUGDBgAPz8zEjkvMysRADMREjkYL19eXTMzKxEAMxESARc5ETMSFzkxMAkBMwEzFSEVIRUhFSM1ITUhNSE1MwEzAkgBQfT%2BceP%2B5wEZ%2Fufh%2FuUBG%2F7l4P529gMdApn9CJeamfT0mZqXAvgAAAAAAgHZ%2Fh8CjQYQAAMABwAkQBADAgUFBAQJCAMEAwQHGwAAAD8%2FOTkvLxESATkRMxI5OTEwATMRIxEzESMB2bS0tLQGEPzm%2FkX85AAAAAIAc%2F%2FyA4kGIwAtADkATUAsNBcmGy4AEQUyGTcDAAMFCxcZGyEIOzoDGTcUMioGHggID0lZCAEeJElZHhYAPysAGD8rERIAFzkREgEXOREzETMRMxEzETMRMzEwEzQ2NyY1NDYzMhYXBy4BIyIVFBYXHgEVFAcWFRQGIyInNR4BMzI1NC4BJy4CNxQeARc2NTQmJw4BgU1Jktu5W6ZjRHR4PcJuiK%2BWi4vs0NSGTcBR6ypkYY2CPbgwbYxtfJ82RQMnUIMrU5iBkiIqojIabTZPM0SdbbFZUI%2BOpUezKDODKzY2JjdddWEtRkQ4QWdLZzUQWwACASUFAgOWBewACwAXAB5ADAwSBgASABkYDwMVCQAvM80yERIBOTkRMxEzMTABNDYzMhYVFAYjIiYlNDYzMhYVFAYjIiYBJUMwNT9ANDBDAYlDMDVAQjMwQwV3Pjc%2BNzVAOjs%2BNz43Nj86AAADAGT%2F7AZEBcsAFgAmADYARkAoAw8vHycXCQ8UFx8FODcAABIQEgISEhsGDwwfDJ8MAwwMIzMbBCsjEwA%2FMz8zEjkvXTMROS9dMxESARc5ETMRMxEzMTABIgYVFBYzMjY3FQYjIiY1NDYzMhcHJgE0EiQzMgQSFRQCBCMiJAI3FBIEMzIkEjU0AiQjIgQCA31veGx7N34uc3jF2dzEiohBavyGyAFeysgBXsrC%2FqLQz%2F6iw3upASSoqgEkp6n%2B26eo%2Ft%2BsBAqhjpOeHhWeM%2FHe1vdGjzf%2B0cgBXsrI%2FqLKxf6m0M8BWsaq%2Ft2oqwEhqagBJaim%2FtwAAAIAOQMCApMFxwAXACEAOUAdCwEhIRcbBwcRFwMjIiELCxMdAQAABBAEAgQOEwQAPzPUXcQzMxI5LzMREgEXOREzETMRMzMxMAEnDgEjIiY1NDY%2FATQmIyIHJzYzMhYVEQEOARUUMzI2PQECIx0udkdxcaioa0VFWng2kI2Kiv7%2BR21gW1wDDmE3NmlqaG8GBEhIOHNGfX3%2BQQE8AkAxWFJSKwAAAgBSAGgEIQPhAAYADQApQBMDBgoNAgQLCQkEDQYEDg8MBQgBAC8zxDIREgEXOREzETMRMxEzMTATARcJAQcBJQEXCQEHAVIBZKj%2B5gEaqP6cAcIBZaj%2B5QEbqP6bAjEBsF7%2Bov6kYQGvGgGwXv6i%2FqRhAa8AAAAAAQBgAQAEMQMrAAUAI0AQAQADAAcGAQQEA1JZLwQBBAAvXSsAGBDEERIBOTkRMzEwASMRITUhBDGy%2FOED0QEAAXmyAP%2F%2FAEgBwQJKAokSBgAQAAAABABk%2F%2BwGRAXLAAgAFQAlADUAXUAzBAkLDg0MABAQES4eJhYJDA4RFh4GNzYPAAASDQ8RHxECEREaCAASEBICEhIiMhoEKiITAD8zPzMSOS9dMxE5L10zEjkvMxESARc5ETMRMxEzETMRMxEzETMxMAEzMjY1NCYrAQUUBxMjAyMRIxEhMhYBNBIkMzIEEhUUAgQjIiQCNxQSBDMyJBI1NAIkIyIEAgLsRUpMSU9DAZmZ7dPAWr0BBq6i%2B9%2FIAV7KyAFeysL%2BotDP%2FqLDe6kBJKiqASSnqf7bp6j%2B36wDAkZBSDl9qz7%2BcwFa%2FqYDh4j%2BxcgBXsrI%2FqLKxf6m0M8BWsaq%2Ft2oqwEhqagBJaim%2FtwAAAAAAf%2F6BhQEBga4AAMAEbUABQEEAQIALzMRATMRMzEwASE1IQQG%2B%2FQEDAYUpAACAG0DOQL%2BBcsADAAYAB9ADRMGDQAGABoZEAkWAwQAPzPEMhESATk5ETMRMzEwEzQ2MzIWFRQGIyIuATcUFjMyNjU0JiMiBm2%2Bi4q%2BwIhYmViZZkpKZmhISGgEgYfDwIqLvVeYWUZoZ0dMZmgAAAAAAgBgAAAEMQThAAsADwA3QB4GAwoKCwwPAQgLBREQDA1SWQwSCQECAVJZBp8CAQIAL10zKxEAMxg%2FKxESARc5ETMSOTkxMAEhNSERMxEhFSERIwE1IRUB7v5yAY60AY%2F%2BcbT%2BcgPRApiyAZf%2BabL%2Bav7%2BsrIAAAAAAQAzAkoCpgXJABYAJ0ATBhEVAgIMERYEGBcJDh8CFRUBIAA%2FMxI5PzMREgEXOREzETMxMAEhNTc%2BATU0JiMiByc2MzIWFRQGDwEhAqb9jeZ1QUAzXWxei6qIl1yJiwGNAkqH4XBqOzQ2WHl3hHJTl3%2BBAAABAC0COQKiBckAIwA5QB8XABAGAAYLEx4DBiUkAxMTHxQBHxQBFBQJGiEfDgkhAD8zPzMSOS9dcTMSORESARc5ETMRMzEwARQGBx4BFRQGIyInNRYzMjU0KwE1MzI1NCYjIgYHJz4BMzIWAoVRT15fuq2UepF9s8dzabhFODlhOVQ9kmKGnQTjS18nFW5Nf4o%2BnU%2BHfYWBNDgoJXIuO3sAAQFqBNkDUAYhAAkAE7YFAAsKBYAAAC8azRESATk5MTABNT4BNyEVDgEHAWo5eSMBETTPRwTZGUasPRU9wTUAAAEAqP4UBHUEUgAYADtAHQoFBQgRABUVFhYIGhkRCw4GFw8JFRYbDgJGWQ4WAD8rABg%2FPz8zEjk5ERIBOTkRMxEzMxEzETMxMAEUMzI2NREzESMnIw4BIyInIx4BFREjETMBk9qSiuy3Ig0wj2iMTwQDB%2BvrAab8sdACJ%2Fuuk1NUWhyyJP7ABj4AAAAAAQBx%2FvwEdwYUAA8ALUAVAQAEBQAFCwMREAEFCAgOBQ4DS1kOAC8rABgvEjkvETMREgEXOREzETMxMAEjESMRIxEGIyImNRA2MyEEd4m%2FiT5U2Mva6AJE%2FvwGf%2FmBAzMS%2BvsBBP4AAAABAIUCOQGuA2oACwAXQAoGAAANDAMJUVkDAC8rERIBOREzMTATNDYzMhYVFAYjIiaFTEhJTE1ISEwC00lOUUZHU1IAAAEAAP4UAaoAAAARAC1AFw8MCgAABQwDExIMD0ALDkgPDw4HAhsOAC8%2FMxI5LyszERIBFzkRMxEzMTABFCEiJzUWMzI2NTQnNzMHHgEBqv7PQjc2RTY%2Fs1SYKVBa%2FvLeD4kOIS1VGaZYFV8AAAEAVAJKAhQFtgAKACJAEAAECQMBCAEMCwcJASAECR4APzM%2FEjkREgE5OREXMzEwASMRPwEOAQcnJTMCFLoDBREvdlgBGacCSgIAZ1sSLFlw0QAAAAIAPQMCAs8FxwALABcAJUASEgAMBgAGGRgPAAMQAwIDFQkEAD8zxF0yERIBOTkRMxEzMTABFAYjIiY1NDYzMhYFFBYzMjY1NCYjIgYCz6%2BdlrCxmZiw%2FhBOWFhOTlhYTgRkpL6%2Fo6m6vaZvbm5vcW1tAAAAAgBQAGgEIQPhAAYADQAlQBILCQQCAAMHAgoJBg4PCAEBDAUALzPELzIREgEXOREzETMxMAkBJwkBNwEFAScJATcBBCH%2BmagBG%2F7lqAFn%2Fj3%2BmqgBGv7mqAFmAhf%2BUWEBXAFeXv5QGv5RYQFcAV5e%2FlAAAP%2F%2FADwAAAYxBbYQJwDTAqYAABAmAHvoABEHANQDXP23AAmzAwIRGAA%2FNTUA%2F%2F8ALgAABkgFthAnANMCgwAAECYAe9oAEQcAdAOi%2FbcAB7ICEBgAPzUAAAD%2F%2FwA3AAAGaAXJECcA0wL4AAAQJwDUA5P9txEGAHUKAAAJswIBBxgAPzU1AAACADf%2BdwOWBF4AGwAnAEhAJhwiABsHExMbIgMpKAQXFwAbEBsCCwMbGxAlJR9RWSUQEApLWRAiAD8rABg%2FKxESADkYL19eXTkRMxESARc5ETMRMxEzMTABFRQGBw4BFRQWMzI2NxcGIyImNTQ%2BATc%2BAT0BExQGIyImNTQ2MzIWAotSZnw%2BbGtaqFJS3MzP6CpWcl4%2B70tKSExMSEhNAoU%2FapZQYmJLTl43JrNuv6lJcmhaTGFPLQFASk5PSUVUUf%2F%2FAAAAAAVKB3MSJgAkAAARBwBD%2F%2BQBUgAIswIZBSYAKzUAAP%2F%2FAAAAAAVKB3MSJgAkAAARBwB2AKoBUgAIswIZBSYAKzUAAP%2F%2FAAAAAAVKB3MSJgAkAAARBwDFADsBUgAIswIcBSYAKzUAAP%2F%2FAAAAAAVKB0gSJgAkAAARBwDHAC0BUgAIswIYBSYAKzUAAP%2F%2FAAAAAAVKBz4SJgAkAAARBwBqAEYBUgAKtAMCJQUmACs1Nf%2F%2FAAAAAAVKBwkSJgAkAAARBgDGVm0ACbMDAiQDAD81NQAAAAAC%2F%2F4AAAbTBbYADwATAGVANgYTExERCg4OAQgABAUFAAEMEBIFFRQKDUxZCgoBBhADTFkQEAEGBRIJEwYTTFkGAwEOTFkBEgA%2FKwAYPysRADMYPxESOS8rERIAORgvKxESARc5MxEzETMRMxI5OREzETMxMCkBESEDIwEhFSERIRUhESEBIREjBtP81f4IvPYCpgQv%2FcUCFP3sAjv7NwGeewGW%2FmoFtsr%2Bcsj%2BNQGZAoEAAP%2F%2FAHn%2BFATPBcsSJgAmAAAQBwB6Ag4AAP%2F%2FAMEAAAP8B3MSJgAoAAARBwBD%2F7cBUgAIswEVBSYAKzUAAP%2F%2FAMEAAAP8B3MSJgAoAAARBwB2AE4BUgAIswEVBSYAKzUAAP%2F%2FAMEAAAP8B3MSJgAoAAARBwDF%2F%2FkBUgAIswEYBSYAKzUAAP%2F%2FAMEAAAP8Bz4SJgAoAAARBwBqAAQBUgAKtAIBIQUmACs1Nf%2F%2F%2F%2FoAAAHgB3MSJgAsAAARBwBD%2FpABUgAIswENBSYAKzUAAP%2F%2FALMAAAKZB3MSJgAsAAARBwB2%2F0kBUgAIswENBSYAKzUAAP%2F%2F%2F7UAAAK3B3MSJgAsAAARBwDF%2FtIBUgAIswEQBSYAKzUAAP%2F%2FAAEAAAJyBz4SJgAsAAARBwBq%2FtwBUgAKtAIBGQUmACs1NQACAC8AAAVeBbYADAAYAEdAJQ0AEggWFgQABAYUBBoZFQYHBkxZEgcHBAkJEUxZCQMEFkxZBBIAPysAGD8rERIAORgvMysRADMREgEXOREzEjk5ETMxMAEQACkBESM1MxEhIAADEAIrAREhFSERMyAFXv5u%2Fob%2Bb5KSAb4BWwGE%2FPn0xQEz%2Fs2gAhIC6f6Y%2Fn8Cb8gCf%2F6H%2FqQBBAEJ%2FknI%2FloA%2F%2F8AwQAABYMHSBImADEAABEHAMcAsgFSAAizARoFJgArNQAA%2F%2F8Aef%2FsBdMHcxImADIAABEHAEMAdwFSAAizAiEFJgArNQAA%2F%2F8Aef%2FsBdMHcxImADIAABEHAHYBJwFSAAizAiEFJgArNQAA%2F%2F8Aef%2FsBdMHcxImADIAABEHAMUAugFSAAizAiQFJgArNQAA%2F%2F8Aef%2FsBdMHSBImADIAABEHAMcArgFSAAizAiAFJgArNQAA%2F%2F8Aef%2FsBdMHPhImADIAABEHAGoAywFSAAq0AwItBSYAKzU1AAEAgwEOBA4EmAALABxADwEDBQcJCwYNDC8AXwACAAAZL10REgEXOTEwCQE3CQEXCQEHCQEnAcn%2Bun0BSAFJff63AUV7%2Frf%2BvH0C0wFGf%2F66AUZ7%2Frb%2BuH0BRv66fQAAAAMAef%2B0BdMF%2FAATABsAIwBOQC0WFx4fBBQcFAAcCgAFCAoPBSUkFx4WHwQhGQ8SCAUEAw0NIUxZDQQDGUxZAxMAPysAGD8rERIAFzkREhc5ERIBFzkRMxEzERIXOTEwARAAISInByc3JhEQACEyFzcXBxYDNCcBFjMyEgEUFwEmIyICBdP%2Bm%2F651ZRejWK8AWUBS8ebWo5jw%2F5Q%2FbZhi9XZ%2FKJOAktci9fbAt3%2Bm%2F50UYlekMQBeQFqAYRSgVyMx%2F6Q4Yj8rjwBFAER54MDUjv%2B6gD%2F%2FwC0%2F%2BwFOwdzEiYAOAAAEQcAQwA3AVIACLMBGwUmACs1AAD%2F%2FwC0%2F%2BwFOwdzEiYAOAAAEQcAdgDuAVIACLMBGwUmACs1AAD%2F%2FwC0%2F%2BwFOwdzEiYAOAAAEQcAxQCLAVIACLMBHgUmACs1AAD%2F%2FwC0%2F%2BwFOwc%2BEiYAOAAAEQcAagCYAVIACrQCAScFJgArNTX%2F%2FwAAAAAEvAdzEiYAPAAAEQcAdgBYAVIACLMBEgUmACs1AAAAAgDBAAAEkQW2AAwAFQBGQCURAA0JBQUGBgAXFgkVTFkACRAJAgwDCQkGBw0ETFkNDQYHAwYSAD8%2FEjkvKxESADkYL19eXSsREgE5OREzETMzETMxMAEUBCEjESMRMxUzIAQBMzI2NTQmKwEEkf7c%2Fuuo7%2B%2FFAQwBEP0fhbusnKykAwjj9P7PBbbz4P4Vfox%2FewAAAAEAqP%2FsBQIGHwAzAEFAIiUABh8ZDiwtAA4UHy0FNTQZJRExLRUxKEZZMQARF0hZERYAPysAGD8rABg%2FERI5ORESARc5ETMRMxEzETMxMAEUBgcOARUUFh8BHgIVFAYjIic1HgEzMjU0JicuATU0Njc%2BATU0JiMiBhURIxE0JDMyBAR9TUJaNi05X1xXLNbMvm06okPARXl3aERHS0CGb3%2BG6wEB7%2BEBBATlSoUzRTocHjMmQD5fcEelrEHHJTGXPVhKSXxUP2k1N1UzSFFsaftzBJHBzagA%2F%2F8AWv%2FsBAQGIRImAEQAABEGAEOZAAAIswIwESYAKzX%2F%2FwBa%2F%2BwEBAYhEiYARAAAEQYAdkwAAAizAjARJgArNf%2F%2FAFr%2F7AQEBiESJgBEAAARBgDF6AAACLMCMxEmACs1%2F%2F8AWv%2FsBAQF9hImAEQAABEGAMfkAAAIswIvESYAKzX%2F%2FwBa%2F%2BwEBAXsEiYARAAAEQYAavUAAAq0AwI8ESYAKzU1AAD%2F%2FwBa%2F%2BwEBAacEiYARAAAEQYAxg4AAAq0AwIqESYAKzU1AAAAAwBa%2F%2BwGuARmACYAMAA3AHNAPyEPFgQtNBYWLTUVJwAAChUaLQU5OA8hJA0ELUpZBAQkDTQWSVk0NCQNETFIWQ0HSFkRDRAeGEdZJClIWR4kFgA%2FMysrABg%2FMysrERIAORgvKxESADkYLysREgA5ORESARc5ETMRMxEzETMRMxI5OTEwEzQ2PwE1NCMiByc%2BATMyFzYzMhIdASESITI3FQ4BIyImJw4BIyImNxQzMjY9AQcOAQEiBgchNCZa8%2Fm8yY2mSljRY%2FFjeOLO9P04CgEjuKxWq26M2UNewZGlu%2FSmfJCHm5ADpHCDCQHZdQE9rK0IBkzCUqYvMZub%2FvPkf%2F6wUL8pIm1ufV60m5uRf2AGBmECEYuLgpQAAP%2F%2FAGb%2BFAO0BGYSJgBGAAAQBwB6AWQAAP%2F%2FAGb%2F7AQ5BiESJgBIAAARBgBDrwAACLMCJREmACs1%2F%2F8AZv%2FsBDkGIRImAEgAABEGAHZgAAAIswIlESYAKzX%2F%2FwBm%2F%2BwEOQYhEiYASAAAEQYAxQAAAAizAigRJgArNf%2F%2FAGb%2F7AQ5BewSJgBIAAARBgBqDgAACrQDAjERJgArNTUAAP%2F%2F%2F7sAAAGhBiESJgDCAAARBwBD%2FlEAAAAIswENESYAKzUAAP%2F%2FAJwAAAKCBiESJgDCAAARBwB2%2FzIAAAAIswENESYAKzUAAP%2F%2F%2F5wAAAKeBiESJgDCAAARBwDF%2FrkAAAAIswEQESYAKzUAAP%2F%2F%2F%2BcAAAJYBewSJgDCAAARBwBq%2FsIAAAAKtAIBGREmACs1NQACAGb%2F7AR9BiEAGwAnAFBAKwwcHAAiBgAGEBMYBSkoFhkRDhAFFw8PFAwDCQkfR1kJCQMXFAEDJUdZAxYAPysAGD%2FGEjkvKxESADkSORgvEhc5ERIBFzkRMxEzETMxMAEQACMiADU0ADMyFzcmJwcnNyYnNxYXNxcHFhIDNCYjIgYVFBYzMjYEff7t%2B%2Bv%2B4gEG3NZXCD6l%2BljMVlFUjHbnWLyYn%2FCXg5eGlImUhgI3%2Fun%2BzAEQ5ecBDW8EvZyWhXc7K5I%2FUYqBcYz%2BhP7pf5aknpmitgAAAP%2F%2FAKgAAAR1BfYSJgBRAAARBgDHIQAACLMBHBEmACs1%2F%2F8AZv%2FsBH0GIRImAFIAABEGAEO7AAAIswIfESYAKzX%2F%2FwBm%2F%2BwEfQYhEiYAUgAAEQYAdm8AAAizAh8RJgArNf%2F%2FAGb%2F7AR9BiESJgBSAAARBgDFDAAACLMCIhEmACs1%2F%2F8AZv%2FsBH0F9hImAFIAABEGAMf%2FAAAIswIeESYAKzX%2F%2FwBm%2F%2BwEfQXsEiYAUgAAEQYAahIAAAq0AwIrESYAKzU1AAAAAwBgAOwEMQS2AAMADwAbADRAGhYQCgQAAwQQBB0cBw0ZEw0TAQEAUlkvAQEBAC9dKxEAMzMYLzMvMxESARc5ETMRMzEwEzUhFQE0NjMyFhUUBiMiJhE0NjMyFhUUBiMiJmAD0f2YP0A9QEQ5PEM%2FQD1ARDk8QwJ5srL%2B%2FEBHSD8%2FSkcC%2FEBHSD8%2FSkcAAAAAAwBm%2F7gEfQSLABMAGwAiAE9ALhYXHh8EHBQcABQKAAUICg8SBiQjFx4WHwQhGQ8SCAUEAw0NGUZZDRADIUZZAxYAPysAGD8rERIAFzkREhc5ERIBFzkRMxEzERIXOTEwARAAIyInByc3JhEQADMyFzcXBxYBFBcBJiMiBgU0JwEWMyAEff7q%2BJBqTIdSjgEU%2B5ByRYhOh%2FzbJQGHPFeUhQIzIf59NlYBGAIr%2FvH%2B0DltWnWbAQkBDQEuP2RcbJj%2FAIdUAi8nxLd5Uv3XIQAA%2F%2F8Anv%2FsBG0GIRImAFgAABEGAEO3AAAIswEeESYAKzX%2F%2FwCe%2F%2BwEbQYhEiYAWAAAEQcAdgCLAAAACLMBHhEmACs1AAD%2F%2FwCe%2F%2BwEbQYhEiYAWAAAEQYAxSEAAAizASERJgArNf%2F%2FAJ7%2F7ARtBewSJgBYAAARBgBqJwAACrQCASoRJgArNTUAAP%2F%2FAAD%2BFARKBiESJgBcAAARBgB2JwAACLMBHhEmACs1AAIAqP4UBJMGFAAVACEAQUAiHwYMEhUaBA8PEBAGIyIMFQkDEQAQGwMWRlkDEAkdRlkJFgA%2FKwAYPysAGD8%2FERI5ORESATk5ETMRFzMRMzEwAT4BMzISERACIyInIx8BESMRMxEPAQUiBh0BFBYzMhE0JgGTPaNqzujpzdtvDggG6%2BsHAwEZjoGAkf57A8FWT%2F7S%2FvP%2B8P7RlUhc%2FjcIAP5SihsbpLIlyrUBgb67AAD%2F%2FwAA%2FhQESgXsEiYAXAAAEQYAasoAAAq0AgEqESYAKzU1AAAAAQCoAAABkwRSAAMAFkAJAAEBBQQCDwEVAD8%2FERIBOREzMTAhIxEzAZPr6wRSAAAAAgB5%2F%2BwHGwXNABQAHwBWQC8NAA8TEx0YBgAGER0EISAPEkxZDw8BCwsOTFkLAwkVTFkJBAETTFkBEwMbTFkDEgA%2FKwAYPysAGD8rABg%2FKxESADkYLysREgEXOREzETMRMxEzMTApAQYjIAAREAAhMhchFSERIRUhESEBIgIREBIzMjcRJgcb%2FMxmbf7A%2FqUBWAE%2Fc14DOv3AAhv95QJA%2B%2F7Q1tTQgVRQFAGJAWoBaAGGF8r%2Bcsj%2BNQQ1%2Fur%2B8%2F7z%2FugjBAAlAAADAGb%2F7AdMBGYAHQApADAAb0A9DQIkLRQUJC4THgcHExokBDIxDQIECi0USFkMLRwtAhADLS0ECg8qSFkPCgonRlkKEAAXR1kABAQhRlkEFgA%2FKxEAMysAGD8rEQAzKxESADkYL19eXSsREgA5ORESARc5ETMRMxEzETMSOTkxMAUgJwYhIgAREAAzMhYXNjMyAB0BIR4BMzI2NxUOAQEUFjMyNjU0JiMiBiUiBgchNCYFnv7ni4T%2B9Oz%2B6AES9XnMQoP43QEA%2FR4LlZpmqmBUr%2FtHg5KNg4SRj4EEGW6HCwHxfhTCwgE2AQkBEAErYmDC%2FvXof6SqJSu%2FKCMCP73Cv7zAv77Mi4uGkAAAAQDjBNkD5QYhAAwAKEASCQgCAAwEBQIFDAMODQIJgAUAAC8yGs0yERIBFzkRMxEzETMzMTABJicGByM1NjchFhcVA0Z7aWd6nr8%2FAQQ%2FwQTZSWtnTRnGaW7BGQACAWAE1wM7BpwACwAWACpAFgwAEgYGABgXD3AJAQ8JHwkvCQMJFAMALzPEXV0yERIBOTkRMxEzMTABFAYjIiY1NDYzMhYHNCYjIgYVFDMyNgM7g2xsgH9taIeFPC4vPGsuPAW8Zn99ZmV9fGYyOTkyajcAAAEA7ATXA%2F4F9gAVADJAGBITBwgTCBcWEAAFCwALAAt%2FE48TAhOACAAvGsxdOTkvLxEzETMREgE5OREzETMxMAEiLgIjIgcjPgEzMh4CMzI3Mw4BAwgqUU5KIlEcegyDZitSTkkiTxt9DIIE2SMrI3OLkiMrI3OGlwAAAAABAFIBxwOuAoUAAwARtQMABQQAAQAvMxESATk5MTATNSEVUgNcAce%2BvgAAAAEAUgHHB64ChQADABG1AwAFBAABAC8zERIBOTkxMBM1IRVSB1wBx76%2BAAAAAQAZA8EBcwW2AAcAF0AJAQcHBQkIAAQDAD%2FNERIBOTkRMzEwEyc2EjczAgclDBRmNqpAJQPBFlMBGnL%2FAPUAAAEAGQPBAXMFtgAGABdACQEGBgQIBwQGAwA%2FxhESATk5ETMxMAEXBgMjEjcBZA81e6pFHwW2FtH%2B8gEh1AAAAAABAD%2F%2B%2BAGcAO4ABgAeQA8ABQUDCAcDQAZQBtAGAwYAL13NERIBOTkRMzEwJQYDIxI3MwGcMICtRSLn17r%2B2wEO6AAAAAIAGQPBAxQFtgAGAA4AIkAQBw0ABQMFCw0EEA8GDgIKAwA%2FM80yERIBFzkRMxEzMTABNhMzAgcjJTYSNzMCByMBuDV9qkUf6f5SFGY2qkAl6QPXywEU%2FtjNFlMBGnL%2FAPUAAAACABkDwQMUBbYABgANACJAEAcMAAUDBQoMBA8OCgMMBQMAPzPGMhESARc5ETMRMzEwAQYDIxI3MwUGAyMSNzMBczV7qkUf5wGwNXusRSLnBaDR%2FvIBIdQW0f7yAQ%2FmAAACACv%2B%2BAMpAO4ABgANAClAFgcMAAUDBQoMBA8OCgMMQAZQBtAGAwYAL10zzTIREgEXOREzETMxMCUGAyMSNzMFBgMjEjczAYc3eaxCJOgBsDCArEIk6NfW%2FvcBBPIXuv7bAQTyAAAAAAEAgwHRAn8EBgALABO2BgAADQwJAwAvzRESATkRMzEwEzQ2MzIWFRQGIyImg4R6eYWGeHiGAuyKkJGJh5SRAAABAFIAaAJeA%2BEABgAYQAoDBgIEBgMIBwUBAC%2FEERIBFzkRMzEwEwEXCQEHAVIBZKj%2B5gEaqP6cAjEBsF7%2Bov6kYQGvAAEAUABoAl4D4QAGABhACgMAAAIEAwgHAQUAL8QREgEXOREzMTAJAScJATcBAl7%2BmqgBGv7mqAFmAhf%2BUWEBXAFeXv5QAAAAAAH%2BdwAAAo8FtgADABpACwMABQECAgQDAwISAD8%2FEQEzETMRMzIxMAkBIwECj%2FyowANaBbb6SgW2AAAAAAIAEAJKAtUFvAAKABEAPkAgCQEBCwcEEQYABAYDExIBBQUGCQ8RHxECEREHAyAOBx4APzM%2FEjkvXTMzMxEzERIBFzkRMxEzMzMRMzEwASMVIzUhNQEzETMhNTQ3Bg8BAtV9wP54AYy8ff7DBjQklAL6sLB%2FAkP9zbJhZGg22QAAAQA%2F%2F%2BwEhQXFACYAcUBCDAMICBYfAxsFChEYGx0kBygnBh0eHVBZAw8eHx4vHr8eBAkDHhcJGBcYUFkMAxcBFAMXFxMiIgBNWSIHEw5NWRMZAD8rABg%2FKxESADkYL19eXTMrEQAzGBDGX15dMisRADMREgEXOREXMxEzMzEwASIGByEVIQcVFyEVIRIhMjcVBiMiACcjNTMnNTcjNTM2ADMyFwcmAx%2BNsx4ByP4pAgIBmP55QAEsj5aDrvH%2B0y6YiAICiJYmATLyyJ5UmgT%2BqKqaLTcnmf7IPss9AQj6mSUlQZr7AR5Yu0wAAAAAAAEAACMAAAEF0xgAAAoK8gAFACT%2FcQAFADcAKQAFADkAKQAFADoAKQAFADwAFAAFAET%2FrgAFAEb%2FhQAFAEf%2FhQAFAEj%2FhQAFAEr%2FwwAFAFD%2FwwAFAFH%2FwwAFAFL%2FhQAFAFP%2FwwAFAFT%2FhQAFAFX%2FwwAFAFb%2FwwAFAFj%2FwwAFAIL%2FcQAFAIP%2FcQAFAIT%2FcQAFAIX%2FcQAFAIb%2FcQAFAIf%2FcQAFAJ8AFAAFAKL%2FhQAFAKP%2FrgAFAKT%2FrgAFAKX%2FrgAFAKb%2FrgAFAKf%2FrgAFAKj%2FrgAFAKn%2FhQAFAKr%2FhQAFAKv%2FhQAFAKz%2FhQAFAK3%2FhQAFALT%2FhQAFALX%2FhQAFALb%2FhQAFALf%2FhQAFALj%2FhQAFALr%2FhQAFALv%2FwwAFALz%2FwwAFAL3%2FwwAFAL7%2FwwAFAMT%2FhQAKACT%2FcQAKADcAKQAKADkAKQAKADoAKQAKADwAFAAKAET%2FrgAKAEb%2FhQAKAEf%2FhQAKAEj%2FhQAKAEr%2FwwAKAFD%2FwwAKAFH%2FwwAKAFL%2FhQAKAFP%2FwwAKAFT%2FhQAKAFX%2FwwAKAFb%2FwwAKAFj%2FwwAKAIL%2FcQAKAIP%2FcQAKAIT%2FcQAKAIX%2FcQAKAIb%2FcQAKAIf%2FcQAKAJ8AFAAKAKL%2FhQAKAKP%2FrgAKAKT%2FrgAKAKX%2FrgAKAKb%2FrgAKAKf%2FrgAKAKj%2FrgAKAKn%2FhQAKAKr%2FhQAKAKv%2FhQAKAKz%2FhQAKAK3%2FhQAKALT%2FhQAKALX%2FhQAKALb%2FhQAKALf%2FhQAKALj%2FhQAKALr%2FhQAKALv%2FwwAKALz%2FwwAKAL3%2FwwAKAL7%2FwwAKAMT%2FhQALAC0AuAAPACb%2FmgAPACr%2FmgAPADL%2FmgAPADT%2FmgAPADf%2FcQAPADj%2F1wAPADn%2FhQAPADr%2FhQAPADz%2FhQAPAIn%2FmgAPAJT%2FmgAPAJX%2FmgAPAJb%2FmgAPAJf%2FmgAPAJj%2FmgAPAJr%2FmgAPAJv%2F1wAPAJz%2F1wAPAJ3%2F1wAPAJ7%2F1wAPAJ%2F%2FhQAPAMP%2FmgAQADf%2FrgARACb%2FmgARACr%2FmgARADL%2FmgARADT%2FmgARADf%2FcQARADj%2F1wARADn%2FhQARADr%2FhQARADz%2FhQARAIn%2FmgARAJT%2FmgARAJX%2FmgARAJb%2FmgARAJf%2FmgARAJj%2FmgARAJr%2FmgARAJv%2F1wARAJz%2F1wARAJ3%2F1wARAJ7%2F1wARAJ%2F%2FhQARAMP%2FmgAkAAX%2FcQAkAAr%2FcQAkACb%2F1wAkACr%2F1wAkAC0BCgAkADL%2F1wAkADT%2F1wAkADf%2FcQAkADn%2FrgAkADr%2FrgAkADz%2FhQAkAIn%2F1wAkAJT%2F1wAkAJX%2F1wAkAJb%2F1wAkAJf%2F1wAkAJj%2F1wAkAJr%2F1wAkAJ%2F%2FhQAkAMP%2F1wAkAMv%2FcQAkAM7%2FcQAlAA%2F%2FrgAlABH%2FrgAlACT%2F1wAlADf%2FwwAlADn%2F7AAlADr%2F7AAlADv%2F1wAlADz%2F7AAlAD3%2F7AAlAIL%2F1wAlAIP%2F1wAlAIT%2F1wAlAIX%2F1wAlAIb%2F1wAlAIf%2F1wAlAJ%2F%2F7AAlAMz%2FrgAlAM%2F%2FrgAmACb%2F1wAmACr%2F1wAmADL%2F1wAmADT%2F1wAmAIn%2F1wAmAJT%2F1wAmAJX%2F1wAmAJb%2F1wAmAJf%2F1wAmAJj%2F1wAmAJr%2F1wAmAMP%2F1wAnAA%2F%2FrgAnABH%2FrgAnACT%2F1wAnADf%2FwwAnADn%2F7AAnADr%2F7AAnADv%2F1wAnADz%2F7AAnAD3%2F7AAnAIL%2F1wAnAIP%2F1wAnAIT%2F1wAnAIX%2F1wAnAIb%2F1wAnAIf%2F1wAnAJ%2F%2F7AAnAMz%2FrgAnAM%2F%2FrgAoAC0AewApAA%2F%2FhQApABH%2FhQApACIAKQApACT%2F1wApAIL%2F1wApAIP%2F1wApAIT%2F1wApAIX%2F1wApAIb%2F1wApAIf%2F1wApAMz%2FhQApAM%2F%2FhQAuACb%2F1wAuACr%2F1wAuADL%2F1wAuADT%2F1wAuAIn%2F1wAuAJT%2F1wAuAJX%2F1wAuAJb%2F1wAuAJf%2F1wAuAJj%2F1wAuAJr%2F1wAuAMP%2F1wAvAAX%2FXAAvAAr%2FXAAvACb%2F1wAvACr%2F1wAvADL%2F1wAvADT%2F1wAvADf%2F1wAvADj%2F7AAvADn%2F1wAvADr%2F1wAvADz%2FwwAvAIn%2F1wAvAJT%2F1wAvAJX%2F1wAvAJb%2F1wAvAJf%2F1wAvAJj%2F1wAvAJr%2F1wAvAJv%2F7AAvAJz%2F7AAvAJ3%2F7AAvAJ7%2F7AAvAJ%2F%2FwwAvAMP%2F1wAvAMv%2FXAAvAM7%2FXAAyAA%2F%2FrgAyABH%2FrgAyACT%2F1wAyADf%2FwwAyADn%2F7AAyADr%2F7AAyADv%2F1wAyADz%2F7AAyAD3%2F7AAyAIL%2F1wAyAIP%2F1wAyAIT%2F1wAyAIX%2F1wAyAIb%2F1wAyAIf%2F1wAyAJ%2F%2F7AAyAMz%2FrgAyAM%2F%2FrgAzAA%2F%2B9gAzABH%2B9gAzACT%2FmgAzADv%2F1wAzAD3%2F7AAzAIL%2FmgAzAIP%2FmgAzAIT%2FmgAzAIX%2FmgAzAIb%2FmgAzAIf%2FmgAzAMz%2B9gAzAM%2F%2B9gA0AA%2F%2FrgA0ABH%2FrgA0ACT%2F1wA0ADf%2FwwA0ADn%2F7AA0ADr%2F7AA0ADv%2F1wA0ADz%2F7AA0AD3%2F7AA0AIL%2F1wA0AIP%2F1wA0AIT%2F1wA0AIX%2F1wA0AIb%2F1wA0AIf%2F1wA0AJ%2F%2F7AA0AMz%2FrgA0AM%2F%2FrgA3AA%2F%2FhQA3ABD%2FrgA3ABH%2FhQA3ACIAKQA3ACT%2FcQA3ACb%2F1wA3ACr%2F1wA3ADL%2F1wA3ADT%2F1wA3ADcAKQA3AET%2FXAA3AEb%2FcQA3AEf%2FcQA3AEj%2FcQA3AEr%2FcQA3AFD%2FmgA3AFH%2FmgA3AFL%2FcQA3AFP%2FmgA3AFT%2FcQA3AFX%2FmgA3AFb%2FhQA3AFj%2FmgA3AFn%2F1wA3AFr%2F1wA3AFv%2F1wA3AFz%2F1wA3AF3%2FrgA3AIL%2FcQA3AIP%2FcQA3AIT%2FcQA3AIX%2FcQA3AIb%2FcQA3AIf%2FcQA3AIn%2F1wA3AJT%2F1wA3AJX%2F1wA3AJb%2F1wA3AJf%2F1wA3AJj%2F1wA3AJr%2F1wA3AKL%2FcQA3AKP%2FXAA3AKT%2FXAA3AKX%2FXAA3AKb%2FXAA3AKf%2FXAA3AKj%2FXAA3AKn%2FcQA3AKr%2FcQA3AKv%2FcQA3AKz%2FcQA3AK3%2FcQA3ALT%2FcQA3ALX%2FcQA3ALb%2FcQA3ALf%2FcQA3ALj%2FcQA3ALr%2FcQA3ALv%2FmgA3ALz%2FmgA3AL3%2FmgA3AL7%2FmgA3AL%2F%2F1wA3AMP%2F1wA3AMT%2FcQA3AMj%2FrgA3AMn%2FrgA3AMz%2FhQA3AM%2F%2FhQA4AA%2F%2F1wA4ABH%2F1wA4ACT%2F7AA4AIL%2F7AA4AIP%2F7AA4AIT%2F7AA4AIX%2F7AA4AIb%2F7AA4AIf%2F7AA4AMz%2F1wA4AM%2F%2F1wA5AA%2F%2FmgA5ABH%2FmgA5ACIAKQA5ACT%2FrgA5ACb%2F7AA5ACr%2F7AA5ADL%2F7AA5ADT%2F7AA5AET%2F1wA5AEb%2F1wA5AEf%2F1wA5AEj%2F1wA5AEr%2F7AA5AFD%2F7AA5AFH%2F7AA5AFL%2F1wA5AFP%2F7AA5AFT%2F1wA5AFX%2F7AA5AFb%2F7AA5AFj%2F7AA5AIL%2FrgA5AIP%2FrgA5AIT%2FrgA5AIX%2FrgA5AIb%2FrgA5AIf%2FrgA5AIn%2F7AA5AJT%2F7AA5AJX%2F7AA5AJb%2F7AA5AJf%2F7AA5AJj%2F7AA5AJr%2F7AA5AKL%2F1wA5AKP%2F1wA5AKT%2F1wA5AKX%2F1wA5AKb%2F1wA5AKf%2F1wA5AKj%2F1wA5AKn%2F1wA5AKr%2F1wA5AKv%2F1wA5AKz%2F1wA5AK3%2F1wA5ALT%2F1wA5ALX%2F1wA5ALb%2F1wA5ALf%2F1wA5ALj%2F1wA5ALr%2F1wA5ALv%2F7AA5ALz%2F7AA5AL3%2F7AA5AL7%2F7AA5AMP%2F7AA5AMT%2F1wA5AMz%2FmgA5AM%2F%2FmgA6AA%2F%2FmgA6ABH%2FmgA6ACIAKQA6ACT%2FrgA6ACb%2F7AA6ACr%2F7AA6ADL%2F7AA6ADT%2F7AA6AET%2F1wA6AEb%2F1wA6AEf%2F1wA6AEj%2F1wA6AEr%2F7AA6AFD%2F7AA6AFH%2F7AA6AFL%2F1wA6AFP%2F7AA6AFT%2F1wA6AFX%2F7AA6AFb%2F7AA6AFj%2F7AA6AIL%2FrgA6AIP%2FrgA6AIT%2FrgA6AIX%2FrgA6AIb%2FrgA6AIf%2FrgA6AIn%2F7AA6AJT%2F7AA6AJX%2F7AA6AJb%2F7AA6AJf%2F7AA6AJj%2F7AA6AJr%2F7AA6AKL%2F1wA6AKP%2F1wA6AKT%2F1wA6AKX%2F1wA6AKb%2F1wA6AKf%2F1wA6AKj%2F1wA6AKn%2F1wA6AKr%2F1wA6AKv%2F1wA6AKz%2F1wA6AK3%2F1wA6ALT%2F1wA6ALX%2F1wA6ALb%2F1wA6ALf%2F1wA6ALj%2F1wA6ALr%2F1wA6ALv%2F7AA6ALz%2F7AA6AL3%2F7AA6AL7%2F7AA6AMP%2F7AA6AMT%2F1wA6AMz%2FmgA6AM%2F%2FmgA7ACb%2F1wA7ACr%2F1wA7ADL%2F1wA7ADT%2F1wA7AIn%2F1wA7AJT%2F1wA7AJX%2F1wA7AJb%2F1wA7AJf%2F1wA7AJj%2F1wA7AJr%2F1wA7AMP%2F1wA8AA%2F%2FhQA8ABH%2FhQA8ACIAKQA8ACT%2FhQA8ACb%2F1wA8ACr%2F1wA8ADL%2F1wA8ADT%2F1wA8AET%2FmgA8AEb%2FmgA8AEf%2FmgA8AEj%2FmgA8AEr%2F1wA8AFD%2FwwA8AFH%2FwwA8AFL%2FmgA8AFP%2FwwA8AFT%2FmgA8AFX%2FwwA8AFb%2FrgA8AFj%2FwwA8AF3%2F1wA8AIL%2FhQA8AIP%2FhQA8AIT%2FhQA8AIX%2FhQA8AIb%2FhQA8AIf%2FhQA8AIn%2F1wA8AJT%2F1wA8AJX%2F1wA8AJb%2F1wA8AJf%2F1wA8AJj%2F1wA8AJr%2F1wA8AKL%2FmgA8AKP%2FmgA8AKT%2FmgA8AKX%2FmgA8AKb%2FmgA8AKf%2FmgA8AKj%2FmgA8AKn%2FmgA8AKr%2FmgA8AKv%2FmgA8AKz%2FmgA8AK3%2FmgA8ALT%2FmgA8ALX%2FmgA8ALb%2FmgA8ALf%2FmgA8ALj%2FmgA8ALr%2FmgA8ALv%2FwwA8ALz%2FwwA8AL3%2FwwA8AL7%2FwwA8AMP%2F1wA8AMT%2FmgA8AMz%2FhQA8AM%2F%2FhQA9ACb%2F7AA9ACr%2F7AA9ADL%2F7AA9ADT%2F7AA9AIn%2F7AA9AJT%2F7AA9AJX%2F7AA9AJb%2F7AA9AJf%2F7AA9AJj%2F7AA9AJr%2F7AA9AMP%2F7AA%2BAC0AuABEAAX%2F7ABEAAr%2F7ABEAMv%2F7ABEAM7%2F7ABFAAX%2F7ABFAAr%2F7ABFAFn%2F1wBFAFr%2F1wBFAFv%2F1wBFAFz%2F1wBFAF3%2F7ABFAL%2F%2F1wBFAMv%2F7ABFAM7%2F7ABGAAUAKQBGAAoAKQBGAMsAKQBGAM4AKQBIAAX%2F7ABIAAr%2F7ABIAFn%2F1wBIAFr%2F1wBIAFv%2F1wBIAFz%2F1wBIAF3%2F7ABIAL%2F%2F1wBIAMv%2F7ABIAM7%2F7ABJAAUAewBJAAoAewBJAMsAewBJAM4AewBLAAX%2F7ABLAAr%2F7ABLAMv%2F7ABLAM7%2F7ABOAEb%2F1wBOAEf%2F1wBOAEj%2F1wBOAFL%2F1wBOAFT%2F1wBOAKL%2F1wBOAKn%2F1wBOAKr%2F1wBOAKv%2F1wBOAKz%2F1wBOAK3%2F1wBOALT%2F1wBOALX%2F1wBOALb%2F1wBOALf%2F1wBOALj%2F1wBOALr%2F1wBOAMT%2F1wBQAAX%2F7ABQAAr%2F7ABQAMv%2F7ABQAM7%2F7ABRAAX%2F7ABRAAr%2F7ABRAMv%2F7ABRAM7%2F7ABSAAX%2F7ABSAAr%2F7ABSAFn%2F1wBSAFr%2F1wBSAFv%2F1wBSAFz%2F1wBSAF3%2F7ABSAL%2F%2F1wBSAMv%2F7ABSAM7%2F7ABTAAX%2F7ABTAAr%2F7ABTAFn%2F1wBTAFr%2F1wBTAFv%2F1wBTAFz%2F1wBTAF3%2F7ABTAL%2F%2F1wBTAMv%2F7ABTAM7%2F7ABVAAUAUgBVAAoAUgBVAET%2F1wBVAEb%2F1wBVAEf%2F1wBVAEj%2F1wBVAEr%2F7ABVAFL%2F1wBVAFT%2F1wBVAKL%2F1wBVAKP%2F1wBVAKT%2F1wBVAKX%2F1wBVAKb%2F1wBVAKf%2F1wBVAKj%2F1wBVAKn%2F1wBVAKr%2F1wBVAKv%2F1wBVAKz%2F1wBVAK3%2F1wBVALT%2F1wBVALX%2F1wBVALb%2F1wBVALf%2F1wBVALj%2F1wBVALr%2F1wBVAMT%2F1wBVAMsAUgBVAM4AUgBXAAUAKQBXAAoAKQBXAMsAKQBXAM4AKQBZAAUAUgBZAAoAUgBZAA%2F%2FrgBZABH%2FrgBZACIAKQBZAMsAUgBZAMz%2FrgBZAM4AUgBZAM%2F%2FrgBaAAUAUgBaAAoAUgBaAA%2F%2FrgBaABH%2FrgBaACIAKQBaAMsAUgBaAMz%2FrgBaAM4AUgBaAM%2F%2FrgBbAEb%2F1wBbAEf%2F1wBbAEj%2F1wBbAFL%2F1wBbAFT%2F1wBbAKL%2F1wBbAKn%2F1wBbAKr%2F1wBbAKv%2F1wBbAKz%2F1wBbAK3%2F1wBbALT%2F1wBbALX%2F1wBbALb%2F1wBbALf%2F1wBbALj%2F1wBbALr%2F1wBbAMT%2F1wBcAAUAUgBcAAoAUgBcAA%2F%2FrgBcABH%2FrgBcACIAKQBcAMsAUgBcAMz%2FrgBcAM4AUgBcAM%2F%2FrgBeAC0AuACCAAX%2FcQCCAAr%2FcQCCACb%2F1wCCACr%2F1wCCAC0BCgCCADL%2F1wCCADT%2F1wCCADf%2FcQCCADn%2FrgCCADr%2FrgCCADz%2FhQCCAIn%2F1wCCAJT%2F1wCCAJX%2F1wCCAJb%2F1wCCAJf%2F1wCCAJj%2F1wCCAJr%2F1wCCAJ%2F%2FhQCCAMP%2F1wCCAMv%2FcQCCAM7%2FcQCDAAX%2FcQCDAAr%2FcQCDACb%2F1wCDACr%2F1wCDAC0BCgCDADL%2F1wCDADT%2F1wCDADf%2FcQCDADn%2FrgCDADr%2FrgCDADz%2FhQCDAIn%2F1wCDAJT%2F1wCDAJX%2F1wCDAJb%2F1wCDAJf%2F1wCDAJj%2F1wCDAJr%2F1wCDAJ%2F%2FhQCDAMP%2F1wCDAMv%2FcQCDAM7%2FcQCEAAX%2FcQCEAAr%2FcQCEACb%2F1wCEACr%2F1wCEAC0BCgCEADL%2F1wCEADT%2F1wCEADf%2FcQCEADn%2FrgCEADr%2FrgCEADz%2FhQCEAIn%2F1wCEAJT%2F1wCEAJX%2F1wCEAJb%2F1wCEAJf%2F1wCEAJj%2F1wCEAJr%2F1wCEAJ%2F%2FhQCEAMP%2F1wCEAMv%2FcQCEAM7%2FcQCFAAX%2FcQCFAAr%2FcQCFACb%2F1wCFACr%2F1wCFAC0BCgCFADL%2F1wCFADT%2F1wCFADf%2FcQCFADn%2FrgCFADr%2FrgCFADz%2FhQCFAIn%2F1wCFAJT%2F1wCFAJX%2F1wCFAJb%2F1wCFAJf%2F1wCFAJj%2F1wCFAJr%2F1wCFAJ%2F%2FhQCFAMP%2F1wCFAMv%2FcQCFAM7%2FcQCGAAX%2FcQCGAAr%2FcQCGACb%2F1wCGACr%2F1wCGAC0BCgCGADL%2F1wCGADT%2F1wCGADf%2FcQCGADn%2FrgCGADr%2FrgCGADz%2FhQCGAIn%2F1wCGAJT%2F1wCGAJX%2F1wCGAJb%2F1wCGAJf%2F1wCGAJj%2F1wCGAJr%2F1wCGAJ%2F%2FhQCGAMP%2F1wCGAMv%2FcQCGAM7%2FcQCHAAX%2FcQCHAAr%2FcQCHACb%2F1wCHACr%2F1wCHAC0BCgCHADL%2F1wCHADT%2F1wCHADf%2FcQCHADn%2FrgCHADr%2FrgCHADz%2FhQCHAIn%2F1wCHAJT%2F1wCHAJX%2F1wCHAJb%2F1wCHAJf%2F1wCHAJj%2F1wCHAJr%2F1wCHAJ%2F%2FhQCHAMP%2F1wCHAMv%2FcQCHAM7%2FcQCIAC0AewCJACb%2F1wCJACr%2F1wCJADL%2F1wCJADT%2F1wCJAIn%2F1wCJAJT%2F1wCJAJX%2F1wCJAJb%2F1wCJAJf%2F1wCJAJj%2F1wCJAJr%2F1wCJAMP%2F1wCKAC0AewCLAC0AewCMAC0AewCNAC0AewCSAA%2F%2FrgCSABH%2FrgCSACT%2F1wCSADf%2FwwCSADn%2F7ACSADr%2F7ACSADv%2F1wCSADz%2F7ACSAD3%2F7ACSAIL%2F1wCSAIP%2F1wCSAIT%2F1wCSAIX%2F1wCSAIb%2F1wCSAIf%2F1wCSAJ%2F%2F7ACSAMz%2FrgCSAM%2F%2FrgCUAA%2F%2FrgCUABH%2FrgCUACT%2F1wCUADf%2FwwCUADn%2F7ACUADr%2F7ACUADv%2F1wCUADz%2F7ACUAD3%2F7ACUAIL%2F1wCUAIP%2F1wCUAIT%2F1wCUAIX%2F1wCUAIb%2F1wCUAIf%2F1wCUAJ%2F%2F7ACUAMz%2FrgCUAM%2F%2FrgCVAA%2F%2FrgCVABH%2FrgCVACT%2F1wCVADf%2FwwCVADn%2F7ACVADr%2F7ACVADv%2F1wCVADz%2F7ACVAD3%2F7ACVAIL%2F1wCVAIP%2F1wCVAIT%2F1wCVAIX%2F1wCVAIb%2F1wCVAIf%2F1wCVAJ%2F%2F7ACVAMz%2FrgCVAM%2F%2FrgCWAA%2F%2FrgCWABH%2FrgCWACT%2F1wCWADf%2FwwCWADn%2F7ACWADr%2F7ACWADv%2F1wCWADz%2F7ACWAD3%2F7ACWAIL%2F1wCWAIP%2F1wCWAIT%2F1wCWAIX%2F1wCWAIb%2F1wCWAIf%2F1wCWAJ%2F%2F7ACWAMz%2FrgCWAM%2F%2FrgCXAA%2F%2FrgCXABH%2FrgCXACT%2F1wCXADf%2FwwCXADn%2F7ACXADr%2F7ACXADv%2F1wCXADz%2F7ACXAD3%2F7ACXAIL%2F1wCXAIP%2F1wCXAIT%2F1wCXAIX%2F1wCXAIb%2F1wCXAIf%2F1wCXAJ%2F%2F7ACXAMz%2FrgCXAM%2F%2FrgCYAA%2F%2FrgCYABH%2FrgCYACT%2F1wCYADf%2FwwCYADn%2F7ACYADr%2F7ACYADv%2F1wCYADz%2F7ACYAD3%2F7ACYAIL%2F1wCYAIP%2F1wCYAIT%2F1wCYAIX%2F1wCYAIb%2F1wCYAIf%2F1wCYAJ%2F%2F7ACYAMz%2FrgCYAM%2F%2FrgCaAA%2F%2FrgCaABH%2FrgCaACT%2F1wCaADf%2FwwCaADn%2F7ACaADr%2F7ACaADv%2F1wCaADz%2F7ACaAD3%2F7ACaAIL%2F1wCaAIP%2F1wCaAIT%2F1wCaAIX%2F1wCaAIb%2F1wCaAIf%2F1wCaAJ%2F%2F7ACaAMz%2FrgCaAM%2F%2FrgCbAA%2F%2F1wCbABH%2F1wCbACT%2F7ACbAIL%2F7ACbAIP%2F7ACbAIT%2F7ACbAIX%2F7ACbAIb%2F7ACbAIf%2F7ACbAMz%2F1wCbAM%2F%2F1wCcAA%2F%2F1wCcABH%2F1wCcACT%2F7ACcAIL%2F7ACcAIP%2F7ACcAIT%2F7ACcAIX%2F7ACcAIb%2F7ACcAIf%2F7ACcAMz%2F1wCcAM%2F%2F1wCdAA%2F%2F1wCdABH%2F1wCdACT%2F7ACdAIL%2F7ACdAIP%2F7ACdAIT%2F7ACdAIX%2F7ACdAIb%2F7ACdAIf%2F7ACdAMz%2F1wCdAM%2F%2F1wCeAA%2F%2F1wCeABH%2F1wCeACT%2F7ACeAIL%2F7ACeAIP%2F7ACeAIT%2F7ACeAIX%2F7ACeAIb%2F7ACeAIf%2F7ACeAMz%2F1wCeAM%2F%2F1wCfAA%2F%2FhQCfABH%2FhQCfACIAKQCfACT%2FhQCfACb%2F1wCfACr%2F1wCfADL%2F1wCfADT%2F1wCfAET%2FmgCfAEb%2FmgCfAEf%2FmgCfAEj%2FmgCfAEr%2F1wCfAFD%2FwwCfAFH%2FwwCfAFL%2FmgCfAFP%2FwwCfAFT%2FmgCfAFX%2FwwCfAFb%2FrgCfAFj%2FwwCfAF3%2F1wCfAIL%2FhQCfAIP%2FhQCfAIT%2FhQCfAIX%2FhQCfAIb%2FhQCfAIf%2FhQCfAIn%2F1wCfAJT%2F1wCfAJX%2F1wCfAJb%2F1wCfAJf%2F1wCfAJj%2F1wCfAJr%2F1wCfAKL%2FmgCfAKP%2FmgCfAKT%2FmgCfAKX%2FmgCfAKb%2FmgCfAKf%2FmgCfAKj%2FmgCfAKn%2FmgCfAKr%2FmgCfAKv%2FmgCfAKz%2FmgCfAK3%2FmgCfALT%2FmgCfALX%2FmgCfALb%2FmgCfALf%2FmgCfALj%2FmgCfALr%2FmgCfALv%2FwwCfALz%2FwwCfAL3%2FwwCfAL7%2FwwCfAMP%2F1wCfAMT%2FmgCfAMz%2FhQCfAM%2F%2FhQCgAA%2F%2B9gCgABH%2B9gCgACT%2FmgCgADv%2F1wCgAD3%2F7ACgAIL%2FmgCgAIP%2FmgCgAIT%2FmgCgAIX%2FmgCgAIb%2FmgCgAIf%2FmgCgAMz%2B9gCgAM%2F%2B9gCiAAX%2F7ACiAAr%2F7ACiAMv%2F7ACiAM7%2F7ACjAAX%2F7ACjAAr%2F7ACjAMv%2F7ACjAM7%2F7ACkAAX%2F7ACkAAr%2F7ACkAMv%2F7ACkAM7%2F7AClAAX%2F7AClAAr%2F7AClAMv%2F7AClAM7%2F7ACmAAX%2F7ACmAAr%2F7ACmAMv%2F7ACmAM7%2F7ACnAAX%2F7ACnAAr%2F7ACnAMv%2F7ACnAM7%2F7ACqAAX%2F7ACqAAr%2F7ACqAFn%2F1wCqAFr%2F1wCqAFv%2F1wCqAFz%2F1wCqAF3%2F7ACqAL%2F%2F1wCqAMv%2F7ACqAM7%2F7ACrAAX%2F7ACrAAr%2F7ACrAFn%2F1wCrAFr%2F1wCrAFv%2F1wCrAFz%2F1wCrAF3%2F7ACrAL%2F%2F1wCrAMv%2F7ACrAM7%2F7ACsAAX%2F7ACsAAr%2F7ACsAFn%2F1wCsAFr%2F1wCsAFv%2F1wCsAFz%2F1wCsAF3%2F7ACsAL%2F%2F1wCsAMv%2F7ACsAM7%2F7ACtAAX%2F7ACtAAr%2F7ACtAFn%2F1wCtAFr%2F1wCtAFv%2F1wCtAFz%2F1wCtAF3%2F7ACtAL%2F%2F1wCtAMv%2F7ACtAM7%2F7ACyAAX%2F7ACyAAr%2F7ACyAFn%2F1wCyAFr%2F1wCyAFv%2F1wCyAFz%2F1wCyAF3%2F7ACyAL%2F%2F1wCyAMv%2F7ACyAM7%2F7AC0AAX%2F7AC0AAr%2F7AC0AFn%2F1wC0AFr%2F1wC0AFv%2F1wC0AFz%2F1wC0AF3%2F7AC0AL%2F%2F1wC0AMv%2F7AC0AM7%2F7AC1AAX%2F7AC1AAr%2F7AC1AFn%2F1wC1AFr%2F1wC1AFv%2F1wC1AFz%2F1wC1AF3%2F7AC1AL%2F%2F1wC1AMv%2F7AC1AM7%2F7AC2AAX%2F7AC2AAr%2F7AC2AFn%2F1wC2AFr%2F1wC2AFv%2F1wC2AFz%2F1wC2AF3%2F7AC2AL%2F%2F1wC2AMv%2F7AC2AM7%2F7AC4AAX%2F1wC4AAr%2F1wC4AMv%2F1wC4AM7%2F1wC6AAX%2F7AC6AAr%2F7AC6AFn%2F1wC6AFr%2F1wC6AFv%2F1wC6AFz%2F1wC6AF3%2F7AC6AL%2F%2F1wC6AMv%2F7AC6AM7%2F7AC%2FAAUAUgC%2FAAoAUgC%2FAA%2F%2FrgC%2FABH%2FrgC%2FACIAKQC%2FAMsAUgC%2FAMz%2FrgC%2FAM4AUgC%2FAM%2F%2FrgDAAAX%2F7ADAAAr%2F7ADAAFn%2F1wDAAFr%2F1wDAAFv%2F1wDAAFz%2F1wDAAF3%2F7ADAAL%2F%2F1wDAAMv%2F7ADAAM7%2F7ADBAAUAUgDBAAoAUgDBAA%2F%2FrgDBABH%2FrgDBACIAKQDBAMsAUgDBAMz%2FrgDBAM4AUgDBAM%2F%2FrgDDAC0AewDIADf%2FrgDJADf%2FrgDKACT%2FcQDKADcAKQDKADkAKQDKADoAKQDKADwAFADKAET%2FrgDKAEb%2FhQDKAEf%2FhQDKAEj%2FhQDKAEr%2FwwDKAFD%2FwwDKAFH%2FwwDKAFL%2FhQDKAFP%2FwwDKAFT%2FhQDKAFX%2FwwDKAFb%2FwwDKAFj%2FwwDKAIL%2FcQDKAIP%2FcQDKAIT%2FcQDKAIX%2FcQDKAIb%2FcQDKAIf%2FcQDKAJ8AFADKAKL%2FhQDKAKP%2FrgDKAKT%2FrgDKAKX%2FrgDKAKb%2FrgDKAKf%2FrgDKAKj%2FrgDKAKn%2FhQDKAKr%2FhQDKAKv%2FhQDKAKz%2FhQDKAK3%2FhQDKALT%2FhQDKALX%2FhQDKALb%2FhQDKALf%2FhQDKALj%2FhQDKALr%2FhQDKALv%2FwwDKALz%2FwwDKAL3%2FwwDKAL7%2FwwDKAMT%2FhQDLACT%2FcQDLADcAKQDLADkAKQDLADoAKQDLADwAFADLAET%2FrgDLAEb%2FhQDLAEf%2FhQDLAEj%2FhQDLAEr%2FwwDLAFD%2FwwDLAFH%2FwwDLAFL%2FhQDLAFP%2FwwDLAFT%2FhQDLAFX%2FwwDLAFb%2FwwDLAFj%2FwwDLAIL%2FcQDLAIP%2FcQDLAIT%2FcQDLAIX%2FcQDLAIb%2FcQDLAIf%2FcQDLAJ8AFADLAKL%2FhQDLAKP%2FrgDLAKT%2FrgDLAKX%2FrgDLAKb%2FrgDLAKf%2FrgDLAKj%2FrgDLAKn%2FhQDLAKr%2FhQDLAKv%2FhQDLAKz%2FhQDLAK3%2FhQDLALT%2FhQDLALX%2FhQDLALb%2FhQDLALf%2FhQDLALj%2FhQDLALr%2FhQDLALv%2FwwDLALz%2FwwDLAL3%2FwwDLAL7%2FwwDLAMT%2FhQDMACb%2FmgDMACr%2FmgDMADL%2FmgDMADT%2FmgDMADf%2FcQDMADj%2F1wDMADn%2FhQDMADr%2FhQDMADz%2FhQDMAIn%2FmgDMAJT%2FmgDMAJX%2FmgDMAJb%2FmgDMAJf%2FmgDMAJj%2FmgDMAJr%2FmgDMAJv%2F1wDMAJz%2F1wDMAJ3%2F1wDMAJ7%2F1wDMAJ%2F%2FhQDMAMP%2FmgDNACT%2FcQDNADcAKQDNADkAKQDNADoAKQDNADwAFADNAET%2FrgDNAEb%2FhQDNAEf%2FhQDNAEj%2FhQDNAEr%2FwwDNAFD%2FwwDNAFH%2FwwDNAFL%2FhQDNAFP%2FwwDNAFT%2FhQDNAFX%2FwwDNAFb%2FwwDNAFj%2FwwDNAIL%2FcQDNAIP%2FcQDNAIT%2FcQDNAIX%2FcQDNAIb%2FcQDNAIf%2FcQDNAJ8AFADNAKL%2FhQDNAKP%2FrgDNAKT%2FrgDNAKX%2FrgDNAKb%2FrgDNAKf%2FrgDNAKj%2FrgDNAKn%2FhQDNAKr%2FhQDNAKv%2FhQDNAKz%2FhQDNAK3%2FhQDNALT%2FhQDNALX%2FhQDNALb%2FhQDNALf%2FhQDNALj%2FhQDNALr%2FhQDNALv%2FwwDNALz%2FwwDNAL3%2FwwDNAL7%2FwwDNAMT%2FhQDPACb%2FmgDPACr%2FmgDPADL%2FmgDPADT%2FmgDPADf%2FcQDPADj%2F1wDPADn%2FhQDPADr%2FhQDPADz%2FhQDPAIn%2FmgDPAJT%2FmgDPAJX%2FmgDPAJb%2FmgDPAJf%2FmgDPAJj%2FmgDPAJr%2FmgDPAJv%2F1wDPAJz%2F1wDPAJ3%2F1wDPAJ7%2F1wDPAJ%2F%2FhQDPAMP%2FmgAAAB4BbgABAAAAAAAAADQAagABAAAAAAABABIAxQABAAAAAAACAAcA6AABAAAAAAADACcBQAABAAAAAAAEABIBjgABAAAAAAAFAAwBuwABAAAAAAAGABEB7AABAAAAAAAHAFICpAABAAAAAAAIABQDIQABAAAAAAALABwDcAABAAAAAAAMAC4D6wABAAAAAAANAC4EeAABAAAAAAAOACoE%2FQABAAAAAAAQAAkFPAABAAAAAAARAAgFWAADAAEECQAAAGgAAAADAAEECQABACQAnwADAAEECQACAA4A2AADAAEECQADAE4A8AADAAEECQAEACQBaAADAAEECQAFABgBoQADAAEECQAGACIByAADAAEECQAHAKQB%2FgADAAEECQAIACgC9wADAAEECQALADgDNgADAAEECQAMAFwDjQADAAEECQANAFwEGgADAAEECQAOAFQEpwADAAEECQAQABIFKAADAAEECQARABAFRgBEAGkAZwBpAHQAaQB6AGUAZAAgAGQAYQB0AGEAIABjAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQAxACwAIABHAG8AbwBnAGwAZQAgAEMAbwByAHAAbwByAGEAdABpAG8AbgAuAABEaWdpdGl6ZWQgZGF0YSBjb3B5cmlnaHQgqSAyMDExLCBHb29nbGUgQ29ycG9yYXRpb24uAABPAHAAZQBuACAAUwBhAG4AcwAgAFMAZQBtAGkAYgBvAGwAZAAAT3BlbiBTYW5zIFNlbWlib2xkAABSAGUAZwB1AGwAYQByAABSZWd1bGFyAABBAHMAYwBlAG4AZABlAHIAIAAtACAATwBwAGUAbgAgAFMAYQBuAHMAIABTAGUAbQBpAGIAbwBsAGQAIABCAHUAaQBsAGQAIAAxADAAMAAAQXNjZW5kZXIgLSBPcGVuIFNhbnMgU2VtaWJvbGQgQnVpbGQgMTAwAABPAHAAZQBuACAAUwBhAG4AcwAgAFMAZQBtAGkAYgBvAGwAZAAAT3BlbiBTYW5zIFNlbWlib2xkAABWAGUAcgBzAGkAbwBuACAAMQAuADEAMAAAVmVyc2lvbiAxLjEwAABPAHAAZQBuAFMAYQBuAHMALQBTAGUAbQBpAGIAbwBsAGQAAE9wZW5TYW5zLVNlbWlib2xkAABPAHAAZQBuACAAUwBhAG4AcwAgAGkAcwAgAGEAIAB0AHIAYQBkAGUAbQBhAHIAawAgAG8AZgAgAEcAbwBvAGcAbABlACAAYQBuAGQAIABtAGEAeQAgAGIAZQAgAHIAZQBnAGkAcwB0AGUAcgBlAGQAIABpAG4AIABjAGUAcgB0AGEAaQBuACAAagB1AHIAaQBzAGQAaQBjAHQAaQBvAG4AcwAuAABPcGVuIFNhbnMgaXMgYSB0cmFkZW1hcmsgb2YgR29vZ2xlIGFuZCBtYXkgYmUgcmVnaXN0ZXJlZCBpbiBjZXJ0YWluIGp1cmlzZGljdGlvbnMuAABBAHMAYwBlAG4AZABlAHIAIABDAG8AcgBwAG8AcgBhAHQAaQBvAG4AAEFzY2VuZGVyIENvcnBvcmF0aW9uAABoAHQAdABwADoALwAvAHcAdwB3AC4AYQBzAGMAZQBuAGQAZQByAGMAbwByAHAALgBjAG8AbQAvAABodHRwOi8vd3d3LmFzY2VuZGVyY29ycC5jb20vAABoAHQAdABwADoALwAvAHcAdwB3AC4AYQBzAGMAZQBuAGQAZQByAGMAbwByAHAALgBjAG8AbQAvAHQAeQBwAGUAZABlAHMAaQBnAG4AZQByAHMALgBoAHQAbQBsAABodHRwOi8vd3d3LmFzY2VuZGVyY29ycC5jb20vdHlwZWRlc2lnbmVycy5odG1sAABMAGkAYwBlAG4AcwBlAGQAIAB1AG4AZABlAHIAIAB0AGgAZQAgAEEAcABhAGMAaABlACAATABpAGMAZQBuAHMAZQAsACAAVgBlAHIAcwBpAG8AbgAgADIALgAwAABMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wAABoAHQAdABwADoALwAvAHcAdwB3AC4AYQBwAGEAYwBoAGUALgBvAHIAZwAvAGwAaQBjAGUAbgBzAGUAcwAvAEwASQBDAEUATgBTAEUALQAyAC4AMAAAaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wAABPAHAAZQBuACAAUwBhAG4AcwAAT3BlbiBTYW5zAABTAGUAbQBpAGIAbwBsAGQAAFNlbWlib2xkAAAAAgAAAAAAAP9mAGYAAAAAAAAAAAAAAAAAAAAAAAAAAADWAAAAAQACAAMABAAFAAYABwAIAAkACgALAAwADQAOAA8AEAARABIAEwAUABUAFgAXABgAGQAaABsAHAAdAB4AHwAgACEAIgAjACQAJQAmACcAKAApACoAKwAsAC0ALgAvADAAMQAyADMANAA1ADYANwA4ADkAOgA7ADwAPQA%2BAD8AQABBAEIAQwBEAEUARgBHAEgASQBKAEsATABNAE4ATwBQAFEAUgBTAFQAVQBWAFcAWABZAFoAWwBcAF0AXgBfAGAAYQCsAKMAhACFAL0AlgDoAIYAjgCLAJ0AqQCkAQIAigEDAIMAkwDyAPMAjQCXAIgAwwDeAPEAngCqAPUA9AD2AKIArQDJAMcArgBiAGMAkABkAMsAZQDIAMoAzwDMAM0AzgDpAGYA0wDQANEArwBnAPAAkQDWANQA1QBoAOsA7QCJAGoAaQBrAG0AbABuAKAAbwBxAHAAcgBzAHUAdAB2AHcA6gB4AHoAeQB7AH0AfAC4AKEAfwB%2BAIAAgQDsAO4AugDXALAAsQDYAN0A2QCyALMAtgC3AMQAtAC1AMUAhwC%2BAL8AvAEEAQUHdW5pMDBBRAlvdmVyc2NvcmUMZm91cnN1cGVyaW9yBEV1cm8AAAABAAIACAAK%2F%2F8ADwAAAAEAAAAAyYlvMQAAAADJTOp9AAAAAMnt2GI%3D%29%20format%28%27truetype%27%29%3B%0A%7D%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%3B%0Afont%2Dstyle%3A%20italic%3B%0Afont%2Dweight%3A%20400%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAQAQAABAAARkZUTVzakEwAAIZUAAAAHE9TLzKhTLaOAAABiAAAAGBjbWFwjOjcmQAABUAAAAGyY3Z0IA7AFxkAAA%2B0AAAAoGZwZ21%2BYbYRAAAG9AAAB7RnYXNwABUAIwAAhkQAAAAQZ2x5Zr%2FLVRcAABIEAABJAGhlYWT4qxTOAAABDAAAADZoaGVhDj8E%2FgAAAUQAAAAkaG10eGTdQjIAAAHoAAADWGtlcm4Mlg8JAABbBAAAIwRsb2NhW7BKSgAAEFQAAAGubWF4cAJdAPoAAAFoAAAAIG5hbWVqCPoKAAB%2BCAAABkVwb3N0gmzp1QAAhFAAAAHycHJlcFSBlpMAAA6oAAABCQABAAAAARmacz8BIV8PPPUAHwgAAAAAAMnt2FoAAAAAye3YWv4Z%2FhAHgQdzAAIACAACAAAAAAAAAAEAAAiN%2FagAAAgA%2Fhn%2BHAeBAGQAFQAAAAAAAAAAAAAAAADWAAEAAADWAEQABQA5AAQAAgAQAC8AXAAAAQ4ASwADAAEAAwQPAZAABQAIBZoFMwAAAR8FmgUzAAAD0QBmAgAAAAILBgYDBQQCAgTgAALvQAAgWwAAACgAAAAAMUFTQwABACAgrAYf%2FhQAhAiNAlggAAGfAAAAAARIBbYAAAAgAAEIAAAAAAAAAAQUAAACFAAAAhIAKwMXAOEFKwA%2FBGgASAZYAKgFXABCAbwA4QJIAFICSP9gBGoA1wRoAH8B7P%2BcAn8ANwIGACsCzf%2BiBGgAeQRoAS8EaAAMBGgALwRoABAEaABQBGgAhQRoAK4EaABgBGgAYgIGACsCBv%2BcBGgAeQRoAH8EaAB5A2oAngbHAG8Ecf%2BLBMkAVgSuAJYFVABWBBcAVgPHAFYFagCWBW0AVgIvAFYCI%2F7BBHUAVgPLAFYGsgBUBZ4AVAXDAJYEhwBWBcMAlgSNAFYEBAAnA%2FwAugVoAKQEYgC8BtEA3wQn%2F5gEBgC8BD%2F%2F8AJK%2F%2FACzQDdAkr%2FagQjADUDJ%2F9EBG8CPwSFAGIEngA7A5oAYgSeAGID8gBiAoH%2FGwQC%2F4EEngA7AggAOwII%2Fv4D5wA5AggAOQb6ADsEngA7BH0AYgSe%2F9UEngBiAysAOwNtAAgCmABaBJ4AcQOyAGIFvAB1A9P%2FtgOy%2FzsDjf%2FjAssAGwRoAh0Cy%2F%2B2BGgAcwIUAAACEv%2FyBGgA4QRo%2F%2BkEaACoBGgAfwRoAh0D4wA7BG8ByQaoAIsCrgCqA74AWARoAH8CfwA3BqgAiwMOAOMDbQDXBGgAfwLNAGACzQB3BG8CFASq%2F9UFPQDHAgYAqgGk%2F1YCzQECArAAqAO%2BABcF7gB7Be4AQgYdAFcDav%2F8BHH%2FiwRx%2F4sEcf%2BLBHH%2FiwRx%2F4sEcf%2BLBon%2FiQSuAJYEFwBWBBcAVgQXAFYEFwBWAi8AVgIvAFYCLwBWAi8AVgVUAEgFngBUBcMAlgXDAJYFwwCWBcMAlgXDAJYEaACoBcMAdwVoAKQFaACkBWgApAVoAKQEBgC8BIcAVgSe%2FwAEhQBiBIUAYgSFAGIEhQBiBIUAYgSFAGIGhQBiA5oAYgPyAGID8gBiA%2FIAYgPyAGICCAA7AggAOwIIADsCCAA7BI0AWgSeADsEfQBiBH0AYgR9AGIEfQBiBH0AYgRoAH8EfQA9BJ4AcQSeAHEEngBxBJ4AcQOy%2FzsEnv%2FVA7L%2FOwIIADsG1wCWBukAYgRvAY8EngInBG8BUAPXADcHrgA3AVwAewFcAH0B7P%2BcAs8AewLPAH0DWv%2BcAwYAxwJEAFgCRAAXAQz%2BGQLNAFwEaAA%2FAAAAAwAAAAMAAAAcAAEAAAAAAKwAAwABAAAAHAAEAJAAAAAgACAABAAAAH4A%2FwExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCs%2F%2F8AAAAgAKABMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrP%2F%2F%2F%2BP%2Fwv%2BR%2F3H9%2F%2F3s%2FevgteCy4LHgruCY4I%2FgYOApAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYAAAEAAAAAAAAAAQIAAAACAAAAAAAAAAAAAAAAAAAAAQAAAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7PD0%2BP0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGEAhoeJi5OYnqOipKalp6mrqqytr66wsbO1tLa4t7y7vb4AcmRladB4oXBrAHZqAIiaAHMAAGd3AAAAAABsfACouoFjbgAAAABtfQBigoWXw8TIyc3Oysu5AMEA09XR0gAAAHnMzwCEjIONio%2BQkY6VlgCUnJ2bwsXHcQAAxnoAAAAAAEBHW1pZWFVUU1JRUE9OTUxLSklIR0ZFRENCQUA%2FPj08Ozo5ODc2NTEwLy4tLCgnJiUkIyIhHxgUERAPDg0LCgkIBwYFBAMCAQAsILABYEWwAyUgEUZhI0UjYUgtLCBFGGhELSxFI0ZgsCBhILBGYLAEJiNISC0sRSNGI2GwIGAgsCZhsCBhsAQmI0hILSxFI0ZgsEBhILBmYLAEJiNISC0sRSNGI2GwQGAgsCZhsEBhsAQmI0hILSwBECA8ADwtLCBFIyCwzUQjILgBWlFYIyCwjUQjWSCw7VFYIyCwTUQjWSCwBCZRWCMgsA1EI1khIS0sICBFGGhEILABYCBFsEZ2aIpFYEQtLAGxCwpDI0NlCi0sALEKC0MjQwstLACwKCNwsQEoPgGwKCNwsQIoRTqxAgAIDS0sIEWwAyVFYWSwUFFYRUQbISFZLSxJsA4jRC0sIEWwAENgRC0sAbAGQ7AHQ2UKLSwgabBAYbAAiyCxLMCKjLgQAGJgKwxkI2RhXFiwA2FZLSyKA0WKioewESuwKSNEsCl65BgtLEVlsCwjREWwKyNELSxLUlhFRBshIVktLEtRWEVEGyEhWS0sAbAFJRAjIIr1ALABYCPt7C0sAbAFJRAjIIr1ALABYSPt7C0sAbAGJRD1AO3sLSywAkOwAVJYISEhISEbRiNGYIqKRiMgRopgimG4%2F4BiIyAQI4qxDAyKcEVgILAAUFiwAWG4%2F7qLG7BGjFmwEGBoATpZLSwgRbADJUZSS7ATUVtYsAIlRiBoYbADJbADJT8jITgbIRFZLSwgRbADJUZQWLACJUYgaGGwAyWwAyU%2FIyE4GyERWS0sALAHQ7AGQwstLCEhDGQjZIu4QABiLSwhsIBRWAxkI2SLuCAAYhuyAEAvK1mwAmAtLCGwwFFYDGQjZIu4FVViG7IAgC8rWbACYC0sDGQjZIu4QABiYCMhLSxLU1iKsAQlSWQjRWmwQIthsIBisCBharAOI0QjELAO9hshI4oSESA5L1ktLEtTWCCwAyVJZGkgsAUmsAYlSWQjYbCAYrAgYWqwDiNEsAQmELAO9ooQsA4jRLAO9rAOI0SwDu0birAEJhESIDkjIDkvL1ktLEUjRWAjRWAjRWAjdmgYsIBiIC0ssEgrLSwgRbAAVFiwQEQgRbBAYUQbISFZLSxFsTAvRSNFYWCwAWBpRC0sS1FYsC8jcLAUI0IbISFZLSxLUVggsAMlRWlTWEQbISFZGyEhWS0sRbAUQ7AAYGOwAWBpRC0ssC9FRC0sRSMgRYpgRC0sRSNFYEQtLEsjUVi5ADP%2F4LE0IBuzMwA0AFlERC0ssBZDWLADJkWKWGRmsB9gG2SwIGBmIFgbIbBAWbABYVkjWGVZsCkjRCMQsCngGyEhISEhWS0ssAJDVFhLUyNLUVpYOBshIVkbISEhIVktLLAWQ1iwBCVFZLAgYGYgWBshsEBZsAFhI1gbZVmwKSNEsAUlsAglCCBYAhsDWbAEJRCwBSUgRrAEJSNCPLAEJbAHJQiwByUQsAYlIEawBCWwAWAjQjwgWAEbAFmwBCUQsAUlsCngsCkgRWVEsAclELAGJbAp4LAFJbAIJQggWAIbA1mwBSWwAyVDSLAEJbAHJQiwBiWwAyWwAWBDSBshWSEhISEhISEtLAKwBCUgIEawBCUjQrAFJQiwAyVFSCEhISEtLAKwAyUgsAQlCLACJUNIISEhLSxFIyBFGCCwAFAgWCNlI1kjaCCwQFBYIbBAWSNYZVmKYEQtLEtTI0tRWlggRYpgRBshIVktLEtUWCBFimBEGyEhWS0sS1MjS1FaWDgbISFZLSywACFLVFg4GyEhWS0ssAJDVFiwRisbISEhIVktLLACQ1RYsEcrGyEhIVktLLACQ1RYsEgrGyEhISFZLSywAkNUWLBJKxshISFZLSwgiggjS1OKS1FaWCM4GyEhWS0sALACJUmwAFNYILBAOBEbIVktLAFGI0ZgI0ZhIyAQIEaKYbj%2FgGKKsUBAinBFYGg6LSwgiiNJZIojU1g8GyFZLSxLUlh9G3pZLSywEgBLAUtUQi0ssQIAQrEjAYhRsUABiFNaWLkQAAAgiFRYsgIBAkNgQlmxJAGIUVi5IAAAQIhUWLICAgJDYEKxJAGIVFiyAiACQ2BCAEsBS1JYsgIIAkNgQlkbuUAAAICIVFiyAgQCQ2BCWblAAACAY7gBAIhUWLICCAJDYEJZuUAAAQBjuAIAiFRYsgIQAkNgQlmxJgGIUVi5QAACAGO4BACIVFiyAkACQ2BCWblAAAQAY7gIAIhUWLICgAJDYEJZWVlZWVmxAAJDVFhACgVACEAJQAwCDQIbsQECQ1RYsgVACLoBAAAJAQCzDAENARuxgAJDUliyBUAIuAGAsQlAG7IFQAi6AYAACQFAWblAAACAiFW5QAACAGO4BACIVVpYswwADQEbswwADQFZWVlCQkJCQi0sRRhoI0tRWCMgRSBksEBQWHxZaIpgWUQtLLAAFrACJbACJQGwASM%2BALACIz6xAQIGDLAKI2VCsAsjQgGwASM%2FALACIz%2BxAQIGDLAGI2VCsAcjQrABFgEtLLCAsAJDULABsAJDVFtYISMQsCAayRuKEO1ZLSywWSstLIoQ5S1AmQkhSCBVIAEeVR9IA1UfHgEPHj8erx4DTUsmH0xLMx9LRiUfJjQQVSUzJFUZE%2F8fBwT%2FHwYD%2Fx9KSTMfSUYlHxMzElUFAQNVBDMDVR8DAQ8DPwOvAwNHRhkf60YBIyIzHxwzG1UWMxVVEQEPVRAzD1UPD08PAh8Pzw8CDw%2F%2FDwIGAgEAVQEzAFVvAH8ArwDvAAQQAAGAFgEFAbgBkLFUUysrS7gH%2F1JLsAlQW7ABiLAlU7ABiLBAUVqwBoiwAFVaW1ixAQGOWYWNjQBCHUuwMlNYsCAdWUuwZFNYsBAdsRYAQllzcysrXnN0dSsrKysrdCtzdCsrKysrKysrKysrKytzdCsrKxheAAAABhQAFwBOBbYAFwB1BbYFzQAAAAAAAAAAAAAAAAAABEgAFACRAAD%2F7AAAAAD%2F7AAAAAD%2F7AAA%2FhT%2F7AAABbYAF%2FyU%2F%2Bv%2Bhf5e%2Fqj%2F6wAW%2FrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAiwCBAN0AmACPAI4AmQCIAIEBDwAAAAAAAAAAAAAALgBMAKQBDAF6AeYB%2BgIcAjwCZgKGApwCrgLKAuADHAM%2BA3oDzAQIBE4EpgTEBSgFfgWuBdoF%2FAYaBj4GjgcKBzoHiAfAB%2FYIJAhKCJIIugjOCPIJHAk2CW4JmgnaCg4KWgqYCuQLBAs2C1oLmgvCC%2BIMCgwmDDoMVgxyDIQMnAzmDTINZg2yDfwORg7ODw4PMA9mD5YPqBAAEDoQdhDCERARQBGIEcgSABIiEmYSjhLGEu4TOBNKE5QTxhPGE%2FAUNhSAFNAVGhU6FaQVzhY%2BFnwWshbIFtAXQBdSF4AXsBfiGCIYPBh6GKQYrhjSGPIZIBlUGWoZgBmWGeQZ9hoIGhoaLBpAGloapBqwGsIa1BrmGvobDBseGzAbRBuQG6IbtBvGG9gb6hv%2BHCochhyYHKocvBzQHOIdHh2QHaIdtB3GHdgd6h38HoAejB6eHrAewh7UHuYe%2BB8KHx4fgh%2BUH6YfuB%2FKH9wf7iAgIH4gkCCiILQgxiDYISghOiFMIaQiGCI8Im4inCKuIsAi2CLyIwgjLiNWI3ojlCOyI9Ij6CQcJIAAAAACACv%2F4wIrBbYABAAQABhACwICDgQDDghPWQ4WAD8rABg%2FEjkvMTAJASMSEwE0NjMyFhUUBiMiJgIr%2Fu5tMX%2F%2Bz09ELThOQjE3Bbb73QEzAvD6mExYNzZEXjgAAAIA4QOmA0IFtgADAAcADbQGAgcDAwA%2FM80yMTABAyMTIQMjEwHlmWtIAhmaa0gFtv3wAhD98AIQAAAAAAIAPwAABTsFtgAbAB8AM0AYAB8QEBkVERETBAgMDAEcDQ0KFxMDBgoSAD8zPzMSOS8zMzMRMzMROS8zMzMRMzMxMAEDIQchAyMTIQMjEyE3IRMhNyETMwMhEzMDIQcBIRMhBAxiAR0N%2Fst9i4H%2B0X%2BFef77DQEcZf7rDQEte4t9ATF%2FhX0BCAz8xQEvYP7RA4P%2BrIH%2BUgGu%2FlIBroEBVH8BtP5MAbT%2BTH%2F%2BrAFUAAAAAwBI%2F4kELwYQAB4AJQAsADpAHx8MAykiLBwNJQYGEwYMS1kbJhMmS1kWEwYTBhMVBRUALy8SOTkvLxEzKxEAMysREgAXOTIRMzEwARQGDwEjNyYnNR4BMxMuATU0Nj8BMwcWFwcmJwMeAQE%2BATU0JicDDgEVFBYXA67hxTGFMcN4UrtJYot92L8nhSeffD95f16Vf%2F53a35CUQhsdkVJAeyiyhbh3w46miktAcQxlXKfwBGwsgxAhz8J%2Fkg3jP6iDXxcNlQgAkoLdGI1WRoAAAUAqP%2FsBfwFywADAA8AHgArADoAJUASBBwcAyUxMQIDBgIYHzgHChUZAD8zPzM%2FPxI5LzMROS8zMTAJASMBAyIOARUUMzI2EjU0FxQCDgEjIiY1NBI2MzIWASIOARUUMzI%2BAjU0FxQCDgEjIiY1NBI2MzIWBbz7w5gEPiFDaT9qQWhFiz9ljVZuemWscnR4%2FCNCakBrNFQ%2FJoxAZYxXbXplrHJ0eAW2%2BkoFtv1Ogfh0rYIBC2eml2v%2B%2FrFjlZGmATGYjwJcfvl3rE%2BVyUemmGz%2B%2FbBilpGmATGYkAADAEL%2F7AUfBc0ACwAWADUAMEAbKioaBRAnBA8oMC0EHy8SHwBKWR8EMwxKWTMTAD8rABg%2FKwAYPxIXORc5OS8xMAEiBhUUFz4CNTQmATI2NwEOAhUUFiU0NjcmNTQ2MzIWFRQOAgcBNjczBgcTIycOASMiJgLhaXRSi2g%2BVf6lV6Jy%2Fs6AcDuF%2Fti01WfUr5WvQW6RUQEWf0ioZbbLyXV43ImoygVEeG54c0dOXDpNWfszQlsBsUNidUlqgd%2BU22alkKTJnoVOdmJSKv57brnssP7ypmRWwAABAOEDpgHlBbYAAwAJsgIDAwA%2FzTEwAQMjEwHlmWtIBbb98AIQAAAAAQBS%2FrwC5wW2AAsACrMDAwonAD8%2FMTATEBIBMwoBERATIwJS8AEInfb7coOTARABUwJAARP%2B8v2o%2FsL%2Brf79AQoAAAAB%2F2D%2BvAH0BbYACgAKswgDBCcAPz8xMAEQAgEjABEQAzMSAfTz%2FvucAfBxg5IDYP6r%2Fb%2F%2B8gInAn0BVQEB%2FvMAAQDXAmoEgQYbAA4AC7MGBg4AAD8zLzEwAQMlByUTBwMBJwElNwUTA1Z7AaYI%2Fne0pnH%2B%2FnQBNf6LNwFzKQX4%2FoESnS%2F%2BgTQBlv6oeQEcbZq5AZAAAQB%2FAQgEFwSgAAsADrQJAQEGAgAvMzMRMzEwASE1IREzESEVIREjAgT%2BewGFjQGG%2FnqNAouOAYf%2BeY7%2BfQAAAAH%2FnP74ASsA7gAGAAixBAAAL80xMCUXBgcjEjcBIwhxnYF%2BTu4X6%2FQBHtgAAQA3AdUCOQJzAAMACLEAAQAvMzEwEzchBzcjAd8iAdWengAAAQAr%2F%2BMBIwDyAAsADLUJA09ZCRYAPysxMDc0NjMyFhUUBiMiJitRRys1UEQuNkpNWzQ1R180AAAB%2F6IAAAN9BbYAAwAKswMDAhIAPz8xMAkBIwEDffzTrgMtBbb6SgW2AAAAAAIAef%2FsBEQFzQAMABkAF0AMCw1LWQsHBBRLWQQZAD8rABg%2FKzEwARACBCMiAjUQEiQzIAUiBgIVFBYzMjYSNRAERJ3%2B8bOwvKQBDa0Bbf6JccB3ZG9zvHED9v7Z%2Fhj7AP%2FyAQ4B6fmQ5%2F5h2Ky45AGs7wFDAAAAAAEBLwAAA4UFtgAKABC2BAcBCQYBGAA%2FPxI5OTEwISMTEjcGDwEnATMCTKzEOx0yWbJQAcGVA5EBBWI1Om5%2FARwAAAAAAQAMAAAENwXLABsAHEAOAhoRC0tZEQcBGkxZARgAPysAGD8rEQAzMTApATcBPgM1NCYjIgYHJzYzMhYVFA4BBwEVIQOP%2FH0fAdFmlWEveGdNk1lSv96wzU%2B3y%2F6gAqaTAaRdjX17S2N0OURzmrGbb7rQsf7NCAAAAQAv%2F%2BwEMQXLACgALUAXAxgZGRhLWRkZCyYmIEtZJgcLEUtZCxkAPysAGD8rERIAORgvKxESADkxMAEUBgcVHgEVFA4BIyInNR4BMzI2NTQmKwE3MzI2NTQmIyIGByc2MzIWBDHKs3yOfO6k0q9e0lWitJ6Ngx%2BLpdp0Y1CaYlDD5bPEBIec2SAJF6d9hctyT6QxNZ%2BKg4eProxcbDZCdpCuAAACABAAAARMBb4ACgATACVAEgYTDwcBBRMFTFkJExMDBwYDGAA%2FPxI5LzMrEQAzETMRMzEwASMDIxMhNwEzAzMhNhITIw4BBwEEK%2BlIpEr9cB0DQsTP6P51LkBUCBFjF%2F3rAU7%2BsgFOngPS%2FCncATIBJB2HHf2PAAABAFD%2F7ARIBbYAHAAtQBcbBwAAEk1ZAAAHFxcaTFkXBgcMS1kHGQA%2FKwAYPysREgA5GC8rERIAOTEwATIWFRQGBCMiJzUWMzI2NTQmIyIGBycTIQchAzYCVrbXkv76scGJpKq%2F1pODMGJaSsUCnCH99n9XA33RsqH0eU%2BkZsCsfpMNGDkCrJn%2BSRcAAAIAhf%2FsBFoFywAaACgALUAXDRgFESFNWRERGAUFCktZBQcYG0tZGBkAPysAGD8rERIAORgvKxESADkxMBM0GgEkMzIXByYjIgADMz4BMzIWFRQCBiMiJgUyPgE1NCMiDgIVFBaFec4BHrhvSSNEZtT%2B30QIO69qmrSF5JO2xwGPXpNR3UJ8YDB5AajRAZwBI5MXkRb%2B1v7aT17FrKH%2B9Y3mWWy%2Bcfg5X3JiiZ4AAAAAAQCuAAAEeQW2AAYAFkAKBQIAGAMCTFkDBgA%2FKwAYPxEzMTAzASE3IQcBrgMA%2FTEfA3sb%2FQQFIZWL%2BtUAAwBg%2F%2BwEVgXNABkAJQAxADJAGxMGKSMEDQAsGktZLCwNAAAmS1kABw0gS1kNGQA%2FKwAYPysREgA5GC8rERIAFzkxMAEyFhUUBgceARUUDgEjIiY1NDY3LgE1ND4BAw4BFRQWMzI2NTQmEyIGFRQWFz4BNTQmAuWuw5y8f2p44Zi%2B2L7JX1Ftxgq5mYpwi6ZoCHKITlihhnMFza2VgcBQTq5zer9mxamU2ExFl2Bvr2H87zynd2t%2BlHpjlgK9g25SfDY8j2ZaagACAGL%2F7AQrBcsAGgAoAC1AFw4FGCERTVkhIQUYGBtLWRgHBQpLWQUZAD8rABg%2FKxESADkYLysREgA5MTABFAoBBCMiJzUWMzISEyMOASMiJjU0EjYzMhYlIgYVFBYzMj4CNTQmBCtwt%2F78rIhqhnDK%2BkAKM6NjqbiB55C0x%2F5%2FlrZtbEyAWSl2BArC%2Flf%2B2Ywini8BGgEsS1fFvpkA%2F4%2FlV%2BKxfIQ5anpag5kAAgAr%2F%2BMBwwRkAAsAFgAXQAwPFE9ZDxAJA09ZCRYAPysAGD8rMTA3NDYzMhYVFAYjIiYTNDYzMhUUBiMiJitRRys1UEQuNqBQR2FTQS42Sk1bNDVHXzQDpU1baEldNQAAAv%2Bc%2FvgBwwRkAAYAEQAVQAkEQAYKD09ZChAAPysAGC8azjEwJRcGByMSNxM0NjMyFRQGIyImASMIcZ2Bfk5jUEdhU0EuNu4X6%2FQBHtgCzk1baEldNQAAAAEAeQDyBBAE2QAGABdACQECBQUGBAMAAwAvLxEzMjkRMzMxMCUBNQEVCQEEEPxpA5f9FQLr8gGmYgHflf6N%2FrgAAAAAAgB%2FAbwEFwPlAAMABwAStwUABAEEBAABAC8zMy9dMzEwEzUhFQE1IRV%2FA5j8aAOYA1qLi%2F5ijo4AAAAAAQB5APIEEATZAAYAG0ALBQQBAQMABgIDBgMALy8RMxEzEjkRMzMxMBMJATUBFQF5Aun9FwOX%2FGkBiQFIAXOV%2FiFi%2FloAAAAAAgCe%2F%2BMDmgXLABoAJgAlQBIHEQAAJBEkHk9ZJBYRCklZEQQAPysAGD8rERIAORgvEjkxMAE%2BATc%2BAjU0JiMiBgcnPgEzMhYVFAYHDgEHAzQ2MzIWFRQGIyImAQQWZXOAUC5nYFGUQj1cyFKnuIOgfVgX7VBHLDVTQS42AZOCp1tkWGQ%2BXWUzH4EzMqiae894W3Fo%2FrdNWzQ1SV00AAAAAAIAb%2F9GBo8FtAA1AEEAKkATJisHCTYQGD09BAkQCRAJKx8yAwA%2FM8Q5OS8vETMzETMRMxI5ETMxMAEUAgYjIicjBiMiJjU0PgEzMhYXDgEXFDMyPgE1NAAjIgQCFRAAITI3FQYjIAAREBIkITIEEgUiDgEVFBYzMhsBJgaPbsh6xRAIb7Rzg4jxjEF9WEBEA2ZOf0r%2FAPLk%2FpvFAR8BCsXf2%2BD%2Bxv6X%2FQGyAQ2%2FARSR%2FUpeoFxCQbtVRj8DVLP%2B3qS4uJeGnf6QGCTy%2FC51hul%2F7wEA1v6H5P7y%2FtdWf1oBcQFBAQUBwfaX%2FuxfbsRyXVMBOwECFwAAAv%2BLAAAEEAW2AAcADgAdQA4LBA4BSVkODgMEAwcDEgA%2FMz8SOS8rEQAzMTABIQMjATMTIwsBJicOAQMDLf4Q9b0DH664qksjGAUlV84B0f4vBbb6SgJtASuzq1iu%2Fn0AAwBWAAAEsgW2AA4AFwAgAC1AFwUgDw8gSlkPDw0ODhdKWQ4DDRhKWQ0SAD8rABg%2FKxESADkYLysREgA5MTABIBEUBgcVHgEVFAQjIQETMzI2NTQmKwEDITI2NTQmKwEDAgGwrp5ze%2F7Q%2F%2F4xATUn%2BJy6hY%2FT%2BgEKtcKVjOwFtv6wjcIdCiCdbtTxBbb9jpJ%2BaGf7bqGTdHsAAAAAAQCW%2F%2BwFCgXLABgAF0AMFABJWRQEDQdJWQ0TAD8rABg%2FKzEwASIEAhUUFjMyNxUOASMiABEQEiQzMhcHJgOurv7tocOri7dWnG7y%2FuzTAWThxZdFigUzwv6J3bvfOZUfHAErAQIBBQHB7FCNRQAAAAIAVgAABRQFtgAJABMAF0AMBhJKWQYDBRNKWQUSAD8rABg%2FKzEwARACBCkBASEgAAEyJBI1NCYrAQMFFNL%2Bev76%2FqABNQFWARQBH%2FytygEyo87HsvoDbf77%2FnDYBbb%2B1fwItwFO19fd%2B3AAAAEAVgAABGoFtgALACZAFAYJSVkGBgECAgVJWQIDAQpJWQESAD8rABg%2FKxESADkYLysxMCkBASEHIQMhByEDIQM1%2FSEBNQLfIP3KYgIPHf3vcgI1BbaZ%2FiuY%2FegAAQBWAAAEagW2AAkAHUAPBglJWQYGAgESAgVJWQIDAD8rABg%2FEjkvKzEwISMBIQchAyEHIQECrAE1At8e%2FchuAhAg%2Fe8Ftpn965kAAAEAlv%2FsBU4FywAdACZAFAAdSVkAAAQLCxJJWQsEBBlJWQQTAD8rABg%2FKxESADkYLysxMAEhAwYjIAAREBIkMzIWFwcuASMiBAIVFBYzMjcTIQM1Acua2Mv%2B%2BP7bywFo23XNaEJNsWqp%2FuuazbiaamD%2B3wL%2B%2FTlLASEBAwENAbn1KCyYIjLL%2FpThvtonAbwAAAEAVgAABXMFtgALABpADQgDSVkICAUKBgMBBRIAPzM%2FMxI5LysxMCEjEyEDIwEzAyETMwQ9p4%2F9bJGqATWqgwKUhagCsP1QBbb9kgJuAAAAAQBWAAACNQW2AAMACrMBAwASAD8%2FMTAzATMBVgE3qP7JBbb6SgAAAAH%2Bwf5%2FAjUFtgAMABG3CQMABUlZACIAPysAGD8xMAMiJzcWMzI2NwEzAQKmaTAGRUxkgxkBM6r%2By0%2F%2BfxmTFH14Bar6RP6FAAEAVgAABSsFtgANABVACQoEBwsIAwEHEgA%2FMz8zEjk5MTAhIyYCJwcDIwEzAwEzAQQKukiVSK59qgE1qpcCvNH9gbUBZbeD%2FbIFtv06Asb9gwAAAAEAVgAAA1YFtgAFABG3AQMAA0lZABIAPysAGD8xMDMBMwEhB1YBNar%2B7AI1IQW2%2BuSaAAABAFQAAAa4BbYAFAAZQAwKAhMDBwwIAwAPBxIAPzMzPzMSFzkxMCEDIw4BBwMjATMTMwEhASMaATcjAQKkpggHKxC%2BogE19JUJApMBCv7Rrn6GGwb9MwUQSPtK%2FH0FtvtMBLT6SgJOAndN%2Bu4AAAAAAQBUAAAFqAW2AA8AFUAJAwsHDggDAQcSAD8zPzMSOTkxMCEjASMGBwMjATMBMzY3EzMEc7X%2BNAYgKqyiATW0AcsGHiqupATH3cX82wW2%2BzzgtQMvAAAAAAIAlv%2FsBYMFzQANABsAF0AMCw5JWQsEBBVJWQQTAD8rABg%2FKzEwARACBCMgABEQEiQzMgAlIgYCFRQWMzI2EjU0JgWDsP641%2F8A%2FuLAAU%2FS9AEY%2Feed%2BInEqJjxjLwDi%2F7z%2FlfpASsBDgEIAbTs%2Fsycyv6Y2sffwwFs3cffAAAAAgBWAAAEhwW2AAoAEwAdQA8LBEpZCwsHBhIHE0pZBwMAPysAGD8SOS8rMTABFAAhIwMjASEyFgEzMjY1NCYrAQSH%2Frj%2Bw4d7qgE1AUrW3P0Thdjgi5CjBD34%2Fvr9wQW2vf3YtrB9bwACAJb%2BpAWDBc0ADQAfACNAER8QHRAHFwBJWRcEEAdJWRATAD8rABg%2FKxESADkYEMYxMAEiBgIVFBYzMjYSNTQmAQcjIAAREBIkMzIAERAABwEjA2qd%2BInEqJ7yhbz%2BxBEQ%2FwD%2B4sABT9L0ARj%2B6uwBEtsFNcr%2BmNrH38gBadvH3%2Fq5AgErAQ4BCAG07P7M%2FvL%2Bs%2F4aTv6aAAIAVgAABIkFtgALABUAJkATCAAODgBKWQ4OAwoCEgMMSVkDAwA%2FKwAYPzMSOS8rERIAOTEwAQMjASEgERAFEyMLAQIHMzI2NTQmIwGBgaoBNQFAAb7%2BkO%2B60WlmDqjB0IeYAmD9oAW2%2FpL%2BpGX9eQJgAsH%2BEkGqn3ltAAABACf%2F7AQjBcsAJgAgQBAfDBUDFRxJWRUEAwlJWQMTAD8rABg%2FKxESADk5MTABFAQjIiYnNRYzMjY1NCYnLgE1NCQzMhYXBy4BIyIGFRQeARceAgOR%2Fuf%2FaqFHorKivmmPl3UBCNdjq19CQqRFhqMiSmmTZzUBqNPpHSKqVJeETndRVap0u%2BsmLpYmLIt3Nk1EPVhkeQAAAAEAugAABLQFtgAHABZACgESBwMEA0lZBAMAPysRADMYPzEwISMBITchByEB56wBFf5qIQPZHv5oBR%2BXlwAAAAABAKT%2F7AV%2FBbYAFQAUQAkVCgMEEUlZBBMAPysAGD8zMTABAwIEIyImNTQ3EzMDBhUUFjMyNjcTBX%2FNN%2F7j9ubeGL2qvxaSkay%2FLM0Ftvw6%2Fvn90MNReANu%2FIVqUnWHr8oDugAAAQC8AAAFHwW2AAsAELYLBgMHAwYSAD8%2FMxEzMTAlNjcBMwEjAzMTFhUB3z1lAd%2B%2F%2FPO0oqphFMWQwgOf%2BkoFtvxexIsAAAAAAQDfAAAHgQW2AB0AGUAMBA8YAwkcEwoDAQkSAD8zPzMzEhc5MTAhIwMmNSMOAQEjAzMTFxQHMzY3ATMTFhUHMzY3ATME6aoxCAYZSP4srj6qHwIKBllDAZWyKwkBCUs4AYO2A8WIkkil%2FA4Ftvx7WGKg84wDYPykmZdT4IIDfQAB%2F5gAAATRBbYACwAVQAkIAgQJBgMBBBIAPzM%2FMxI5OTEwISMDASMJATMTATMBA7y01f4fugJU%2FvmsywG7uv3VAoH9fwMIAq79zQIz%2FUoAAAEAvAAABMMFtgAIABC2AAUBBwMFEgA%2FPzMSOTEwCQEzAQMjEwMzAhkB6cH9jXGsd%2B6qAssC6%2Fxn%2FeMCJQORAAAB%2F%2FAAAASTBbYACQAgQBAHBAIIBQRJWQUDAQhJWQESAD8rABg%2FKxEAMxEzMTApATcBITchBwEhA3X8exwDnP1xIANaGvxkArmJBJKbi%2FtvAAH%2F8P68AvAFtgAHAA61BQIDBgEnAD8zPzMxMAEhASEHIwEzAXP%2BfQF9AYMf4%2F7C4%2F68BvqN%2BiEAAQDdAAACUAW2AAMACrMDAwISAD8%2FMTABEyMDAXfZmtkFtvpKBbYAAAH%2Fav68AmoFtgAHAA61AwQDAAcnAD8zPzMxMAczASM3IQEhd%2BEBQOMeAYX%2BhP58tgXfjfkGAAAAAQA1AikEAgXBAAYADrQFAQAEAgAvLzMRMzEwEwEzASMDATUCVm0BCpHJ%2Fi0CKQOY%2FGgC6%2F0VAAAB%2F0T%2BvAKN%2F0gAAwAIsQECAC8zMTABITchAm%2F81R4DK%2F68jAABAj8E2QOHBiEACAAIsQYBAC%2FNMTABIy4BJzUzFhcDh2g9hxy1K2gE2T26PBWIpwACAGL%2F7ARgBFwAEgAgACdAFAoEDAAFDwgVABpGWQAQDBNGWQwWAD8rABg%2FKwAYPz8REjk5MTABMhYXMzczAyM3IwYjIiY1NBI2AzI2EjU0JiMiBgIVFBYCf1yQKAtDf%2BmFGgizxouejvopYcB4cFtos2ZeBFxjXaz7uNHlxqzQAWTK%2FBu5ASmVZ3qs%2FtqjcnEAAAAAAgA7%2F%2BwEOQYUABUAIgAnQBQLBAAPBwAGFQ8WRlkPEAAdRlkAFgA%2FKwAYPysAGD8%2FERI5OTEwBSImJyMHIwEzBgIHMz4BMzIWFRQCBhMiBgIVFBYzMjYSNTQCIWGTJQpGfQFKqDM3MAldtWCNnon1IGDHdW9pY6toFGZYqgYU8v7%2FrHZvxq3R%2Fp3HA%2BO%2B%2FuCXbnWiASuo4wABAGL%2F7AOqBFwAGAAXQAwHDEZZBxAAE0ZZABYAPysAGD8rMTAFIiY1NBIkMzIXByYjIgYCFRQWMzI2NxUGAfrC1pQBBaOJgy94Y3C5aYV1SIA%2BfBTWw8gBUr0zjTOZ%2Fu%2BggI4oG48%2FAAIAYv%2FsBMMGFAAUACEAJ0AUAwsOAAYACRUAHEZZABAOFUZZDhYAPysAGD8rABg%2FPxESOTkxMAEyFzM2NxMzASM3Iw4BIyImNTQSNgMyNhI1NCYjIgYCFRQCf8JXChEcTqb%2BtosWCGWwXouckPUmXsh1bGdlrWkEWr6bdwFm%2BezRfWjErtYBZML8HbsBI5dvdKX%2B1aXjAAAAAgBi%2F%2BwDtARcABgAIgAmQBQcDkZZHBwABwcZRlkHEAASRlkAFgA%2FKwAYPysREgA5GC8rMTAFIiY1NBI2MzIWFRQEISMHFBYzMjY3FQ4BEyIGBzMyNjU0JgHsuNKV9pSZmv60%2FsshBHuBP4VjXpA0Z7UwDOTzSRTawbwBWcCFd7TNUIOTJDCSLCMD4bynd3E1RgAAAAH%2FG%2F4UA4MGHwAgACpAFgwaCR0QFkZZEAAaHUdZGg8ABUZZABsAPysAGD8rABg%2FKxEAMxEzMTADIic1FjMyNjcTIz8CPgEzMhYXByYjIgYPATMHIwMOAWhFOEAwTFIZ48ENzhcuo6AodCArTD1XXR0Z7hnt6Cei%2FhQVjRZ8cwQ6Q0JkyKUXDoEdYYFsf%2Fu2va4AAAAD%2F4H%2BFARMBFwAKAA1AEMASEAoGzMzDkZZBzlHWQQgCQMHJjMHMwcVKCZAR1kmECgCR1koDxUsR1kVGwA%2FKwAYPysAGD8rERIAOTkYLy8REhc5KysRADMxMAEPARYVFAYjIicGFRQWHwEeARUUBCEiJjU0NjcmNTQ2Ny4BNTQ2MzIXARQWMzI2NTQmLwEOAQEUFjMyPgE1NCYjIg4BBEwZ0ynpwzcdi0I%2FdbWj%2Ftz%2B98LckKFOZls%2FUO%2B6Tkz9SoKAts1sgp94gAEWWlBPdj9YUk51QQRIaxg%2BYL%2FjCDVOKRsIDhaEgLjKk4ZpmjYpUEVjKyB9U8L4FPr1TVp%2FdD5IDhAZfgMSVVlUk1ZSVlGRAAEAOwAABCkGFAAdAB1ADhILFgwAAAsVFgVGWRYQAD8rABg%2FMz8REjkxMCETNjU0IyIOAQcDIwEzDgMHMz4BMzIWFRQHBgMC2ZQSk1mpgSFlqAFKqBIhIykbC163ZIOPFydqArReKZR24Z%2F%2BJwYUUpqfrmZ7apCEPmjB%2FiEAAAAAAgA7AAACHwXfAAMADgAOtQwHAg8BFQA%2FP8QyMTAzIxMzAzQ2MzIVFAYjIibjqOqoeUAzWEMsKDQESAEYOEdaN0wxAAAC%2Fv7%2BFAIdBd8ADAAXABZAChUQCA8ABUZZABsAPysAGD%2FEMjEwAyInNRYzMjcBMwEOAQE0NjMyFRQGIyImh0U2PTp9KwEIpv72JJ0BVEAzVkMsJjT%2BFBWNFs0E2%2FsWq58HTDhHWjdMMQAAAAABADkAAAQhBhQADgAYQAsGDgkBCgABDwUJFQA%2FMz8%2FERI5OTEwCQEzCQEjAwcDIwEzCgEHAUoCDsn%2BKwEnu%2BuYUqoBSqpIci0CLwIZ%2Fi39iwIMe%2F5vBhT%2BsP3sgQAAAAABADkAAAItBhQAAwAKswIAARUAPz8xMDMjATPhqAFMqAYUAAABADsAAAaHBFwALAAnQBMWDwwTDQ8AIQwVJwYTBkZZGhMQAD8zKxEAMxg%2FMzM%2FERI5OTEwIRM2NTQmIyIOAQcDIxMzBzM%2BATMyFhczPgEzMhYVFAcDIxM2NTQmIyIOAQcDAriUEj5LVJ95IWWo6osWCletXHF6CwhWwmN%2FixaQqpQURUpRnncfawK0XilGTnjfnf4lBEjLd2iCdH15iIJEbv1gArRoKj5LdNWS%2FgwAAAEAOwAABCkEXAAZAB1ADg8MEw0PAAwVEwZGWRMQAD8rABg%2FMz8REjkxMCETNjU0JiMiDgEHAyMTMwczPgEzMhYVFAcDAtmUFEdOWamBIWWo6osWCmCzYH%2BTF48CtGgoP0x43p7%2BJQRIy3pli31PZf1gAAAAAgBi%2F%2FAEHQRWAA0AGwAXQAwAEUZZABAHGEZZBxYAPysAGD8rMTABMhYVFAIGIyImNTQSNgE0JiMiBgIVFBYzMjYSAoO%2B3JD2m8DakvgBg31rba1ff3dopl0EVuHFvP6ytuLEvgFPs%2F5xc4%2BU%2Fvmhg4%2BSAQ0AAAAAAv%2FV%2FhQEOQRaABUAIgAnQBQEDAAPCg8JGw8WRlkPEAAdRlkAFgA%2FKwAYPysAGD8%2FERI5OTEwBSImJyMHDgEDIwEzBzM2MzIWFRQCBhMiBgIVFBYzMjYSNTQCIWGSKAoEAw9rpgFQixoIs8GJnor0IGDHdW9pY6toFGRaJhla%2FgMGNNHjw7DU%2Fp7FA%2BO%2B%2FuCXbnWiASuo4wACAGL%2BFARgBFwAFQAiACdAFAQLAA8FDwgbAB1GWQAQDxZGWQ8WAD8rABg%2FKwAYPz8REjk5MTABMhYXMzczASMTNjcjDgEjIiY1NBI2AzI2EjU0JiMiBgIVFAKBXo8lDUN9%2FrCmZQkwCF%2B0YIyfkfcpXMR5bWJlsGgEXGVbrPnMAeAtsHlsw6%2FUAWjC%2FBu4ASKbaXqp%2Ftej4wAAAAABADsAAANoBFwAEgAbQA0OCwAMDwsVAAVGWQAQAD8rABg%2FPxESOTEwATIXByYjIg4BBwMjEzMHMz4CAvBFMyQ1NFufdxxrqOqLFgpIXmcEXA6WDXjVgv4KBEjLX1MtAAABAAj%2F7ANEBFwAJAAgQBAMHgMVFRtGWRUQAwlGWQMWAD8rABg%2FKxESADk5MTABFAYjIic1HgEzMjY1NCYnLgE1NDYzMhcHJyYjIgYVFBYXHgIC393JqYhGokV%2BgEZ0gmzKpaufNjhld11qR29rXS4BN5yvRZ4qLmROOU5ESYxgiqlKiRkrV0U4UD88VmMAAAABAFr%2F7ALbBUQAGgAnQBMQEkAMFQ8SEhVHWRIPBgBGWQYWAD8rABg%2FKxEAMxEzGhgQzTEwJTI3FQ4BIyImNTQ3EyM%2FAjMHIQchAwYVFBYBizdZImQefYUSf6wOuX1iNwESGv7vgRI6dRqBDhR3dkJUAlpJTuT8f%2F2kVy04PAAAAAEAcf%2FsBF4ESAAYABtADQ8SChgPDRUSBUZZEhYAPysAGD8%2FMxI5MTABAwYVFDMyPgE3EzMDIzcjDgEjIiY1NDcTAcOWEpNYqoIiZKbnixYMYrJfgJIWkgRI%2FUlZMo944J4B2%2Fu4y31ii4E%2BbgKkAAABAGIAAAQSBEgACwAOtQkBDwUAFQA%2FMj8zMTAzAzMTEhUzEjcBMwHffahAGAZ%2FNAFFsv2xBEj9m%2F7%2BaAETYAJc%2B7gAAAEAdQAABgYESAAfABlADAUPGQMJHRMKDwAJFQA%2FMz8zMxIXOTEwIQMmPQEjDwEBIwMzExUUBzM2NwEzExYdAQczNhIBMwEDPyAECTJT%2Ft3KK6QSCAYvWgEntiUGAgYcbgEMsv4GAlpeTpx2vf2RBEj9rliTenzGAnX9rqheNSpWAQkCWPu4AAAB%2F7YAAAQGBEgACwAVQAkGAAIHBA8LAhUAPzM%2FMxI5OTEwCQEjAQMzEwEzARMjAdP%2BpsMB2%2B%2BqrgFKwv45%2FKgBsv5OAjUCE%2F5kAZz95f3TAAH%2FO%2F4UBBIESAAYABhACwUPCgAPDxRGWQ8bAD8rABg%2FMxI5MTATMxMWEhUzPgE3ATMBDgEjIic1FjMyNj8BYqhKChMGI2gZAUWy%2FUhdtoBIRD9EUnU3TARI%2Fd9F%2FvNSV%2BIrAmH6%2FqyGFYcSZWOIAAAB%2F%2BMAAAN9BEgACQAgQBAHBAIIBQRHWQUPAQhHWQEVAD8rABg%2FKxEAMxEzMTApATcBITchBwEhArL9MRcCtv4hGwKRHf1YAhN1A1Z9jPzBAAEAG%2F68Ay8FtgAnABlACxsKCgsLJhQSAwAnAD8%2FMzI5LzMSOTEwASImNTQ3PgEnNCM3MjY3Ez4BOwEHIgYHAw4BBxUWFRQPAQYVFBYzFQG6jZcUISUE0SB2jxZEIqerIR9pXBRHHH5olxIvD0lT%2FrxpdzRZkqMVj49XaAFGoICNSVf%2Bv3t6EQUprDtI0zooNTGOAAABAh3%2BEAKoBhQAAwAKswAAAxsAPz8xMAEzESMCHYuLBhT3%2FAAB%2F7b%2BvALBBbYAJwAbQAwcCwsKChQTJgADEycAPz8yETM5LzMSOTEwATIWFRQPAQYVFDMHIgYHAw4BKwE1MjY3Ez4BNzUmNTQ%2FATY1NCYjNwEdkJkVMRDRIXeOFkMkprUNc2gTSBl%2Ba5YSMg5RYxwFtml2MF3bRCuPkFZo%2FrqkfY5IVwFCdX0SBiqpO0jVQSI1MY0AAQBzAlAEMwNUABcAErYPAAaADAMSAC8zMxrNMjIxMAEiBgc1NjMyFhceATMyNjcVBiMiJicuAQFcNoEyYpFFdFZAYTI3gTNkkEh%2BSEtaAslFNJdtHSUbHEI3lm4hICAYAAAAAAL%2F8v6LAfIEXgADAA8AGEALAAAHAyIHDU9ZBxAAPysAGD8SOS8xMAEzAyMBNDYzMhYVFAYjIiYBBG2wzwEIUUYsNVFBMDYCrPvfBStMXDQ2R10zAAEA4f%2FsBCkFywAeAChAFQIeDAkJEU1ZHhhLWR4JHgkBCgcBGQA%2FPxI5OS8vKysRADMRMzEwBSM3LgE1NBI2PwEzBxYXByYjIgYCFRQWMzI2NxUGBwJGfSuEj3%2FmkSN7JXdiL21ucLlphHZIgD57oxTXIs%2BauQE%2BxxWqqAkojjSZ%2Fu%2BgfZIoHI8%2BBAAAAf%2FpAAAEmgXJABsAMUAZCxcYF05ZCBgYEgAABUtZAAcTDxIPTFkSGAA%2FKxEAMxg%2FKxESADkYLzMrEQAzMTABMhcHJiMiBwMhByEHDgEHIQchNzY%2FASM3MxMSA0q4mEKShNUyRQFyGv6NLxZYUALVIfxHG801L8gayUxLBclWhU%2Ft%2Frp%2F22KJK5qNLvPdfwFeAWEAAAIAqAEhBBAEhwAbACcAJEATBQIaFxMQDAkIBxIYFQoEHxUlBwAvM8QyzjIQzjISFzkxMBM0Nyc3FzYzMhc3FwcWFRQHFwcnBiMiJwcnNyY3FBYzMjY1NCYjIgblRIFcf2dycmWBXIFGRn9agWJ1d2J%2FWn9EgY9naJKSaGaQAtN1YoFcgUZGgVqBaHF3Yn9af0RGf1p%2FYHdnj49naJKRAAABAH8AAATsBbYAFgA9QCEKDg8OTVkHDwYSExJNWQMAExUPEx8TAg8TDxMMARUGDBgAPz8zEjk5Ly9dERI5MisRADMRMysRADMxMAkBMwEzByEHIQchAyMTITchNyE3MwMzAkYB67v96%2Bcc%2FtchASkd%2Ftk5mjj%2B3R0BIiH%2B3R3hyqMCywLr%2FP6FoIX%2B9gEKhaCFAwIAAgId%2FhACqAYUAAMABwAXQAoDAwcEBAcAAAcbAD8%2FETkvETkvMTABMxEjETMRIwIdi4uLiwYU%2FPj%2BDfz3AAAAAAIAO%2F%2F4A%2BUGHQAsADgALUAZGTMCLQ8tNjAzJwYeBx4kR1keFQcMR1kHAAA%2FKwAYPysREgAXOREzETMxMBM0NyY1NDYzMhcHJiMiBhUUFhceAhUUBgcWFRQGIyInNR4BMzI2NTQmJy4BAQ4BFRQWFz4BNTQmru53z7C9hDWUdmZ5THxkYjR6b3LkzLB3OKFMhY5lZopwAVRSamWUUF9jAwLJakaFf55EezxRRTFFOCxPZEBhpjhHdpirPZQiLFlVMFIuPYsBURp7RkZeQCx%2BRDxbAAAAAgHJBQ4D6QXTAAoAFQAMsw4DEwgALzPNMjEwATQ2MzIVFAYjIiYlNDYzMhUUBiMiJgHJOC5OOycjLwFsOC9NOycjLwViLkNQMUQsKC5DUDFELAAAAwCL%2F%2BwGagXLABYAJgA2AC1AGQYMABIPDB8MAgASEBICDBIMEhsrIxMzGwQAPzM%2FMxI5OS8vXV0RMxEzMTABIgYVFBYzMjcVDgEjIiY1NDYzMhcHJgE0EiQzMgQSFRQCBCMiJAI3FBIEMzIkEjU0AiQjIgQCA6B9hYKAUoFCXjnA0ty%2BgnY8avyXyAFeysUBWtDJ%2FqfNz%2F6iw2muAS2srgEqr67%2B17Cu%2FtavBCOumqmhK3ocFO%2Fc0PU8eDX%2BuMgBXsrC%2FqLQzP6nys8BWsat%2FtOtrgEpsK4BKq%2Bu%2FtcAAAACAKoDFAMMBccAEgAeABtADAkDAAcTDAAEHhoAHwA%2FMj8Q1DLEEjk5MTABMhczNzMDIzcjDgEjIiY1ND4BAzI%2BATU0JiMiBhUUAfJyJwYlVotcDgQoZElNY1OWFj1nRTk5XH0Fx2da%2FWd1OEp4an%2FXe%2F20YrFPPkXOjIsAAgBYAHEDqAO%2BAAYADQAhQA4NBwoGAAMKAwUIAQwFAQAvLzMRMxI5OREzMxEzMzEwEwEXARMHAwUBFwETBwNYAYdO%2FtescecBiwFvVv7lnnHXAkgBdlH%2BuP59MQG6DgGVRf6T%2FqIxAY0AAAAAAQB%2FAQgEFwMZAAUACrICBAUALzMvMTABESMRITUEF4z89AMZ%2Fe8Bg44AAP%2F%2FADcB1QI5AnMSBgAQAAAABACL%2F%2BwGagXLAA8AHwAtADUALUAVJSkpBDUqKgwEIycnLi4MHAQEFAwTAD8zPzMSOS8zEjkREjkvMxE5LzMxMBM0EiQzMgQSFRQCBCMiJAI3FBIEMzIkEjU0AiQjIgQCJRQGBxMjAyMRIxEzMhYBMzI1NCYrAYvIAV7KxQFa0Mn%2Bp83P%2FqLDaa4BLayuASqvrv7XsK7%2B1q8Dtl9V45XPcX%2Flo53%2BWlzDX2ZaAtvIAV7Kwv6i0Mz%2Bp8rPAVrGrf7Tra4BKbCuASqvrv7XCE5%2BI%2F5%2FAWD%2BoANwfv7llUw%2BAAABAOMGFAQXBpgAAwAIsQECAC8zMTABITchA%2FT87yEDEwYUhAACANcDXgNGBcsADAAYAAyzEAoWAwAvMy8zMTATNDYzMh4BFRQGIyImNxQWMzI2NTQmIyIG17WCU5FUtYODtHF0UlNyc1JQdgSTgLhTkVSAtbWAUHR1T1J1dQAAAAIAfwAABBcEmAALAA8AIUAOCQEBBgILAgsCDQUNDAUALy8zERI5OS8vETMzETMxMAEhNSERMxEhFSERIwE1IRUCBP57AYWNAYb%2Beo3%2BewOYAoONAYj%2BeI3%2Bff8AjY0AAAEAYAJKAvYFyQAXABK3Cg8fAhYWASAAPzMRMz8zMTABITclPgI1NCYjIgcnNjMyFhUUBg8BIQKR%2Fc8XAQhzVyg%2BO1ppO32VbX1pkd0BiwJKauRkY1cvNUBQWmVxXmOhfbsAAAABAHcCOQL0BckAIgAbQAwiEBAREQYYHR8LBiEAPzM%2FMxI5LzMSOTEwAR4BFRQGIyInNRYzMjU0KwE3MzI2NTQmIyIHJzYzMhYVFAcCJUVOtqJ9bH1yzbJaFl9hdEU7Zl43bZ9ygM8EDBFmRYSTOH9IqolrUkc8PURdWHBftDYAAAECFATZA7oGIQAJAAixBAkAL80xMAE%2BATczFQ4BByMCFDiLJb4mzEtpBPQ8tzoVMcw2AAAB%2F9X%2BFARqBEgAGgAgQBASDA8HFw8KFRYbDwJGWQ8WAD8rABg%2FPz8zEjk5MTABFDMyPgE3EzMDIzcjDgEjIicjDgEDIwEzAwYBJ5NZpoMiaaPpixgMXbRicDMJCxdIpAFQqJQSAQqTduCdAd77uM15aGBOjP6iBjT9SVwAAQDH%2FvwEtgYUAA8AGkALBggIDgUBDgNJWQ4ALysAGC8zEjkvOTEwASMRIxEjEQYjIiY1EDYzIQS2ctVzPlTYy9roAi3%2B%2FAZ9%2BYMDMxL6%2BwEE%2FgD%2F%2FwCqAksBogNaEAcAEQB%2FAmgAAAAB%2F1b%2BFADTAAAAEQAMswgDEA8ALzPMMjEwExQGIyInNRYzMjU0Jic3MwcW06KFKS0mHq5OPGVqPYP%2B7GJ2CWQGbi4rCLZ5JgABAQICSgKPBbYACgAOtQkGAyAAHgA%2FPzk5MTABMwMjEzY3DgEHJwIZdrqHcBkhGTJ4MwW2%2FJQCDmd6GStPWgAAAgCoAxQC6QXHAAwAFwANtBMDDQofAD8zxDIxMAEUBiMiJjU0PgEzMhYnIgYVFBYzMjY1NALpsZhxh1SXY3V%2B9WZ1TEVedQTDv%2FCOfXXFboYfr45VVbGQpgAAAAACABcAcwNoA8EABgANAB9ADQAGAwcNCgoDBQgBDAUALzMvMxI5OREzMxEzMzEwCQEnAQM3EyUBJwEDNxMDaP53TgEprHHp%2FnX%2BkFYBGp5x2QHl%2Fo5SAUMBhzL%2BQQ7%2Bb0YBaAFiMv5u%2F%2F8AewAABVIFthAnANMCYgAAECYAe8oAEQcA1AJm%2FbcACbMDAhIYAD81NQD%2F%2FwBCAAAFpAW2ECYAe5IAECcA0wIpAAARBwB0Aq79twAHsgIQGAA%2FNQAAAP%2F%2FAFcAAAXoBckQJgB14AAQJwDTAvgAABEHANQC%2FP23AAmzAwIqGAA%2FNTUAAAL%2F%2FP5xAvgEWAAZACUAI0ARBhkZECMjHU9ZIxAQCUlZECMAPysAGD8rERIAORgvOTEwAQ4BDwEGFRQWMzI2NxcOASMiJjU0Njc%2BATcTFAYjIiY1NDYzMhYCkRZkc1%2BfZ2BQlEI%2BWsZXqLaEn4RRFu5RRys1UEMvNgKogqRdS3%2BUXWYzH4EwNKeafNB3Ym1kAUpNWzQ0R18zAAAA%2F%2F%2F%2FiwAABBAHcxImACQAABEHAEP%2F2AFSAAq0AhAQBSYAKxE1%2F%2F%2F%2FiwAABE0HcxImACQAABEHAHYAkwFSAAq0AhgYBSYAKxE1%2F%2F%2F%2FiwAABDgHcxImACQAABEHAMUAQgFSAAq0AhUVBSYAKxE1%2F%2F%2F%2FiwAABI8HLxImACQAABEHAMcAYAFSAAq0AhgYBSYAKxE1%2F%2F%2F%2FiwAABCsHJRImACQAABEHAGoAQgFSAAy1AwIiIgUmACsRNTUAAP%2F%2F%2F4sAAAQQBwISJgAkAAARBwDGAAIAgQAZQA8DAu8YAd8YAW8YAQ8YARgAEV1dXV01NQAAAv%2BJAAAG3QW2AA8AEwA8QCAKDUlZCgoBBhMDSVkTEwEGBRIJEgYSSVkGAwEOSVkBEgA%2FKwAYPysRADMYPxESOS8rERIAORgvKzEwKQETIQEjASEHIQMhByEDIQETIwEFqP0fYv5K%2FtvFA6oDqiH9y2QCEBz973MCNv1%2Fk1T%2BTgHR%2Fi8Ftpn%2BK5b95gHVArD9UAAA%2F%2F8Alv4UBQoFyxImACYAABAHAHoCIwAA%2F%2F8AVgAABGoHcxImACgAABEHAEP%2F%2BwFSAAq0AQ0NBSYAKxE1%2F%2F8AVgAABGoHcxImACgAABEHAHYAfQFSAAq0ARUVBSYAKxE1%2F%2F8AVgAABGoHcxImACgAABEHAMUARgFSAAq0ARISBSYAKxE1%2F%2F8AVgAABGoHJRImACgAABEHAGoAQgFSAAy1AgEfHwUmACsRNTUAAP%2F%2FAFYAAAJRB3MSJgAsAAARBwBD%2FsoBUgAKtAEFBQUmACsRNf%2F%2FAFYAAANCB3MSJgAsAAARBwB2%2F4gBUgAKtAENDQUmACsRNf%2F%2FAFYAAAMoB3MSJgAsAAARBwDF%2FzIBUgAKtAEKCgUmACsRNf%2F%2FAFYAAAMpByUSJgAsAAARBwBq%2F0ABUgAMtQIBFxcFJgArETU1AAAAAgBIAAAFFAW2AA0AGwAtQBcaBwgHSVkXCAgFCgoWSlkKAwUbSlkFEgA%2FKwAYPysREgA5GC8zKxEAMzEwARACBCkBEyM3MxMhIAABMiQSNTQmKwEDIQchAwUU0v56%2Fvr%2BoIeVIJaNAVYBFAEf%2FK3KATKjzseybwFKIf62agNt%2Fvv%2BcNgCiZYCl%2F7V%2FAi3AU7X1939%2FJb%2BCv%2F%2FAFQAAAWoBy8SJgAxAAARBwDHAQgBUgAKtAEZGQUmACsRNf%2F%2FAJb%2F7AWDB3MSJgAyAAARBwBDAGgBUgAKtAIdHQUmACsRNf%2F%2FAJb%2F7AWDB3MSJgAyAAARBwB2ASEBUgAKtAIlJQUmACsRNf%2F%2FAJb%2F7AWDB3MSJgAyAAARBwDFANUBUgAKtAIiIgUmACsRNf%2F%2FAJb%2F7AWDBy8SJgAyAAARBwDHAOUBUgAKtAIlJQUmACsRNf%2F%2FAJb%2F7AWDByUSJgAyAAARBwBqAM8BUgAMtQMCLy8FJgArETU1AAAAAQCoATED8AR3AAsAFkAKAwYACQQCCggEAgAvMy8zEhc5MTAJATcJARcJAQcJAScB5%2F7BYgFAAUNj%2FrwBQmH%2Bvf7AYALTAUFj%2FsABQGD%2BvP6%2BYAFA%2FsJgAAMAd%2F%2BsBbYGBAAXACAAKQAjQBMfIx4kBCYYDxhJWQ8EBCZJWQQTAD8rABg%2FKxESABc5MTABEAIEIyInByc3JjUQEiQzMhYXNxcHHgEBIgYCFRQXASYTNCcBFjMyNhIFg7D%2BuNfIhIFwiWrAAU%2FSY59Ig3KVMDL95534iSkC4VrRIf0jW46Y8YwDi%2F7z%2FlfpYKBcqojrAQgBtOw2OaZcuD68AT%2FK%2Fpjah1wDl1j%2BWnZX%2FHFKwwFsAP%2F%2FAKT%2F7AV%2FB3MSJgA4AAARBwBDAFgBUgAKtAEXFwUmACsRNf%2F%2FAKT%2F7AV%2FB3MSJgA4AAARBwB2ASMBUgAKtAEfHwUmACsRNf%2F%2FAKT%2F7AV%2FB3MSJgA4AAARBwDFAMsBUgAKtAEcHAUmACsRNf%2F%2FAKT%2F7AV%2FByUSJgA4AAARBwBqALoBUgAMtQIBKSkFJgArETU1AAD%2F%2FwC8AAAEwwdzEiYAPAAAEQcAdgBUAVIACrQBEhIFJgArETUAAgBWAAAEUgW2AAwAFQAlQBMJFUpZCQkGBw0ESlkNDQYHAwYSAD8%2FEjkvKxESADkYLysxMAEUACEjAyMBMwMzMhYBMzI2NTQmKwEEUv64%2FsGFRqoBNao1oNXd%2FRCH1%2BKMkaYDPfj%2B%2Bv7BBbb%2FAL792bawfm4AAAAAAf8A%2FhQEWAYfAD8ALEAYNhUnAx4MDDlGWQwAHiRGWR4WAAVGWQAbAD8rABg%2FKwAYPysREgAXOTEwAyInNRYzMjY3AT4BMzIWFRQOAQcGFRQXHgIVFAYjIic1HgEzMjY1NC4BJy4BNTQ%2BATc%2BAjU0JiMiBgcBDgGFRTY9MkFUFwEYK%2BLCorQqUYpuXy9sM9m4r10zhz5xiBUuQlhFJT5dUD4iaVl3hhz%2B7iii%2FhQVjxZfbgUiyMaOfTljW2lTRDhCImtxQ6%2FHR6ApM3RlKD44N0VuPDVWR0U4P0MlQEl9gPrpva7%2F%2FwBi%2F%2BwEYAYhEiYARAAAEQYAQ7EAAAq0AiIiESYAKxE1AAD%2F%2FwBi%2F%2BwEYAYhEiYARAAAEQYAdkQAAAq0AioqESYAKxE1AAD%2F%2FwBi%2F%2BwEYAYhEiYARAAAEQYAxfcAAAq0AicnESYAKxE1AAD%2F%2FwBi%2F%2BwEYAXdEiYARAAAEQYAxxIAAAq0AioqESYAKxE1AAD%2F%2FwBi%2F%2BwEYAXTEiYARAAAEQYAav0AAAy1AwI0NBEmACsRNTX%2F%2FwBi%2F%2BwEYAaBEiYARAAAEQYAxtoAAAy1AwIkJBEmACsRNTUAAwBi%2F%2BwGWARcACoAOABCAEJAJBUYAwYEChE8IUZZPDwFFg8FFTkyETJGWRoRECUrCitGWQAKFgA%2FMysRADMYPzMrEQAzGD8%2FEjkvKxESABc5MTAFIiYnByM3Iw4BIyImNTQSNjMyFhczNzMHNjMyFhUUBCEjBxQWMzI2NxUGJTI2EjU0JiMiBgIVFBYBIgYHMzI2NTQmBI1soygfchoIbaVfeoqN8o5SficLQ20fe9F3k%2F6z%2Fs4nBH2DN3t1pPxrX7t3W01jsGRKA9V1vC8O4vVGFE9Qi9GEYcaqzgFmzGFfrJKmiHS2y1CDkyEzlkuLtwEqlmd6rf7epHJzA1a9pnVvPUIAAAD%2F%2FwBi%2FhQDqgRcEiYARgAAEAcAegF9AAD%2F%2FwBi%2F%2BwDtAYhEiYASAAAEQYAQ4IAAAq0AiQkESYAKxE1AAD%2F%2FwBi%2F%2BwD7wYhEiYASAAAEQYAdjUAAAq0AiwsESYAKxE1AAD%2F%2FwBi%2F%2BwDxgYhEiYASAAAEQYAxdAAAAq0AikpESYAKxE1AAD%2F%2FwBi%2F%2BwDvQXTEiYASAAAEQYAatQAAAy1AwI2NhEmACsRNTX%2F%2FwA7AAAB7AYhEiYAwgAAEQcAQ%2F5lAAAACrQBBQURJgArETX%2F%2FwA7AAAC6gYhEiYAwgAAEQcAdv8wAAAACrQBDQ0RJgArETX%2F%2FwA7AAACxAYhEiYAwgAAEQcAxf7OAAAACrQBCgoRJgArETX%2F%2FwA7AAACwQXTEiYAwgAAEQcAav7YAAAADLUCARcXESYAKxE1NQAAAAIAWv%2FsBHEGJQAgAC4ANEAcGQ8WHgAIBQQDHxYoRlkWFg8fDwYDAQ8hRlkPFgA%2FKwAYPzM%2FEjkvKxESABc5ERI5MTABJic3FhclFwceARUUAgQjIiY1NBI2MzIWFzc1NCYnBScTMj4BNTQmIyIOARUUFgKkQlBfdkYBBEDwV0%2BP%2Fvm0ts2H75RpmSMGSUr%2B8jgxa6Zmg3FtoFdzBT86N3VURpJphXP7kP3%2BfMTQuaABFJ5bTwIRiNBdlWz7vXDgcnaKc8%2BAfoL%2F%2FwA7AAAEUAXdEiYAUQAAEQYAxyEAAAq0ASMjESYAKxE1AAD%2F%2FwBi%2F%2FAEHQYhEiYAUgAAEQYAQ5cAAAq0Ah0dESYAKxE1AAD%2F%2FwBi%2F%2FAEHQYhEiYAUgAAEQYAdjkAAAq0AiUlESYAKxE1AAD%2F%2FwBi%2F%2FAEHQYhEiYAUgAAEQYAxe8AAAq0AiIiESYAKxE1AAD%2F%2FwBi%2F%2FAENQXdEiYAUgAAEQYAxwYAAAq0AiUlESYAKxE1AAD%2F%2FwBi%2F%2FAEHQXTEiYAUgAAEQYAaugAAAy1AwIvLxEmACsRNTUAAwB%2FAPwEFwSoAAMADgAZABC1AAEBEQwRAC8vEjkvMzEwEzUhFQE0MzIWFRQGIyImETQzMhYVFAYjIiZ%2FA5j9xG81Ozw0NDtvNTs8NDQ7AouOjv7qeT08Oj8%2BAvV5PTw6Pz4AAAMAPf%2B0BFAEkwAVAB4AJwAwQBsSDwcEBgkiHB0hERQIDwQPFkZZDxAEJEZZBBYAPysAGD8rERIAFzkYEMYQxjEwARQCBiMiJwcnNyY1NBI2MzIXNxcHFiUiBgIVFBcBJhM0JwEWMzI2EgQXi%2FSakmRiaW1Ek%2FSWkmpoaXc%2B%2FnBsr2QRAgY2jA39%2FjllZ6tfAsG9%2Fqq%2BQX1Sh2eiwgFOsESBT4FhaZL%2B%2FpdcLQKFL%2F7lVCP9fy2PAQIAAAD%2F%2FwBx%2F%2BwEXgYhEiYAWAAAEQYAQ5kAAAq0ARoaESYAKxE1AAD%2F%2FwBx%2F%2BwEXgYhEiYAWAAAEQYAdmgAAAq0ASIiESYAKxE1AAD%2F%2FwBx%2F%2BwEXgYhEiYAWAAAEQYAxQoAAAq0AR8fESYAKxE1AAD%2F%2FwBx%2F%2BwEXgXTEiYAWAAAEQYAagAAAAy1AgEsLBEmACsRNTX%2F%2F%2F87%2FhQEEgYhEiYAXAAAEQYAduAAAAq0ASIiESYAKxE1AAAAAv%2FV%2FhQEOQYUABcAJAAnQBQEDQARCQAIGxEYRlkREAAfRlkAFgA%2FKwAYPysAGD8%2FERI5OTEwBSImJyMGBwMjATMCBgczPgEzMhYVFAIGEyIGAhUUFjMyNhI1NAIhYpQnCggRZqYBsKhfKBMJZbBfi56K9CBgx3VvaWOraBRmWGhI%2FhoIAP5HokR9aMOw1P6exQPjvv7gl251ogErqOMA%2F%2F%2F%2FO%2F4UBBIF0xImAFwAABEGAGqGAAAMtQIBLCwRJgArETU1AAEAOwAAAc0ESAADAAqzAg8BFQA%2FPzEwMyMTM%2BOo6qgESAAAAAIAlv%2FsBykFzQAVACEAOUAgEBNJWRAQAQwMD0lZDAMKG0lZCgQDFklZAxIBEgEUSVkrABg%2FPysAGD8rABg%2FKxESADkYLysxMCkBBiMgABEQEiQzMhchByEDIQchAyEFMjcTJiMiBgIVFBYF9P1eTlD%2FAP7iwAFP0phVAsUf%2FctkAhAf%2FfBzAjX8pEU29kxznfiJxBQBKwEOAQgBtOwXmf4rlv3mFRMEiRbK%2Fpjax98AAwBi%2F%2BwGrARcACEALgA4ADtAHgIOBQwyGEZZMjIFDC8iDCJGWREMEBwpBSlGWQAFFgA%2FMysRADMYPzMrEQAzERI5GC8rERIAOTkxMAUgJw4BIyImNTQSNjMgFz4BMzIWFRQEISMHFBYzMjY3FQYBIgYCFRQWMzISETQmJSIGBzMyNjU0JgTj%2FvJWRc17uNiW%2FJsBDllLzXeLnP63%2FtApBHuBS4xQov0Cba5gfG6xyncCiX2%2FLBLn8EAU4Wty5MLBAU6x4W16g3m3ylCDkzEjlksD3ZL%2B%2FpuNkgFBAQt8hgS9pnp0MEUAAAEBjwTZA%2FYGIQAOAAyzAwsGAQAvM80yMTABIyYnBgcjNT4BNzMWHwED9mc5aIZsbZF3F54lWyoE2TCNd0YbhYEnY4hCAAAAAAICJwTZA90GgQALABcAFUALDx8JLwk%2FCQMJFQMALzPMXTIxMAEUBiMiJjU0NjMyFgc0JiMiBhUUFjMyNgPdeGNldnxfZXZoQDMxQjs4M0AFsGN0c2JedXJhNT4%2BNTY9PQAAAAABAVAE2QQvBd0AFQAStgUTC4AQAAkAL8QyGt3GMzEwASIuAiMiBgcjEjMyHgIzMjY3MwIDRihLR0MgLDMWZDqtLE9HPhssMxpkQgTbIysjOToBAiQrJDY%2F%2Fv4AAAEANwHVA5ECdQADAAixAAEALzMxMBM3IQc3IwM3IgHVoKAAAAEANwHVB2gCdQADAAixAAEALzMxMBM3IQc3IwcOIgHVoKAAAAEAewPBAggFtgAGAAmyAAMDAD%2FNMTATJzYTMwIHgQZirH%2BTOAPBFtMBDP6nnAAAAAEAfQPBAgwFtgAHAAmyBQcDAD%2FGMTABFw4BByMSNwIECCiOWIGGRQW2Flv%2FhQEqywAAAAAB%2F5z%2B%2BAErAO4ABgAIsQQAAC%2FNMTAlFwYHIxI3ASMIcZ2Bfk7uF%2Bv0AR7YAAIAewPBA3sFtgAGAA0ADbQABwMKAwA%2FM80yMTABJzYTMwIHISc2EzMCBwH0CFDAf6Ip%2FdEGYqx%2FkzgDwRa1ASr%2BhXoW0wEM%2FqecAAACAH0DwQN%2FBbYABwAPAA20DAUPBwMAPzPGMjEwARcOAQcjEjchFwYDIzYSNwIECCiOWIGGRQItCl60fzl1HAW2Flv%2FhQEqyxbO%2Fu9%2BASVSAAL%2FnP74ApwA7gAGAA0ADLMLDQQAAC%2FNMzIxMCUXBgcjEjchFwYDIxI3ASMIcZ2Bfk4CKwlfsIGMP%2B4X6%2FQBHtgXzf7uATy6AAEAxwHsApED6QALAAixCQMAL80xMBM0NjMyFhUUBiMiJseTfVxelIBZXQKskaxiXI2yYwABAFgAcQItA74ABgAStgYAAwMBBQEALy8SOREzMzEwEwEXARMHA1gBh07%2B16xx5wJCAXxR%2FrL%2BgzEBtAABABcAcwHsA8EABgAStgAGAwMFAQUALy8SOREzMzEwCQEnAQM3EwHs%2FnhNASiscegB8P6DUgFNAX0y%2FksAAAAAAf4ZAAAC8AW2AAMACrMDAwISAD8%2FMTAJASMBAvD7wpkEPQW2%2BkoFtgAAAAACAFwCSgLfBbwACgAQACFADw0HBhABBQUJEBADBx4DIAA%2FPxI5LzMzETMRMxEzMTABIwcjNyE3ATMDMyMSNwYPAQLJgSt%2FK%2F6TFwHhhXl%2F%2FkUVFFrNAxTKymUCQ%2F3NAUJJJHH2AAAAAAEAP%2F%2FsBNcFyQAmAEtAKQsXGBdOWQgYBhwdHE1ZAx0PHR8dAgkDGB0YHRIhIQBMWSEHEg1MWRIZAD8rABg%2FKxESADk5GC8vX15dETMrEQAzETMrEQAzMTABIgYHIQchBgchByEQITI3FQYjIgI9ASM3MzY3IzczEgAzMhYXByYDoIzkSwGqGv5HFQsBfR3%2BlwEpe4V%2Fl9TpqhuaCBaXG59hAUXPWY5GUHEFMcbHhUFjg%2F6LN5M7AQv1DINQVIUBCwEaKzGKTgAAAAABAAAjAAABBdMYAAAKCvIABQAk%2F3EABQA3ACkABQA5ACkABQA6ACkABQA8ABQABQBE%2F64ABQBG%2F4UABQBH%2F4UABQBI%2F4UABQBK%2F8MABQBQ%2F8MABQBR%2F8MABQBS%2F4UABQBT%2F8MABQBU%2F4UABQBV%2F8MABQBW%2F8MABQBY%2F8MABQCC%2F3EABQCD%2F3EABQCE%2F3EABQCF%2F3EABQCG%2F3EABQCH%2F3EABQCfABQABQCi%2F4UABQCj%2F64ABQCk%2F64ABQCl%2F64ABQCm%2F64ABQCn%2F64ABQCo%2F64ABQCp%2F4UABQCq%2F4UABQCr%2F4UABQCs%2F4UABQCt%2F4UABQC0%2F4UABQC1%2F4UABQC2%2F4UABQC3%2F4UABQC4%2F4UABQC6%2F4UABQC7%2F8MABQC8%2F8MABQC9%2F8MABQC%2B%2F8MABQDE%2F4UACgAk%2F3EACgA3ACkACgA5ACkACgA6ACkACgA8ABQACgBE%2F64ACgBG%2F4UACgBH%2F4UACgBI%2F4UACgBK%2F8MACgBQ%2F8MACgBR%2F8MACgBS%2F4UACgBT%2F8MACgBU%2F4UACgBV%2F8MACgBW%2F8MACgBY%2F8MACgCC%2F3EACgCD%2F3EACgCE%2F3EACgCF%2F3EACgCG%2F3EACgCH%2F3EACgCfABQACgCi%2F4UACgCj%2F64ACgCk%2F64ACgCl%2F64ACgCm%2F64ACgCn%2F64ACgCo%2F64ACgCp%2F4UACgCq%2F4UACgCr%2F4UACgCs%2F4UACgCt%2F4UACgC0%2F4UACgC1%2F4UACgC2%2F4UACgC3%2F4UACgC4%2F4UACgC6%2F4UACgC7%2F8MACgC8%2F8MACgC9%2F8MACgC%2B%2F8MACgDE%2F4UACwAtALgADwAm%2F5oADwAq%2F5oADwAy%2F5oADwA0%2F5oADwA3%2F3EADwA4%2F9cADwA5%2F4UADwA6%2F4UADwA8%2F4UADwCJ%2F5oADwCU%2F5oADwCV%2F5oADwCW%2F5oADwCX%2F5oADwCY%2F5oADwCa%2F5oADwCb%2F9cADwCc%2F9cADwCd%2F9cADwCe%2F9cADwCf%2F4UADwDD%2F5oAEAA3%2F64AEQAm%2F5oAEQAq%2F5oAEQAy%2F5oAEQA0%2F5oAEQA3%2F3EAEQA4%2F9cAEQA5%2F4UAEQA6%2F4UAEQA8%2F4UAEQCJ%2F5oAEQCU%2F5oAEQCV%2F5oAEQCW%2F5oAEQCX%2F5oAEQCY%2F5oAEQCa%2F5oAEQCb%2F9cAEQCc%2F9cAEQCd%2F9cAEQCe%2F9cAEQCf%2F4UAEQDD%2F5oAJAAF%2F3EAJAAK%2F3EAJAAm%2F9cAJAAq%2F9cAJAAtAQoAJAAy%2F9cAJAA0%2F9cAJAA3%2F3EAJAA5%2F64AJAA6%2F64AJAA8%2F4UAJACJ%2F9cAJACU%2F9cAJACV%2F9cAJACW%2F9cAJACX%2F9cAJACY%2F9cAJACa%2F9cAJACf%2F4UAJADD%2F9cAJADL%2F3EAJADO%2F3EAJQAP%2F64AJQAR%2F64AJQAk%2F9cAJQA3%2F8MAJQA5%2F%2BwAJQA6%2F%2BwAJQA7%2F9cAJQA8%2F%2BwAJQA9%2F%2BwAJQCC%2F9cAJQCD%2F9cAJQCE%2F9cAJQCF%2F9cAJQCG%2F9cAJQCH%2F9cAJQCf%2F%2BwAJQDM%2F64AJQDP%2F64AJgAm%2F9cAJgAq%2F9cAJgAy%2F9cAJgA0%2F9cAJgCJ%2F9cAJgCU%2F9cAJgCV%2F9cAJgCW%2F9cAJgCX%2F9cAJgCY%2F9cAJgCa%2F9cAJgDD%2F9cAJwAP%2F64AJwAR%2F64AJwAk%2F9cAJwA3%2F8MAJwA5%2F%2BwAJwA6%2F%2BwAJwA7%2F9cAJwA8%2F%2BwAJwA9%2F%2BwAJwCC%2F9cAJwCD%2F9cAJwCE%2F9cAJwCF%2F9cAJwCG%2F9cAJwCH%2F9cAJwCf%2F%2BwAJwDM%2F64AJwDP%2F64AKAAtAHsAKQAP%2F4UAKQAR%2F4UAKQAiACkAKQAk%2F9cAKQCC%2F9cAKQCD%2F9cAKQCE%2F9cAKQCF%2F9cAKQCG%2F9cAKQCH%2F9cAKQDM%2F4UAKQDP%2F4UALgAm%2F9cALgAq%2F9cALgAy%2F9cALgA0%2F9cALgCJ%2F9cALgCU%2F9cALgCV%2F9cALgCW%2F9cALgCX%2F9cALgCY%2F9cALgCa%2F9cALgDD%2F9cALwAF%2F1wALwAK%2F1wALwAm%2F9cALwAq%2F9cALwAy%2F9cALwA0%2F9cALwA3%2F9cALwA4%2F%2BwALwA5%2F9cALwA6%2F9cALwA8%2F8MALwCJ%2F9cALwCU%2F9cALwCV%2F9cALwCW%2F9cALwCX%2F9cALwCY%2F9cALwCa%2F9cALwCb%2F%2BwALwCc%2F%2BwALwCd%2F%2BwALwCe%2F%2BwALwCf%2F8MALwDD%2F9cALwDL%2F1wALwDO%2F1wAMgAP%2F64AMgAR%2F64AMgAk%2F9cAMgA3%2F8MAMgA5%2F%2BwAMgA6%2F%2BwAMgA7%2F9cAMgA8%2F%2BwAMgA9%2F%2BwAMgCC%2F9cAMgCD%2F9cAMgCE%2F9cAMgCF%2F9cAMgCG%2F9cAMgCH%2F9cAMgCf%2F%2BwAMgDM%2F64AMgDP%2F64AMwAP%2FvYAMwAR%2FvYAMwAk%2F5oAMwA7%2F9cAMwA9%2F%2BwAMwCC%2F5oAMwCD%2F5oAMwCE%2F5oAMwCF%2F5oAMwCG%2F5oAMwCH%2F5oAMwDM%2FvYAMwDP%2FvYANAAP%2F64ANAAR%2F64ANAAk%2F9cANAA3%2F8MANAA5%2F%2BwANAA6%2F%2BwANAA7%2F9cANAA8%2F%2BwANAA9%2F%2BwANACC%2F9cANACD%2F9cANACE%2F9cANACF%2F9cANACG%2F9cANACH%2F9cANACf%2F%2BwANADM%2F64ANADP%2F64ANwAP%2F4UANwAQ%2F64ANwAR%2F4UANwAiACkANwAk%2F3EANwAm%2F9cANwAq%2F9cANwAy%2F9cANwA0%2F9cANwA3ACkANwBE%2F1wANwBG%2F3EANwBH%2F3EANwBI%2F3EANwBK%2F3EANwBQ%2F5oANwBR%2F5oANwBS%2F3EANwBT%2F5oANwBU%2F3EANwBV%2F5oANwBW%2F4UANwBY%2F5oANwBZ%2F9cANwBa%2F9cANwBb%2F9cANwBc%2F9cANwBd%2F64ANwCC%2F3EANwCD%2F3EANwCE%2F3EANwCF%2F3EANwCG%2F3EANwCH%2F3EANwCJ%2F9cANwCU%2F9cANwCV%2F9cANwCW%2F9cANwCX%2F9cANwCY%2F9cANwCa%2F9cANwCi%2F3EANwCj%2F1wANwCk%2F1wANwCl%2F1wANwCm%2F1wANwCn%2F1wANwCo%2F1wANwCp%2F3EANwCq%2F3EANwCr%2F3EANwCs%2F3EANwCt%2F3EANwC0%2F3EANwC1%2F3EANwC2%2F3EANwC3%2F3EANwC4%2F3EANwC6%2F3EANwC7%2F5oANwC8%2F5oANwC9%2F5oANwC%2B%2F5oANwC%2F%2F9cANwDD%2F9cANwDE%2F3EANwDI%2F64ANwDJ%2F64ANwDM%2F4UANwDP%2F4UAOAAP%2F9cAOAAR%2F9cAOAAk%2F%2BwAOACC%2F%2BwAOACD%2F%2BwAOACE%2F%2BwAOACF%2F%2BwAOACG%2F%2BwAOACH%2F%2BwAOADM%2F9cAOADP%2F9cAOQAP%2F5oAOQAR%2F5oAOQAiACkAOQAk%2F64AOQAm%2F%2BwAOQAq%2F%2BwAOQAy%2F%2BwAOQA0%2F%2BwAOQBE%2F9cAOQBG%2F9cAOQBH%2F9cAOQBI%2F9cAOQBK%2F%2BwAOQBQ%2F%2BwAOQBR%2F%2BwAOQBS%2F9cAOQBT%2F%2BwAOQBU%2F9cAOQBV%2F%2BwAOQBW%2F%2BwAOQBY%2F%2BwAOQCC%2F64AOQCD%2F64AOQCE%2F64AOQCF%2F64AOQCG%2F64AOQCH%2F64AOQCJ%2F%2BwAOQCU%2F%2BwAOQCV%2F%2BwAOQCW%2F%2BwAOQCX%2F%2BwAOQCY%2F%2BwAOQCa%2F%2BwAOQCi%2F9cAOQCj%2F9cAOQCk%2F9cAOQCl%2F9cAOQCm%2F9cAOQCn%2F9cAOQCo%2F9cAOQCp%2F9cAOQCq%2F9cAOQCr%2F9cAOQCs%2F9cAOQCt%2F9cAOQC0%2F9cAOQC1%2F9cAOQC2%2F9cAOQC3%2F9cAOQC4%2F9cAOQC6%2F9cAOQC7%2F%2BwAOQC8%2F%2BwAOQC9%2F%2BwAOQC%2B%2F%2BwAOQDD%2F%2BwAOQDE%2F9cAOQDM%2F5oAOQDP%2F5oAOgAP%2F5oAOgAR%2F5oAOgAiACkAOgAk%2F64AOgAm%2F%2BwAOgAq%2F%2BwAOgAy%2F%2BwAOgA0%2F%2BwAOgBE%2F9cAOgBG%2F9cAOgBH%2F9cAOgBI%2F9cAOgBK%2F%2BwAOgBQ%2F%2BwAOgBR%2F%2BwAOgBS%2F9cAOgBT%2F%2BwAOgBU%2F9cAOgBV%2F%2BwAOgBW%2F%2BwAOgBY%2F%2BwAOgCC%2F64AOgCD%2F64AOgCE%2F64AOgCF%2F64AOgCG%2F64AOgCH%2F64AOgCJ%2F%2BwAOgCU%2F%2BwAOgCV%2F%2BwAOgCW%2F%2BwAOgCX%2F%2BwAOgCY%2F%2BwAOgCa%2F%2BwAOgCi%2F9cAOgCj%2F9cAOgCk%2F9cAOgCl%2F9cAOgCm%2F9cAOgCn%2F9cAOgCo%2F9cAOgCp%2F9cAOgCq%2F9cAOgCr%2F9cAOgCs%2F9cAOgCt%2F9cAOgC0%2F9cAOgC1%2F9cAOgC2%2F9cAOgC3%2F9cAOgC4%2F9cAOgC6%2F9cAOgC7%2F%2BwAOgC8%2F%2BwAOgC9%2F%2BwAOgC%2B%2F%2BwAOgDD%2F%2BwAOgDE%2F9cAOgDM%2F5oAOgDP%2F5oAOwAm%2F9cAOwAq%2F9cAOwAy%2F9cAOwA0%2F9cAOwCJ%2F9cAOwCU%2F9cAOwCV%2F9cAOwCW%2F9cAOwCX%2F9cAOwCY%2F9cAOwCa%2F9cAOwDD%2F9cAPAAP%2F4UAPAAR%2F4UAPAAiACkAPAAk%2F4UAPAAm%2F9cAPAAq%2F9cAPAAy%2F9cAPAA0%2F9cAPABE%2F5oAPABG%2F5oAPABH%2F5oAPABI%2F5oAPABK%2F9cAPABQ%2F8MAPABR%2F8MAPABS%2F5oAPABT%2F8MAPABU%2F5oAPABV%2F8MAPABW%2F64APABY%2F8MAPABd%2F9cAPACC%2F4UAPACD%2F4UAPACE%2F4UAPACF%2F4UAPACG%2F4UAPACH%2F4UAPACJ%2F9cAPACU%2F9cAPACV%2F9cAPACW%2F9cAPACX%2F9cAPACY%2F9cAPACa%2F9cAPACi%2F5oAPACj%2F5oAPACk%2F5oAPACl%2F5oAPACm%2F5oAPACn%2F5oAPACo%2F5oAPACp%2F5oAPACq%2F5oAPACr%2F5oAPACs%2F5oAPACt%2F5oAPAC0%2F5oAPAC1%2F5oAPAC2%2F5oAPAC3%2F5oAPAC4%2F5oAPAC6%2F5oAPAC7%2F8MAPAC8%2F8MAPAC9%2F8MAPAC%2B%2F8MAPADD%2F9cAPADE%2F5oAPADM%2F4UAPADP%2F4UAPQAm%2F%2BwAPQAq%2F%2BwAPQAy%2F%2BwAPQA0%2F%2BwAPQCJ%2F%2BwAPQCU%2F%2BwAPQCV%2F%2BwAPQCW%2F%2BwAPQCX%2F%2BwAPQCY%2F%2BwAPQCa%2F%2BwAPQDD%2F%2BwAPgAtALgARAAF%2F%2BwARAAK%2F%2BwARADL%2F%2BwARADO%2F%2BwARQAF%2F%2BwARQAK%2F%2BwARQBZ%2F9cARQBa%2F9cARQBb%2F9cARQBc%2F9cARQBd%2F%2BwARQC%2F%2F9cARQDL%2F%2BwARQDO%2F%2BwARgAFACkARgAKACkARgDLACkARgDOACkASAAF%2F%2BwASAAK%2F%2BwASABZ%2F9cASABa%2F9cASABb%2F9cASABc%2F9cASABd%2F%2BwASAC%2F%2F9cASADL%2F%2BwASADO%2F%2BwASQAFAHsASQAKAHsASQDLAHsASQDOAHsASwAF%2F%2BwASwAK%2F%2BwASwDL%2F%2BwASwDO%2F%2BwATgBG%2F9cATgBH%2F9cATgBI%2F9cATgBS%2F9cATgBU%2F9cATgCi%2F9cATgCp%2F9cATgCq%2F9cATgCr%2F9cATgCs%2F9cATgCt%2F9cATgC0%2F9cATgC1%2F9cATgC2%2F9cATgC3%2F9cATgC4%2F9cATgC6%2F9cATgDE%2F9cAUAAF%2F%2BwAUAAK%2F%2BwAUADL%2F%2BwAUADO%2F%2BwAUQAF%2F%2BwAUQAK%2F%2BwAUQDL%2F%2BwAUQDO%2F%2BwAUgAF%2F%2BwAUgAK%2F%2BwAUgBZ%2F9cAUgBa%2F9cAUgBb%2F9cAUgBc%2F9cAUgBd%2F%2BwAUgC%2F%2F9cAUgDL%2F%2BwAUgDO%2F%2BwAUwAF%2F%2BwAUwAK%2F%2BwAUwBZ%2F9cAUwBa%2F9cAUwBb%2F9cAUwBc%2F9cAUwBd%2F%2BwAUwC%2F%2F9cAUwDL%2F%2BwAUwDO%2F%2BwAVQAFAFIAVQAKAFIAVQBE%2F9cAVQBG%2F9cAVQBH%2F9cAVQBI%2F9cAVQBK%2F%2BwAVQBS%2F9cAVQBU%2F9cAVQCi%2F9cAVQCj%2F9cAVQCk%2F9cAVQCl%2F9cAVQCm%2F9cAVQCn%2F9cAVQCo%2F9cAVQCp%2F9cAVQCq%2F9cAVQCr%2F9cAVQCs%2F9cAVQCt%2F9cAVQC0%2F9cAVQC1%2F9cAVQC2%2F9cAVQC3%2F9cAVQC4%2F9cAVQC6%2F9cAVQDE%2F9cAVQDLAFIAVQDOAFIAVwAFACkAVwAKACkAVwDLACkAVwDOACkAWQAFAFIAWQAKAFIAWQAP%2F64AWQAR%2F64AWQAiACkAWQDLAFIAWQDM%2F64AWQDOAFIAWQDP%2F64AWgAFAFIAWgAKAFIAWgAP%2F64AWgAR%2F64AWgAiACkAWgDLAFIAWgDM%2F64AWgDOAFIAWgDP%2F64AWwBG%2F9cAWwBH%2F9cAWwBI%2F9cAWwBS%2F9cAWwBU%2F9cAWwCi%2F9cAWwCp%2F9cAWwCq%2F9cAWwCr%2F9cAWwCs%2F9cAWwCt%2F9cAWwC0%2F9cAWwC1%2F9cAWwC2%2F9cAWwC3%2F9cAWwC4%2F9cAWwC6%2F9cAWwDE%2F9cAXAAFAFIAXAAKAFIAXAAP%2F64AXAAR%2F64AXAAiACkAXADLAFIAXADM%2F64AXADOAFIAXADP%2F64AXgAtALgAggAF%2F3EAggAK%2F3EAggAm%2F9cAggAq%2F9cAggAtAQoAggAy%2F9cAggA0%2F9cAggA3%2F3EAggA5%2F64AggA6%2F64AggA8%2F4UAggCJ%2F9cAggCU%2F9cAggCV%2F9cAggCW%2F9cAggCX%2F9cAggCY%2F9cAggCa%2F9cAggCf%2F4UAggDD%2F9cAggDL%2F3EAggDO%2F3EAgwAF%2F3EAgwAK%2F3EAgwAm%2F9cAgwAq%2F9cAgwAtAQoAgwAy%2F9cAgwA0%2F9cAgwA3%2F3EAgwA5%2F64AgwA6%2F64AgwA8%2F4UAgwCJ%2F9cAgwCU%2F9cAgwCV%2F9cAgwCW%2F9cAgwCX%2F9cAgwCY%2F9cAgwCa%2F9cAgwCf%2F4UAgwDD%2F9cAgwDL%2F3EAgwDO%2F3EAhAAF%2F3EAhAAK%2F3EAhAAm%2F9cAhAAq%2F9cAhAAtAQoAhAAy%2F9cAhAA0%2F9cAhAA3%2F3EAhAA5%2F64AhAA6%2F64AhAA8%2F4UAhACJ%2F9cAhACU%2F9cAhACV%2F9cAhACW%2F9cAhACX%2F9cAhACY%2F9cAhACa%2F9cAhACf%2F4UAhADD%2F9cAhADL%2F3EAhADO%2F3EAhQAF%2F3EAhQAK%2F3EAhQAm%2F9cAhQAq%2F9cAhQAtAQoAhQAy%2F9cAhQA0%2F9cAhQA3%2F3EAhQA5%2F64AhQA6%2F64AhQA8%2F4UAhQCJ%2F9cAhQCU%2F9cAhQCV%2F9cAhQCW%2F9cAhQCX%2F9cAhQCY%2F9cAhQCa%2F9cAhQCf%2F4UAhQDD%2F9cAhQDL%2F3EAhQDO%2F3EAhgAF%2F3EAhgAK%2F3EAhgAm%2F9cAhgAq%2F9cAhgAtAQoAhgAy%2F9cAhgA0%2F9cAhgA3%2F3EAhgA5%2F64AhgA6%2F64AhgA8%2F4UAhgCJ%2F9cAhgCU%2F9cAhgCV%2F9cAhgCW%2F9cAhgCX%2F9cAhgCY%2F9cAhgCa%2F9cAhgCf%2F4UAhgDD%2F9cAhgDL%2F3EAhgDO%2F3EAhwAF%2F3EAhwAK%2F3EAhwAm%2F9cAhwAq%2F9cAhwAtAQoAhwAy%2F9cAhwA0%2F9cAhwA3%2F3EAhwA5%2F64AhwA6%2F64AhwA8%2F4UAhwCJ%2F9cAhwCU%2F9cAhwCV%2F9cAhwCW%2F9cAhwCX%2F9cAhwCY%2F9cAhwCa%2F9cAhwCf%2F4UAhwDD%2F9cAhwDL%2F3EAhwDO%2F3EAiAAtAHsAiQAm%2F9cAiQAq%2F9cAiQAy%2F9cAiQA0%2F9cAiQCJ%2F9cAiQCU%2F9cAiQCV%2F9cAiQCW%2F9cAiQCX%2F9cAiQCY%2F9cAiQCa%2F9cAiQDD%2F9cAigAtAHsAiwAtAHsAjAAtAHsAjQAtAHsAkgAP%2F64AkgAR%2F64AkgAk%2F9cAkgA3%2F8MAkgA5%2F%2BwAkgA6%2F%2BwAkgA7%2F9cAkgA8%2F%2BwAkgA9%2F%2BwAkgCC%2F9cAkgCD%2F9cAkgCE%2F9cAkgCF%2F9cAkgCG%2F9cAkgCH%2F9cAkgCf%2F%2BwAkgDM%2F64AkgDP%2F64AlAAP%2F64AlAAR%2F64AlAAk%2F9cAlAA3%2F8MAlAA5%2F%2BwAlAA6%2F%2BwAlAA7%2F9cAlAA8%2F%2BwAlAA9%2F%2BwAlACC%2F9cAlACD%2F9cAlACE%2F9cAlACF%2F9cAlACG%2F9cAlACH%2F9cAlACf%2F%2BwAlADM%2F64AlADP%2F64AlQAP%2F64AlQAR%2F64AlQAk%2F9cAlQA3%2F8MAlQA5%2F%2BwAlQA6%2F%2BwAlQA7%2F9cAlQA8%2F%2BwAlQA9%2F%2BwAlQCC%2F9cAlQCD%2F9cAlQCE%2F9cAlQCF%2F9cAlQCG%2F9cAlQCH%2F9cAlQCf%2F%2BwAlQDM%2F64AlQDP%2F64AlgAP%2F64AlgAR%2F64AlgAk%2F9cAlgA3%2F8MAlgA5%2F%2BwAlgA6%2F%2BwAlgA7%2F9cAlgA8%2F%2BwAlgA9%2F%2BwAlgCC%2F9cAlgCD%2F9cAlgCE%2F9cAlgCF%2F9cAlgCG%2F9cAlgCH%2F9cAlgCf%2F%2BwAlgDM%2F64AlgDP%2F64AlwAP%2F64AlwAR%2F64AlwAk%2F9cAlwA3%2F8MAlwA5%2F%2BwAlwA6%2F%2BwAlwA7%2F9cAlwA8%2F%2BwAlwA9%2F%2BwAlwCC%2F9cAlwCD%2F9cAlwCE%2F9cAlwCF%2F9cAlwCG%2F9cAlwCH%2F9cAlwCf%2F%2BwAlwDM%2F64AlwDP%2F64AmAAP%2F64AmAAR%2F64AmAAk%2F9cAmAA3%2F8MAmAA5%2F%2BwAmAA6%2F%2BwAmAA7%2F9cAmAA8%2F%2BwAmAA9%2F%2BwAmACC%2F9cAmACD%2F9cAmACE%2F9cAmACF%2F9cAmACG%2F9cAmACH%2F9cAmACf%2F%2BwAmADM%2F64AmADP%2F64AmgAP%2F64AmgAR%2F64AmgAk%2F9cAmgA3%2F8MAmgA5%2F%2BwAmgA6%2F%2BwAmgA7%2F9cAmgA8%2F%2BwAmgA9%2F%2BwAmgCC%2F9cAmgCD%2F9cAmgCE%2F9cAmgCF%2F9cAmgCG%2F9cAmgCH%2F9cAmgCf%2F%2BwAmgDM%2F64AmgDP%2F64AmwAP%2F9cAmwAR%2F9cAmwAk%2F%2BwAmwCC%2F%2BwAmwCD%2F%2BwAmwCE%2F%2BwAmwCF%2F%2BwAmwCG%2F%2BwAmwCH%2F%2BwAmwDM%2F9cAmwDP%2F9cAnAAP%2F9cAnAAR%2F9cAnAAk%2F%2BwAnACC%2F%2BwAnACD%2F%2BwAnACE%2F%2BwAnACF%2F%2BwAnACG%2F%2BwAnACH%2F%2BwAnADM%2F9cAnADP%2F9cAnQAP%2F9cAnQAR%2F9cAnQAk%2F%2BwAnQCC%2F%2BwAnQCD%2F%2BwAnQCE%2F%2BwAnQCF%2F%2BwAnQCG%2F%2BwAnQCH%2F%2BwAnQDM%2F9cAnQDP%2F9cAngAP%2F9cAngAR%2F9cAngAk%2F%2BwAngCC%2F%2BwAngCD%2F%2BwAngCE%2F%2BwAngCF%2F%2BwAngCG%2F%2BwAngCH%2F%2BwAngDM%2F9cAngDP%2F9cAnwAP%2F4UAnwAR%2F4UAnwAiACkAnwAk%2F4UAnwAm%2F9cAnwAq%2F9cAnwAy%2F9cAnwA0%2F9cAnwBE%2F5oAnwBG%2F5oAnwBH%2F5oAnwBI%2F5oAnwBK%2F9cAnwBQ%2F8MAnwBR%2F8MAnwBS%2F5oAnwBT%2F8MAnwBU%2F5oAnwBV%2F8MAnwBW%2F64AnwBY%2F8MAnwBd%2F9cAnwCC%2F4UAnwCD%2F4UAnwCE%2F4UAnwCF%2F4UAnwCG%2F4UAnwCH%2F4UAnwCJ%2F9cAnwCU%2F9cAnwCV%2F9cAnwCW%2F9cAnwCX%2F9cAnwCY%2F9cAnwCa%2F9cAnwCi%2F5oAnwCj%2F5oAnwCk%2F5oAnwCl%2F5oAnwCm%2F5oAnwCn%2F5oAnwCo%2F5oAnwCp%2F5oAnwCq%2F5oAnwCr%2F5oAnwCs%2F5oAnwCt%2F5oAnwC0%2F5oAnwC1%2F5oAnwC2%2F5oAnwC3%2F5oAnwC4%2F5oAnwC6%2F5oAnwC7%2F8MAnwC8%2F8MAnwC9%2F8MAnwC%2B%2F8MAnwDD%2F9cAnwDE%2F5oAnwDM%2F4UAnwDP%2F4UAoAAP%2FvYAoAAR%2FvYAoAAk%2F5oAoAA7%2F9cAoAA9%2F%2BwAoACC%2F5oAoACD%2F5oAoACE%2F5oAoACF%2F5oAoACG%2F5oAoACH%2F5oAoADM%2FvYAoADP%2FvYAogAF%2F%2BwAogAK%2F%2BwAogDL%2F%2BwAogDO%2F%2BwAowAF%2F%2BwAowAK%2F%2BwAowDL%2F%2BwAowDO%2F%2BwApAAF%2F%2BwApAAK%2F%2BwApADL%2F%2BwApADO%2F%2BwApQAF%2F%2BwApQAK%2F%2BwApQDL%2F%2BwApQDO%2F%2BwApgAF%2F%2BwApgAK%2F%2BwApgDL%2F%2BwApgDO%2F%2BwApwAF%2F%2BwApwAK%2F%2BwApwDL%2F%2BwApwDO%2F%2BwAqgAF%2F%2BwAqgAK%2F%2BwAqgBZ%2F9cAqgBa%2F9cAqgBb%2F9cAqgBc%2F9cAqgBd%2F%2BwAqgC%2F%2F9cAqgDL%2F%2BwAqgDO%2F%2BwAqwAF%2F%2BwAqwAK%2F%2BwAqwBZ%2F9cAqwBa%2F9cAqwBb%2F9cAqwBc%2F9cAqwBd%2F%2BwAqwC%2F%2F9cAqwDL%2F%2BwAqwDO%2F%2BwArAAF%2F%2BwArAAK%2F%2BwArABZ%2F9cArABa%2F9cArABb%2F9cArABc%2F9cArABd%2F%2BwArAC%2F%2F9cArADL%2F%2BwArADO%2F%2BwArQAF%2F%2BwArQAK%2F%2BwArQBZ%2F9cArQBa%2F9cArQBb%2F9cArQBc%2F9cArQBd%2F%2BwArQC%2F%2F9cArQDL%2F%2BwArQDO%2F%2BwAsgAF%2F%2BwAsgAK%2F%2BwAsgBZ%2F9cAsgBa%2F9cAsgBb%2F9cAsgBc%2F9cAsgBd%2F%2BwAsgC%2F%2F9cAsgDL%2F%2BwAsgDO%2F%2BwAtAAF%2F%2BwAtAAK%2F%2BwAtABZ%2F9cAtABa%2F9cAtABb%2F9cAtABc%2F9cAtABd%2F%2BwAtAC%2F%2F9cAtADL%2F%2BwAtADO%2F%2BwAtQAF%2F%2BwAtQAK%2F%2BwAtQBZ%2F9cAtQBa%2F9cAtQBb%2F9cAtQBc%2F9cAtQBd%2F%2BwAtQC%2F%2F9cAtQDL%2F%2BwAtQDO%2F%2BwAtgAF%2F%2BwAtgAK%2F%2BwAtgBZ%2F9cAtgBa%2F9cAtgBb%2F9cAtgBc%2F9cAtgBd%2F%2BwAtgC%2F%2F9cAtgDL%2F%2BwAtgDO%2F%2BwAuAAF%2F9cAuAAK%2F9cAuADL%2F9cAuADO%2F9cAugAF%2F%2BwAugAK%2F%2BwAugBZ%2F9cAugBa%2F9cAugBb%2F9cAugBc%2F9cAugBd%2F%2BwAugC%2F%2F9cAugDL%2F%2BwAugDO%2F%2BwAvwAFAFIAvwAKAFIAvwAP%2F64AvwAR%2F64AvwAiACkAvwDLAFIAvwDM%2F64AvwDOAFIAvwDP%2F64AwAAF%2F%2BwAwAAK%2F%2BwAwABZ%2F9cAwABa%2F9cAwABb%2F9cAwABc%2F9cAwABd%2F%2BwAwAC%2F%2F9cAwADL%2F%2BwAwADO%2F%2BwAwQAFAFIAwQAKAFIAwQAP%2F64AwQAR%2F64AwQAiACkAwQDLAFIAwQDM%2F64AwQDOAFIAwQDP%2F64AwwAtAHsAyAA3%2F64AyQA3%2F64AygAk%2F3EAygA3ACkAygA5ACkAygA6ACkAygA8ABQAygBE%2F64AygBG%2F4UAygBH%2F4UAygBI%2F4UAygBK%2F8MAygBQ%2F8MAygBR%2F8MAygBS%2F4UAygBT%2F8MAygBU%2F4UAygBV%2F8MAygBW%2F8MAygBY%2F8MAygCC%2F3EAygCD%2F3EAygCE%2F3EAygCF%2F3EAygCG%2F3EAygCH%2F3EAygCfABQAygCi%2F4UAygCj%2F64AygCk%2F64AygCl%2F64AygCm%2F64AygCn%2F64AygCo%2F64AygCp%2F4UAygCq%2F4UAygCr%2F4UAygCs%2F4UAygCt%2F4UAygC0%2F4UAygC1%2F4UAygC2%2F4UAygC3%2F4UAygC4%2F4UAygC6%2F4UAygC7%2F8MAygC8%2F8MAygC9%2F8MAygC%2B%2F8MAygDE%2F4UAywAk%2F3EAywA3ACkAywA5ACkAywA6ACkAywA8ABQAywBE%2F64AywBG%2F4UAywBH%2F4UAywBI%2F4UAywBK%2F8MAywBQ%2F8MAywBR%2F8MAywBS%2F4UAywBT%2F8MAywBU%2F4UAywBV%2F8MAywBW%2F8MAywBY%2F8MAywCC%2F3EAywCD%2F3EAywCE%2F3EAywCF%2F3EAywCG%2F3EAywCH%2F3EAywCfABQAywCi%2F4UAywCj%2F64AywCk%2F64AywCl%2F64AywCm%2F64AywCn%2F64AywCo%2F64AywCp%2F4UAywCq%2F4UAywCr%2F4UAywCs%2F4UAywCt%2F4UAywC0%2F4UAywC1%2F4UAywC2%2F4UAywC3%2F4UAywC4%2F4UAywC6%2F4UAywC7%2F8MAywC8%2F8MAywC9%2F8MAywC%2B%2F8MAywDE%2F4UAzAAm%2F5oAzAAq%2F5oAzAAy%2F5oAzAA0%2F5oAzAA3%2F3EAzAA4%2F9cAzAA5%2F4UAzAA6%2F4UAzAA8%2F4UAzACJ%2F5oAzACU%2F5oAzACV%2F5oAzACW%2F5oAzACX%2F5oAzACY%2F5oAzACa%2F5oAzACb%2F9cAzACc%2F9cAzACd%2F9cAzACe%2F9cAzACf%2F4UAzADD%2F5oAzQAk%2F3EAzQA3ACkAzQA5ACkAzQA6ACkAzQA8ABQAzQBE%2F64AzQBG%2F4UAzQBH%2F4UAzQBI%2F4UAzQBK%2F8MAzQBQ%2F8MAzQBR%2F8MAzQBS%2F4UAzQBT%2F8MAzQBU%2F4UAzQBV%2F8MAzQBW%2F8MAzQBY%2F8MAzQCC%2F3EAzQCD%2F3EAzQCE%2F3EAzQCF%2F3EAzQCG%2F3EAzQCH%2F3EAzQCfABQAzQCi%2F4UAzQCj%2F64AzQCk%2F64AzQCl%2F64AzQCm%2F64AzQCn%2F64AzQCo%2F64AzQCp%2F4UAzQCq%2F4UAzQCr%2F4UAzQCs%2F4UAzQCt%2F4UAzQC0%2F4UAzQC1%2F4UAzQC2%2F4UAzQC3%2F4UAzQC4%2F4UAzQC6%2F4UAzQC7%2F8MAzQC8%2F8MAzQC9%2F8MAzQC%2B%2F8MAzQDE%2F4UAzwAm%2F5oAzwAq%2F5oAzwAy%2F5oAzwA0%2F5oAzwA3%2F3EAzwA4%2F9cAzwA5%2F4UAzwA6%2F4UAzwA8%2F4UAzwCJ%2F5oAzwCU%2F5oAzwCV%2F5oAzwCW%2F5oAzwCX%2F5oAzwCY%2F5oAzwCa%2F5oAzwCb%2F9cAzwCc%2F9cAzwCd%2F9cAzwCe%2F9cAzwCf%2F4UAzwDD%2F5oAAAAaAT4AAQAAAAAAAAA5AHQAAQAAAAAAAQAJAMIAAQAAAAAAAgAGANoAAQAAAAAAAwAlAS0AAQAAAAAABAAQAXUAAQAAAAAABQAMAaAAAQAAAAAABgAPAc0AAQAAAAAABwBSAoMAAQAAAAAACAAUAwAAAQAAAAAACwAcA08AAQAAAAAADAAuA8oAAQAAAAAADQAuBFcAAQAAAAAADgAqBNwAAwABBAkAAAByAAAAAwABBAkAAQASAK4AAwABBAkAAgAMAMwAAwABBAkAAwBKAOEAAwABBAkABAAgAVMAAwABBAkABQAYAYYAAwABBAkABgAeAa0AAwABBAkABwCkAd0AAwABBAkACAAoAtYAAwABBAkACwA4AxUAAwABBAkADABcA2wAAwABBAkADQBcA%2FkAAwABBAkADgBUBIYARABpAGcAaQB0AGkAegBlAGQAIABkAGEAdABhACAAYwBvAHAAeQByAGkAZwBoAHQAIACpACAAMgAwADEAMAAtADIAMAAxADEALAAgAEcAbwBvAGcAbABlACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAC4AAERpZ2l0aXplZCBkYXRhIGNvcHlyaWdodCCpIDIwMTAtMjAxMSwgR29vZ2xlIENvcnBvcmF0aW9uLgAATwBwAGUAbgAgAFMAYQBuAHMAAE9wZW4gU2FucwAASQB0AGEAbABpAGMAAEl0YWxpYwAAQQBzAGMAZQBuAGQAZQByACAALQAgAE8AcABlAG4AIABTAGEAbgBzACAASQB0AGEAbABpAGMAIABCAHUAaQBsAGQAIAAxADAAMAAAQXNjZW5kZXIgLSBPcGVuIFNhbnMgSXRhbGljIEJ1aWxkIDEwMAAATwBwAGUAbgAgAFMAYQBuAHMAIABJAHQAYQBsAGkAYwAAT3BlbiBTYW5zIEl0YWxpYwAAVgBlAHIAcwBpAG8AbgAgADEALgAxADAAAFZlcnNpb24gMS4xMAAATwBwAGUAbgBTAGEAbgBzAC0ASQB0AGEAbABpAGMAAE9wZW5TYW5zLUl0YWxpYwAATwBwAGUAbgAgAFMAYQBuAHMAIABpAHMAIABhACAAdAByAGEAZABlAG0AYQByAGsAIABvAGYAIABHAG8AbwBnAGwAZQAgAGEAbgBkACAAbQBhAHkAIABiAGUAIAByAGUAZwBpAHMAdABlAHIAZQBkACAAaQBuACAAYwBlAHIAdABhAGkAbgAgAGoAdQByAGkAcwBkAGkAYwB0AGkAbwBuAHMALgAAT3BlbiBTYW5zIGlzIGEgdHJhZGVtYXJrIG9mIEdvb2dsZSBhbmQgbWF5IGJlIHJlZ2lzdGVyZWQgaW4gY2VydGFpbiBqdXJpc2RpY3Rpb25zLgAAQQBzAGMAZQBuAGQAZQByACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAABBc2NlbmRlciBDb3Jwb3JhdGlvbgAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tLwAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwB0AHkAcABlAGQAZQBzAGkAZwBuAGUAcgBzAC4AaAB0AG0AbAAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tL3R5cGVkZXNpZ25lcnMuaHRtbAAATABpAGMAZQBuAHMAZQBkACAAdQBuAGQAZQByACAAdABoAGUAIABBAHAAYQBjAGgAZQAgAEwAaQBjAGUAbgBzAGUALAAgAFYAZQByAHMAaQBvAG4AIAAyAC4AMAAATGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMAAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcABhAGMAaABlAC4AbwByAGcALwBsAGkAYwBlAG4AcwBlAHMALwBMAEkAQwBFAE4AUwBFAC0AMgAuADAAAGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMAAAAAAAAgAA%2F%2FQAAP9mAGYAAAAAAAAAAAAAAAAAAAAAAAAAAADWAAAAAQACAAMABAAFAAYABwAIAAkACgALAAwADQAOAA8AEAARABIAEwAUABUAFgAXABgAGQAaABsAHAAdAB4AHwAgACEAIgAjACQAJQAmACcAKAApACoAKwAsAC0ALgAvADAAMQAyADMANAA1ADYANwA4ADkAOgA7ADwAPQA%2BAD8AQABBAEIAQwBEAEUARgBHAEgASQBKAEsATABNAE4ATwBQAFEAUgBTAFQAVQBWAFcAWABZAFoAWwBcAF0AXgBfAGAAYQCsAKMAhACFAL0AlgDoAIYAjgCLAJ0AqQCkAQIAigEDAIMAkwDyAPMAjQCXAIgAwwDeAPEAngCqAPUA9AD2AKIArQDJAMcArgBiAGMAkABkAMsAZQDIAMoAzwDMAM0AzgDpAGYA0wDQANEArwBnAPAAkQDWANQA1QBoAOsA7QCJAGoAaQBrAG0AbABuAKAAbwBxAHAAcgBzAHUAdAB2AHcA6gB4AHoAeQB7AH0AfAC4AKEAfwB%2BAIAAgQDsAO4AugDXALAAsQDYAN0A2QCyALMAtgC3AMQAtAC1AMUAhwC%2BAL8AvAEEAQUHdW5pMDBBRAlvdmVyc2NvcmUMZm91cnN1cGVyaW9yBEV1cm8AAAABAAMACAAKAA0AB%2F%2F%2FAA8AAAABAAAAAMmJbzEAAAAAyWNIwAAAAADJ7dha%29%20format%28%27truetype%27%29%3B%0A%7D%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%3B%0Afont%2Dstyle%3A%20italic%3B%0Afont%2Dweight%3A%20600%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAQAQAABAAARkZUTVzakCwAAIdAAAAAHE9TLzKiF7fYAAABiAAAAGBjbWFwjOjcmQAABUAAAAGyY3Z0IBCQGPYAAA%2FAAAAApmZwZ21%2BYbYRAAAG9AAAB7RnYXNwAAgAGwAAhzQAAAAMZ2x5ZlP99RUAABIYAABI%2BGhlYWT4yBTmAAABDAAAADZoaGVhDlsE5gAAAUQAAAAkaG10eH8IOQoAAAHoAAADWGtlcm4Mlg8JAABbEAAAIwRsb2NhVbZEUAAAEGgAAAGubWF4cAJpAQYAAAFoAAAAIG5hbWUVGrLBAAB%2BFAAAByxwb3N0gmzp1QAAhUAAAAHycHJlcHisnCUAAA6oAAABGAABAAAAARmaflhYuV8PPPUAHwgAAAAAAMnt2GQAAAAAye3YZP4C%2FhQHtAdzAAMACAACAAAAAAAAAAEAAAiN%2FagAAAgA%2FgL%2BBAe0AGQAFQAAAAAAAAAAAAAAAADWAAEAAADWAEUABQA8AAQAAgAQAC8AXAAAARoAUwADAAEAAwQvAlgABQAIBZoFMwAAAR8FmgUzAAAD0QBmAgAAAAILBwYDCAQCAgTgAALvQAAgWwAAACgAAAAAMUFTQwAhACAgrAYf%2FhQAhAiNAlggAAGfAAAAAARSBbYAAAAgAAEIAAAAAAAAAAQUAAACFAAAAi0AIQNaANUFKwAzBGgAPQaYAI0FgwBCAeMA1QJ%2FAE4Cf%2F9mBGIAwQRoAHUCEv%2BaAokALwInACEDFP%2BkBGgAXARoAPIEaP%2FuBGgAHwRo%2F%2FwEaAA1BGgAbwRoAH0EaABMBGgAXAInACECJ%2F%2BcBGgAcwRoAHUEaABzA4sAogbPAGQEuv%2BHBN8ARgTJAIcFXgBGBDUARgQCAEYFdwCHBYMARgJgAEYCZP6%2BBK4ARgP4AEYG3QBEBdMARAXNAIcElgBGBc0AhwS2AEYEIQAnBB0AsAV3AJgEjQC6BvwAywR%2F%2F5EERAC6BET%2F2QJ3%2F%2BUDFADdAnf%2FcQQtACUDLf9EBG8CHQSiAF4EsAAvA7oAXgSuAF4EMwBeAr7%2FHwQr%2F4cEuAAvAjMALwIz%2FvoEOQAvAjMALwcbAC8EuAAvBJYAXgSw%2F8kErgBeA0QALwOaAA4C8ABcBLgAbwPlAGQGBAB5BAj%2FqgPs%2F1YDmP%2FZAtEACARoAfIC0f%2BoBGgAbwIUAAACLf%2FTBGgAwwRo%2F%2B4EaACNBGgAagRoAfID4wAnBG8BqgaoAIMC2QCgBB8AUARoAHUCiQAvBqgAgwOHAG8DbQC8BGgAdQLpAE4C6QBoBG8B%2FATF%2F8kFPQCsAicAlgGk%2F0QC6QDBAtEApAQfAAoGfQCVBn0AeQaTAGwDi%2F%2FdBLr%2FhwS6%2F4cEuv%2BHBLr%2FhwS6%2F4cEuv%2BHBtn%2FhwTJAIcENQBGBDUARgQ1AEYENQBGAmAARgJgAEYCYABGAmAARgVeADUF0wBEBc0AhwXNAIcFzQCHBc0AhwXNAIcEaACTBc0AbQV3AJgFdwCYBXcAmAV3AJgERAC6BJYARgTy%2Fv4EogBeBKIAXgSiAF4EogBeBKIAXgSiAF4GvgBeA7oAXgQzAF4EMwBeBDMAXgQzAF4CMwAvAjMALwIzAC8CMwAvBJYAUAS4AC8ElgBeBJYAXgSWAF4ElgBeBJYAXgRoAHUElgAzBLgAbwS4AG8EuABvBLgAbwPs%2F1YEsP%2FJA%2Bz%2FVgIzAC8HBgCHBvwAXgRvAWIEngIdBG8BRgPXAC8HrgAvAYkAdwGJAHMCEv%2BaAyMAdwMjAHMDqv%2BaAvQAmAJtAFACbQAKAQb%2BAgLpAEYEaAAzAAAAAwAAAAMAAAAcAAEAAAAAAKwAAwABAAAAHAAEAJAAAAAgACAABAAAAH4A%2FwExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCs%2F%2F8AAAAgAKABMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrP%2F%2F%2F%2BP%2Fwv%2BR%2F3H9%2F%2F3s%2FevgteCy4LHgruCY4I%2FgYOApAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYAAAEAAAAAAAAAAQIAAAACAAAAAAAAAAAAAAAAAAAAAQAAAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc4OTo7PD0%2BP0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWltcXV5fYGEAhoeJi5OYnqOipKalp6mrqqytr66wsbO1tLa4t7y7vb4AcmRladB4oXBrAHZqAIiaAHMAAGd3AAAAAABsfACouoFjbgAAAABtfQBigoWXw8TIyc3Oysu5AMEA09XR0gAAAHnMzwCEjIONio%2BQkY6VlgCUnJ2bwsXHcQAAxnoAAAAAAEBHW1pZWFVUU1JRUE9OTUxLSklIR0ZFRENCQUA%2FPj08Ozo5ODc2NTEwLy4tLCgnJiUkIyIhHxgUERAPDg0LCgkIBwYFBAMCAQAsILABYEWwAyUgEUZhI0UjYUgtLCBFGGhELSxFI0ZgsCBhILBGYLAEJiNISC0sRSNGI2GwIGAgsCZhsCBhsAQmI0hILSxFI0ZgsEBhILBmYLAEJiNISC0sRSNGI2GwQGAgsCZhsEBhsAQmI0hILSwBECA8ADwtLCBFIyCwzUQjILgBWlFYIyCwjUQjWSCw7VFYIyCwTUQjWSCwBCZRWCMgsA1EI1khIS0sICBFGGhEILABYCBFsEZ2aIpFYEQtLAGxCwpDI0NlCi0sALEKC0MjQwstLACwKCNwsQEoPgGwKCNwsQIoRTqxAgAIDS0sIEWwAyVFYWSwUFFYRUQbISFZLSxJsA4jRC0sIEWwAENgRC0sAbAGQ7AHQ2UKLSwgabBAYbAAiyCxLMCKjLgQAGJgKwxkI2RhXFiwA2FZLSyKA0WKioewESuwKSNEsCl65BgtLEVlsCwjREWwKyNELSxLUlhFRBshIVktLEtRWEVEGyEhWS0sAbAFJRAjIIr1ALABYCPt7C0sAbAFJRAjIIr1ALABYSPt7C0sAbAGJRD1AO3sLSywAkOwAVJYISEhISEbRiNGYIqKRiMgRopgimG4%2F4BiIyAQI4qxDAyKcEVgILAAUFiwAWG4%2F7qLG7BGjFmwEGBoATpZLSwgRbADJUZSS7ATUVtYsAIlRiBoYbADJbADJT8jITgbIRFZLSwgRbADJUZQWLACJUYgaGGwAyWwAyU%2FIyE4GyERWS0sALAHQ7AGQwstLCEhDGQjZIu4QABiLSwhsIBRWAxkI2SLuCAAYhuyAEAvK1mwAmAtLCGwwFFYDGQjZIu4FVViG7IAgC8rWbACYC0sDGQjZIu4QABiYCMhLSxLU1iKsAQlSWQjRWmwQIthsIBisCBharAOI0QjELAO9hshI4oSESA5L1ktLEtTWCCwAyVJZGkgsAUmsAYlSWQjYbCAYrAgYWqwDiNEsAQmELAO9ooQsA4jRLAO9rAOI0SwDu0birAEJhESIDkjIDkvL1ktLEUjRWAjRWAjRWAjdmgYsIBiIC0ssEgrLSwgRbAAVFiwQEQgRbBAYUQbISFZLSxFsTAvRSNFYWCwAWBpRC0sS1FYsC8jcLAUI0IbISFZLSxLUVggsAMlRWlTWEQbISFZGyEhWS0sRbAUQ7AAYGOwAWBpRC0ssC9FRC0sRSMgRYpgRC0sRSNFYEQtLEsjUVi5ADP%2F4LE0IBuzMwA0AFlERC0ssBZDWLADJkWKWGRmsB9gG2SwIGBmIFgbIbBAWbABYVkjWGVZsCkjRCMQsCngGyEhISEhWS0ssAJDVFhLUyNLUVpYOBshIVkbISEhIVktLLAWQ1iwBCVFZLAgYGYgWBshsEBZsAFhI1gbZVmwKSNEsAUlsAglCCBYAhsDWbAEJRCwBSUgRrAEJSNCPLAEJbAHJQiwByUQsAYlIEawBCWwAWAjQjwgWAEbAFmwBCUQsAUlsCngsCkgRWVEsAclELAGJbAp4LAFJbAIJQggWAIbA1mwBSWwAyVDSLAEJbAHJQiwBiWwAyWwAWBDSBshWSEhISEhISEtLAKwBCUgIEawBCUjQrAFJQiwAyVFSCEhISEtLAKwAyUgsAQlCLACJUNIISEhLSxFIyBFGCCwAFAgWCNlI1kjaCCwQFBYIbBAWSNYZVmKYEQtLEtTI0tRWlggRYpgRBshIVktLEtUWCBFimBEGyEhWS0sS1MjS1FaWDgbISFZLSywACFLVFg4GyEhWS0ssAJDVFiwRisbISEhIVktLLACQ1RYsEcrGyEhIVktLLACQ1RYsEgrGyEhISFZLSywAkNUWLBJKxshISFZLSwgiggjS1OKS1FaWCM4GyEhWS0sALACJUmwAFNYILBAOBEbIVktLAFGI0ZgI0ZhIyAQIEaKYbj%2FgGKKsUBAinBFYGg6LSwgiiNJZIojU1g8GyFZLSxLUlh9G3pZLSywEgBLAUtUQi0ssQIAQrEjAYhRsUABiFNaWLkQAAAgiFRYsgIBAkNgQlmxJAGIUVi5IAAAQIhUWLICAgJDYEKxJAGIVFiyAiACQ2BCAEsBS1JYsgIIAkNgQlkbuUAAAICIVFiyAgQCQ2BCWblAAACAY7gBAIhUWLICCAJDYEJZuUAAAQBjuAIAiFRYsgIQAkNgQlmxJgGIUVi5QAACAGO4BACIVFiyAkACQ2BCWblAAAQAY7gIAIhUWLICgAJDYEJZWVlZWVmxAAJDVFhACgVACEAJQAwCDQIbsQECQ1RYsgVACLoBAAAJAQCzDAENARuxgAJDUliyBUAIuAGAsQlAG7IFQAi6AYAACQFAWblAAACAiFW5QAACAGO4BACIVVpYswwADQEbswwADQFZWVlCQkJCQi0sRRhoI0tRWCMgRSBksEBQWHxZaIpgWUQtLLAAFrACJbACJQGwASM%2BALACIz6xAQIGDLAKI2VCsAsjQgGwASM%2FALACIz%2BxAQIGDLAGI2VCsAcjQrABFgEtLLCAsAJDULABsAJDVFtYISMQsCAayRuKEO1ZLSywWSstLIoQ5S1ApQkhSCBVIAEeVR9IHlUfHgEPHj8erx4DT0YcH05NGx9NRhofJjQQVSUk%2Fx8ZE%2F8fBwT%2FHwYD%2Fx9MSxwfS0YbHxMzElUFAQNVBDMDVR8DAQ8DPwOvAwPLSttK60oDy0kBSEYSH0dGEh9JRgEjSCJVHDMbVRYzFVURAQ9VEDMPVc8PAR8PAQ8P3w%2F%2FDwMGAgEAVQEzAFVvAH8ArwDvAAQQAAGAFgEFAbgBkLFUUysrS7gH%2F1JLsAlQW7ABiLAlU7ABiLBAUVqwBoiwAFVaW1ixAQGOWYWNjQBCHUuwMlNYsCAdWUuwZFNYsBAdsRYAQllzcysrXnN0dCsrKysrdCsrc3NzdCsrKysrKysrKysrKytzdCsrKxheBhQAFwBOBbYAFwB1BbYFzQAAAAAAAAAAAAAAAAAABFIAFACGAAD%2F7AAAAAD%2F7AAAAAD%2F7AAA%2FhT%2F7AAABbYAFfyU%2F%2Bv%2Bef%2F0%2Fqj%2BqAAX%2FrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAwAC4ALAAowCUAMAAzQDFAM8AugCaATEAsgAAAAAAAAAAAAAAAAAsAEoAngEIAXIB3AHwAhACMAJaAnwClAKoAsQC2gMWAzYDdAPIBAQERgSeBL4FHAVwBaIF0AXqBg4GKAZ2BvYHJgdyB6oH4AgOCDQIfAikCLgI3AkGCSAJVgmGCcYJ%2BgpGCoIKygrqCxwLQguEC64Lzgv2DBIMJgxCDF4McAyKDNINIA1UDaQN8A42DroO9g8mD2oPmA%2BqD%2FoQMhBsELYRBBEuEXIRsBHqEgwSThJ4Eq4S2BMmEzgThBO8E7wT5hQqFHYUwBUKFSgVjhW8FiwWbBaWFrAWuBcsFz4XbBeeF9IYGhg0GHIYmBiiGNAY8BkiGU4ZZBl6GZAZ4hn0GgYaGBoqGj4aUBqaGqYauBrKGtwa8BsCGxQbJhs6G4YbmBuqG7wbzhvgG%2FQcIBx%2BHJAcohy0HMgc2h0SHXwdjh2gHbIdxB3WHegeaB50HoYemB6qHrwezh7gHvIfBh9oH3ofjB%2BeH7Afwh%2FUIBAgaiB8II4goCCyIMQhFCEmITghkiIGIigiXCKSIqQitiLQIuwjAiMqI1QjeCOSI6wjxiPcJBIkfAAAAAIAIf%2FlAlgFtgADAA8AGEALAQENAgMNB1FZDRMAPysAGD8SOS8xMAEjEyEBNDYzMhYVFAYjIiYBULCoARD9yVtVOUReTD5FAbwD%2BvqqUGRBPU9iQwAAAAACANUDpgN9BbYAAwAHAA20BgIHAwMAPzPNMjEwAQMjEyEDIxMCBJeYSAJgmJlKBbb98AIQ%2FfACEAAAAAACADMAAAU3BbYAGwAfADNAGAAfEBAZFREECAwMARwNEQ0RChcTAwYKEgA%2FMz8zEjk5Ly8zMzMRMzMRMzMzETMzMTABAyEHIQMjEyMDIxMjNyETITchEzMDMxMzAzMHATMTIwQMVAEPD%2F7RebR7%2BHmudfoRARhU%2FvgQASd5snn8ea55%2FA785fpS%2BgNo%2FuKo%2Fl4Bov5eAaKoAR6oAab%2BWgGm%2Flqo%2FuIBHgADAD3%2FiQRIBhIAHwAlACsAQUAiFUAPEkgcJQ0DKysTBAZAIAwGDE9ZAwYVE0AbJhMmTVkWEwAvMysRADMaGBDNLzMrEQAzGhgQzRI5ERczKzEwARQGDwEjNyYnNR4BFxMuATU0Nj8BMwcWFwcmJwMeAgE%2BATU0JwMOARUUFwPb79othy3FiU7LXFSch%2B3OJYcjoYBWhm5QgHU4%2FmBWZXMOWVluAe6s0hTT0w1D0So4AgGDOKV1p8kRo6UQQrlCCP6NM1hy%2FuELYk1lLAJEC11MYikAAAUAjf%2FsBkYFywALABkAHQApADcAJ0ATHjUGEDUQNRAcHQMcEgAXByQuEwA%2FMz8zPz8SOTkvLxEzETMxMAEiDgEVFDMyPgE1NBcUAgYjIiY1NBI2MzIWJQEjARMiDgEVFDMyPgE1NBcUAgYjIiY1NBI2MzIWAhI3WDVQNFc7wW%2B2c3yEarN3f4UCwvvDwwQ%2BDDRXOVE0WDvBb7Zxf4Vqs3Z%2FiAUjeuBnh3TrZoOBoP7Nmp6VpgEnlpiD%2BkoFtv0lc%2BNshnXoaIN%2Fof7LmpmSqwEqlZYAAwBC%2F%2BwFWgXNAAoAFAAxADRAHQUYIw8ELx0kDiksBCYmHSsSHQBLWR0ELwtLWS8TAD8rABg%2FKwAYPxI5Ehc5ERIXOTEwASIGFRQXPgE1NCYBMjY3AQ4BFRQWJTQ2NyY1NDYzMhYVFAYHEzY3MwIHEyEnDgEjIiYC7FdePpNpSP7TTYxK%2FviFYXD%2BoavJWOG5oLizzOttSOlxuM3%2B615q0ny%2B0wUSbFhtXEt1REJH%2B542NwF9SodWVm2uk9Zil4S01aKJgcpb%2Frpwt%2F7yuP7pg1BHwwABANUDpgIEBbYAAwAJsgIDAwA%2FzTEwAQMjEwIEl5hIBbb98AIQAAAAAQBO%2FrwDFwW2AAoACrMJJwMDAD8%2FMTATEBIBMwAREBMjAk75AP%2FR%2Fg5zt5MBFAFXAkMBCP3c%2FX7%2Bt%2F71AQUAAAH%2FZv68Ai8FtgAKAAqzBCcIAwA%2FPzEwARACASMAERADMxICL%2Fb%2B%2FtEB8nO3kwNc%2Fqr9wf71AiQCggFHAQ3%2B9wABAMECVgSDBh8ADgAJsgYOAAA%2FzTEwAQMlByUTBwsBJwElNwUTA2R0AZMM%2FpGqzWbjogEl%2FqJHAWIlBfT%2BkRfNLf6XPQFz%2FsiQAQpkw7IBfwAAAAABAHUBAAQdBKgACwAStwkBAgFSWQYCAC8zKxEAMzEwASE1IREzESEVIREjAfD%2BhQF7tAF5%2Foe0Ane0AX3%2Bg7T%2BiQAAAAH%2Fmv74AVYA7gAGAAixBAAAL80xMCUXAgcjNhMBTgh9jbJpX%2B4X%2Fvzb7gEIAAAAAAEALwG%2BAlICiQADAAu0AQBMWQEALysxMBM3IQcvLQH2LQG%2By8sAAAABACH%2F4wFOARQACwAMtQkDUVkJEwA%2FKzEwNzQ2MzIWFRQGIyImIV5UOENfTUI%2FXlNjPz1OZ0cAAAH%2FpAAAA7gFtgADAAqzAwMCEgA%2FPzEwCQEjAQO4%2FNXpAysFtvpKBbYAAAAAAgBc%2F%2BwETAXNAA0AGgAXQAwLDk1ZCwcEFU1ZBBkAPysAGD8rMTABEAIEIyICNRASJDMyFiUiBgIVFBYzMjYSNRAETJ7%2B6LnCv6YBF7a7wv5wYaZrTlpkpWMD9P7O%2Fh%2F1AP%2FsARwB5PbtKOD%2Bb8KPluMBltMBDAAAAQDyAAADtAW2AAoAELYHBAEJBgEYAD8%2FEjk5MTAhIxM2NwYPAScBMwJ97r0cNjlOu2oB%2FMYDZpauNy91qgE9AAH%2F7gAABD8FywAbAB1ADxEKTVkRBwIaAQEaTlkBGAA%2FKxESADkYPysxMCkBNwE%2BAjU0JiMiBgcnPgEzMhYVFA4BBwEVIQOP%2FF8kAdewfThjWkaKZXN43nW11k6oyP7JAm60AaafkHtGVWM8T6BhU7qebLrDq%2F74CAAAAAABAB%2F%2F7AQ%2FBcsAKAAtQBcDFxgYF09ZGBgLJiYfTVkmBwsRTVkLGQA%2FKwAYPysREgA5GC8rERIAOTEwARQGBxUeARUUBgQjIic1HgEzMjY1NCEjNzMyNjU0JiMiBgcnPgEzMhYEP8aqf4uI%2Fv%2Bw4aBUy16dsP7qhSVqpM9jWkiVWGh403m3zgSBntQfBxike4XPck%2FXMTWPfdu3lX1PWzM7oVFBsQAAAAAC%2F%2FwAAARCBboACgASAClAFwEFEgVNWQkPEh8SAlASARISAw8HBgMYAD8%2FMxI5L11dMysRADMxMAEjAyMTITcBMwMzIRM2NyMGBwEEF8lE5UX9kiUDI%2F7Jyf5RRB9FCDNU%2FloBPf7DAT3FA7j8SAE1iPFWZP4MAAABADX%2F7ARYBbYAGwAmQBQAEk9ZAAAHFhYZTlkWBgcMTVkHGQA%2FKwAYPysREgA5GC8rMTABMhYVFAYEIyInNRYzMjY1NCYjIgcnEyEHIQM2AmK114z%2B9L7WjaevrcJ8fl%2BCWMgCyS3%2BBmpdA4vPtqH0hU%2FZZKaTaX8jRALE0f6UEgAAAAACAG%2F%2F7ARtBcsAGQAoAC1AFw0XEBAgT1kQEBcFBQpNWQUHFxpNWRcZAD8rABg%2FKxESADkYLysREgA5MTATNBoBJDMyFwcmIyIAAzM2MzIWFRQCBiMiJgUyPgE1NCMiDgMXFBZvedEBJcR1VitIbc3%2B%2BEEGfcmcr4nqmcLRAaNRfESyM1lFMB4CYwG%2BzQGSARySGcIW%2Fv3%2B%2BarGraL%2B6o%2FwLmGsZsgmOkddQ26GAAAAAAEAfQAABJwFtgAGABhACwAYBQIDAwJOWQMGAD8rERIAORg%2FMTAzASE3IQcBfQLy%2FV4rA6Qh%2FQoE6c2o%2BvIAAAADAEz%2F7AReBc0AFwAjAC8AKUAUBhIYGCoqDQAAJE9ZAAcNHk9ZDRkAPysAGD8rERIAORgvMxI5OTEwATIWFRQGBx4BFRQOASMiJjUQJS4BNTQ2Ew4BFRQWMzI2NTQmEyIGFRQWFz4BNTQmAtuz0J6peGl75J3L5QFwW0%2F%2BQpWGdmNzi2EaXXJOQXN9YAXNspaEw0JOr3J5v2nIqAEph0aWV7Pb%2FNM2kWhdcIBnW4UCqXBcU2wnK3xfUVsAAAIAXP%2FsBDcFywAZACYALUAXDhAXECFPWRAQBRcXGk1ZFwcFCk1ZBRkAPysAGD8rERIAORgvKxESADkxMAEUCgEEIyInNRYzMjYTIwYjIiY1NBI2MzIWJSIOARUUFjMyNjU0JgQ3dL3%2B%2BbOFa3lzvOw7BnHApbWG75vAzf5hUn9EXFh1omAD%2Bs3%2BXf7phyDPK%2FYBCqDMupwBCo%2FvLF6mYGluvJJsgQAAAAIAIf%2FjAfoEagALABcAF0AMAwlRWQMQFQ9RWRUWAD8rABg%2FKzEwEzQ2MzIWFRQGIyImAzQ2MzIWFRQGIyImzV5UOENhTUI9rF5UOENfTUI%2FA7RTYz89T2ZH%2FN5TYz89TmdHAAAC%2F5z%2B%2BAH6BGoABgASABVACQRABgoQUVkKEAA%2FKwAYLxrOMTAlFwIHIzYbATQ2MzIWFRQGIyImAU4IfY2wX2drXlQ4Q2FNQj3uF%2F7829YBIALGU2M%2FPU9mRwAAAAEAcwDdBBsE7AAGAAixAAMAL8YxMCUBNQEVCQEEG%2FxYA6j9RwK53QGueQHow%2F6o%2FtEAAAACAHUBrgQdA%2FIAAwAHAB9AEQQFUlkEAQEAUlkPAQGQAQEBAC9dXSsAGBDGKzEwEzUhFQE1IRV1A6j8WAOoAz%2Bzs%2F5vtLQAAAABAHMA3QQbBOwABgAIsQYDAC%2FGMTATCQE1ARUBcwK2%2FUoDqPxYAaIBLwFYw%2F4Yef5SAAAAAgCi%2F%2BUDwwXLABkAJQAlQBIHEAAAIxAjHVFZIxYQCk1ZEAQAPysAGD8rERIAORgvEjkxMAE%2BATc%2BAjU0JiMiBgcnNjMyFhUUBgcOAQcBNDYzMhYVFAYjIiYBBBJre2tPJVVRTZJOTs%2FLq8R%2FqGhcD%2F7ZXlQ4Q2JMQj0BvIWvWk1QUTBGWDclsHGrnXjDd0p2Vf6iU2M%2FPU9kRQAAAgBk%2F0YGqgW0ADgARAAsQBQHCjkRESg1BAoaPz8KCi0hNQMoLQAvMz8zEjkvMxEzETMREjkvMxI5MTABFAIGIyImJyMGIyImNTQSNjMyHgEXAwYVFDMyPgE1NCQjIgQCFRAAMzI3FQYjIiQCNRASJCEyBBIFIg4BFRQzMjY%2FASYGqnfWhGJpDAZlsHuFh%2FGPNFVKXGUeT0h8R%2F7%2F69b%2Bqr8BGfvI5tvr0v7GqfUBuQERyAEkm%2F0zVpFScFJ3KUA1A06w%2FtumXEqmnYyXAQGVChAf%2FnhyLVyF2Hrk78f%2BlOD%2B%2Ff7kVptapwE40QEOAbb6lf7odmu1Z52QlPAQAAAAAAL%2FhwAABE4FuAAHAA4AGkANDgFMWQ4OBAcDEgsEAwA%2FMz8zEjkvKzEwASEDIwEhEyMDAiY1BgcDAzv%2BG9H%2BAw8BEqbqOSgLN1esAZb%2BagW4%2BkgCZgGgrzSLqP6wAAAAAAMARgAABMsFtgAPABcAIAAtQBcGIBAQIEtZEBAODw8XTFkPAw4YTFkOEgA%2FKwAYPysREgA5GC8rERIAOTEwATIWFRQGBxUeARUUBCkBARMzMjY1NCsBAzMyNjU0JisBAwre462ZbHf%2B1P71%2FhUBNW7Hi5jftePfk6d4dMgFtqikksIeCByXbNn4Bbb9pHlvrPvbiH5iZwAAAQCH%2F%2BwFIQXLABgAF0AMEwBMWRMEDAdMWQwTAD8rABg%2FKzEwASIGAhUUFjMyNxUGIyIAERASJDMyFwcuAQOcmvKRpaGNvLTC%2BP7n0wFg4tmsXj%2BOBP6y%2FqvMtL9EzUMBKQEMAQQBvuhcwyIwAAAAAAIARgAABR8FtgAJABMAF0AMBhJMWQYDBRNMWQUSAD8rABg%2FKzEwARACBCkBASEgAAEyJBI1NCYrAQMFH8j%2Bgv7%2B%2Fm8BNQFxAQ8BJPzEsQEIjbCokuMDff7x%2FmzaBbb%2B3vw1rAE4yLjB%2B9sAAAEARgAABIMFtgALACZAFAYJTFkGBgECAgVMWQIDAQpMWQESAD8rABg%2FKxESADkYLysxMCkBASEHIQMhByEDIQNO%2FPgBNQMIK%2F3lVAH2Kf4IYAIbBbbN%2FnXL%2FjgAAQBGAAAEgQW2AAkAHUAPBglMWQYGAgESAgVMWQIDAD8rABg%2FEjkvKzEwISMBIQchAyEHIQEz7QE1AwYr%2FedgAfYt%2FgwFts3%2BOssAAAEAh%2F%2FsBVwFywAdACZAFAAdTFkAAAUMDBJMWQwEBRlMWQUTAD8rABg%2FKxESADkYLysxMAEhAw4BIyAAERASJDMyFhcHJiMiBAIVFBYzMjcTIQMSAgCdcNWE%2Fvv%2B4M0Bd%2B9vzGdarqCe%2Fv6VsqRtalD%2B6wMZ%2FSAoJQEkAQsBCAG28ikxy1a1%2FrHNt7whAXMAAAEARgAABYsFtgALABpADQgDTFkICAUKBgMBBRIAPzM%2FMxI5LysxMCEjEyEDIwEzAyETMwRW7oz9yovtATXtfwI2f%2B0Ck%2F1tBbb9qgJWAAAAAQBGAAACaAW2AAMACrMBAwASAD8%2FMTAzATMBRgE36%2F7JBbb6SgAAAAH%2Bvv5oAnMFtgAMABG3CAMABUxZACMAPysAGD8xMAMiJzcWMzI3ATMBDgGYaEIFVEXJNQEr7v7PLuf%2BaBnJFfoFh%2Fpa2c8AAAEARgAABWYFtgAMABVACQgCBQoGAwEFEgA%2FMz8zEjk5MTApAQMHAyMBMwM3ASEBBD%2F%2B%2BvyVde0BNe2XjQHsARz9mAKPZP3VBbb9PqYCHP1jAAAAAAEARgAAA3kFtgAFABG3AQMAA0xZABIAPysAGD8xMDMBMwEhB0YBNe3%2B9gIbKwW2%2BxfNAAABAEQAAAblBbYAEwAbQAwRAgIJBgsHAwAOBhIAPzMzPzMSOTkRMzEwIQMjBgcDIwEhEzMBIQEjEzY3IwECh3MGCS642wE1AUNtBgJeAVj%2Bz%2BO2Jy8G%2FX0Evnbe%2FJYFtvuDBH36SgNoupz7QgABAEQAAAXdBbYAEQAVQAkDCwgQCQMBCBIAPzM%2FMxI5OTEwKQEBIwcOAQMjASEBMzYSNxMzBKj%2B%2FP5mBgoYF6zbATUBDAGPBwYyD6DbBItFlX%2F8zgW2%2B4M2ARVBAvEAAAACAIf%2F7AWNBc0ADQAbABdADAsOTFkLBAQVTFkEEwA%2FKwAYPysxMAEQAgQjIAAREBIkMzIAJSIGAhUUFjMyNhI1NCYFjb7%2Bs9z%2B%2Ff7kxQFW2fsBF%2F3biuB%2Fo5KK3XueA5r%2B6f5M4wErAQgBCwG56v7WXcD%2Bq8qtvL8BU86qvgAAAAIARgAABJYFtgAIABMAHUAPDQBMWQ0NEA8SEAhMWRADAD8rABg%2FEjkvKzEwATMyNjU0JisBBRQAISMDIwEhMhYB0V6yw3V5dwJX%2Fq3%2B0W5z7QE1AU7l6ALsn5JtZMn4%2Fvb93QW2yQAAAgCH%2FqQFjQXNABAAHgAjQBEFBw4RTFkOBAMYBwcYTFkHEwA%2FKxESADkYPysAGBDGMTABEAAHASEDIyAAERASJDMyACUiBgIVFBYzMjYSNTQmBY3%2B%2FOEBCP7fyh%2F%2B%2Ff7kxQFW2fsBF%2F3biuB%2Fo5KK3XueA5r%2Bvv4eW%2F6JAUgBKwEIAQsBuer%2B1l3A%2FqvKrby8AVPRqr4AAAACAEYAAASaBbYADQAWACZAEwoADg4AS1kODgMMAhIDFkxZAwMAPysAGD8zEjkvKxESADkxMAEDIwEhMhYVFAYHEyEDJzMyNjU0JisBAa577QE1AVLf7q2r%2Bf78z497qqh2fHcCSP24Bba9xKXjNP2HAkjGloNpXAABACf%2F7AQ7BcsAJAAgQBALHgMWFhtMWRYEAwhMWQMTAD8rABg%2FKxESADk5MTABFAQjIic1FjMyNjU0JicuAjU0PgEzMhcHJiMiBhUUHgEXHgEDov7f%2FtKKrbGJnlKDaWQ1e%2BGNzbBWoYZthB4%2FZ5t2AazS7kvgYXVoRWtTQ26DT4DGbFy%2FTnVeL0c9QWG1AAABALAAAATDBbYABwAWQAoBEgcDBANMWQQDAD8rEQAzGD8xMCEjASE3IQchAhDtAQj%2BhS0D5iv%2BgwTpzc0AAAAAAQCY%2F%2BwFiwW2ABUAFEAJFQoDBBFMWQQTAD8rABg%2FMzEwAQMCACMiJjU0NxMzAwYVFBYzMjY3EwWLyjj%2B0PvZ7RTB7cAVd3mRqifHBbb8RP71%2Fv3Ux1NXA4X8d1hGZnGhtQOoAAEAugAABUgFtgAMABC2DAYDBwMGEgA%2FPzMSOTEwJTY3ATMBIQMzExYXBwH6RkMBx%2F79BP7%2BkOhKCQIB%2BLKDA4n6SgW2%2FHdngkwAAAABAMsAAAe0BbYAHAAbQAwXDgUOCRsSCgMBCRIAPzM%2FMzMSOTkRMzEwKQEDJzcjBgcBIQMzExQHMzY3ATMTFwczPgE3ATMFJf7%2BJQYEBi9G%2Fn%2F%2FADXlEw0GUzsBg%2BEfAwMIHFQTAWb2A0q5apCT%2FLYFtvyuiNLdhgNJ%2FLmpvFjbKwNOAAAB%2F5EAAAUlBbYACwAVQAkCCAQJBgMBBBIAPzM%2FMxI5OTEwKQEDASEBAzMTASEBBBD%2FAMD%2BSv73Akr69rIBkgEK%2FdkCUP2wAwICtP3kAhz9OgAAAAABALoAAAUABbYACAAQtgAFAQcDBRIAPz8zEjkxMAkBIQEDIxMDMwJGAbABCv2Rcu537vIDGQKd%2FG%2F92wIpA40AAf%2FZAAAEogW2AAkAIEAQBwQFBExZBQMCCAEITFkBEgA%2FKxEAMxg%2FKxEAMzEwKQE3ASE3IQcBIQOF%2FFQhA1L9qisDgSP8rAKFqAQ%2Fz6z7wwAB%2F%2BX%2BvAMQBbYABwAOtQUCAwYBJwA%2FMz8zMTABIQEhByMBMwGT%2FlIBfQGuJ93%2B0d3%2BvAb6sPpnAAEA3QAAAocFtgADAAqzAwMCEgA%2FPzEwARMjAwGs29HZBbb6SgW2AAAB%2F3H%2BvAKaBbYABwAOtQMEAwAHJwA%2FMz8zMTAHMwEjNyEBIWrbATHdJwGu%2FoP%2BVJMFmbD5BgAAAAEAJQIZBBQFvgAGAA60BQIABAIALy8zEjkxMBMBMwEjAwElAmB%2FARC4vP5OAhkDpfxbArL9TgAAAf9E%2FrwCk%2F9IAAMACLEBAgAvMzEwASE3IQJ1%2FM8eAzH%2BvIwAAQIdBNkDlgYhAAgACrIGgAEALxrNMTABIy4BJzUzFhcDlpBBhiL1L1UE2T%2BxQxWalQAAAAIAXv%2FsBH8EZgASACAAJ0AUCxEABwwPBxpGWQcQDxUAE0ZZABYAPysAGD8%2FKwAYPxESOTkxMAUiJjU0EjYzMhYXMzczAyM3IwYnMjYSNTQmIyIGAhUUFgGPjaSL9JJhjCcKPrTsthUGnmlSnmZeTFWWWlEUy7jKAWDNW1ee%2B66wxL6bAQSaWGua%2FveOZmUAAAIAL%2F%2FsBFAGFAAWACMAJ0AUBAwAEAcABhUQF0ZZEBAAHkZZABYAPysAGD8rABg%2FPxESOTkxMAUiJicjByMBMwMOAQczPgEzMhYVFAIGAyIGAhUUFjMyNhI1NAJCYo0oCkCyAUrrRw0yDwhallaRoovyDFGiY11VVZRWFFpWnAYU%2FrM%2Fuy9xV8%2B2yv6dyAO6oP77jGBrnQEHj8kAAAEAXv%2FsA80EZgAXABdADAcMRlkHEAASRlkAFgA%2FKwAYPysxMAUiJjU0EiQzMhcHJiMiAhUUFjMyNjcVBgH6xNiTAQqppIVGemOWyHBjSoFBjBTUxc8BU789uDX%2BzeJveCwgw0cAAAAAAgBe%2F%2BwE3QYUABQAIQAuQBgDCw4ABgAAHEZZABAJCkhZCRUOFUZZDhYAPysAGD8rABg%2FKwAYPxESOTkxMAEyFzM2NxMzASM3Iw4BIyImNTQSNhMyNhI1NCYjIgYCFRQCb7NZCA0YTOn%2BtrgTB1ikXI%2Bij%2FAMUqFhV1lVlFgEZrKSaAFm%2BeywalrLus0BZMT8RKQBCIdbbpr%2B9IvLAAAAAAIAXv%2FsA%2FoEZgAJACMAJkAUAxhIWQMDChERAEhZERAKHUdZChYAPysAGD8rERIAORgvKzEwASIGBzMyNjU0JgMiJjU0EiQzMhYVFAQhIwcVFBYzMjY3FQ4BAphgqSUdvNRA18XdmwEJpKGz%2FrP%2BzCsCcXBIjmFgoQOyrI1rYjM5%2FDrex8YBVbqRhbbNHx1vfiYuuywlAAAAAf8f%2FhQDrgYfAB4AKUAWDxRGWQ8ACBsLGBgbSFkYDwAFRlkAGwA%2FKwAYPysRADMRMxg%2FKzEwAyInNRYzMjcTIz8CPgEzMhcHJiMiBg8BMwcjAw4BTFo7QDKGK9mzFcIVLLWmc2A9Sj5FUxYS5SXl3yi2%2FhQXvhTNA%2F5qTFzGpyuwHFZiVrL7472yAAAD%2F4f%2BFAR3BGYAJwA0AEEASEAoGygoDkZZBzxKWQQgCQMHJSgHKAcVJScCSFknDyU1SVklEBUuSVkVGwA%2FKwAYPysAGD8rERIAOTkYLy8REhc5KysRADMxMAEPARYVFAYjIicGFRQWHwEeARUUBCEiJjU0NjcmNTQ2NyY1NDYzMhcBDgEVFBYzMjY1NCYnEyIOARUUFjMyPgE1NAR3H8Ac7sg0KG8%2FPH%2BwmP7S%2FurL34uaTF1kh%2FXJUFD%2BTHB4b3KjuFpxhUFiNkdCQV81BFKJITpPweMIKEAmHAgQFoN6xNaWg2eWNC1SRWUvUavE8BT7wBJqTkFNbGUzOgwDxU2FT0dNTohRjgABAC8AAARKBhQAGgAcQA4QChQUBUZZFBALAAAKFQA%2FMz8%2FKxESADkxMCETNjU0IyIGBwMjATMDBg8BMz4BMzIWFRQHAwK%2BjhKBcMMtYuwBSus5Gy4TCFSpXYiRF4sCoFolh%2FrZ%2Fi0GFP76fqdLal6bkExi%2FXMAAAACAC8AAAJWBfoACwAPACVAGgkfAy8DAl8DbwN%2FA58DrwPfA%2B8DBwMODw0VAD8%2FL11xzTEwATQ2MzIWFRQGIyImAyMTMwFKTkc1QlBBNUYv7OzrBWJEVDU2R1I0%2BtYEUgAC%2Fvr%2BFAJWBfoADAAYADBAIBZADxAfEC8QTxBfEI8QnxDPEN8QCQ4DEAgPAAVGWQAbAD8rABg%2FL19eXRrNMTADIic1FjMyNwEzAQ4BATQ2MzIWFRQGIyImcVo7QDWDJwEE6f72JrMBKUxHNkFQQTVE%2FhQXvhS6BMP7IbWqB05EVDU2R1IzAAAAAQAvAAAEhwYUAA4AGUANAg0FBgQICQAADwQIFQA%2FMz8%2FERc5MTABIQkBIQMHAyMBMwIGBzMDdwEQ%2Fh0BI%2F760YhN7AFK64cxIwQEUv4b%2FZMB12D%2BiQYU%2FY3NfAABAC8AAAJkBhQAAwAKswIAARUAPz8xMCEjATMBGeoBSusGFAABAC8AAAauBGYAJgAlQBIDJAAXDSEVEhwAHEZZBgAQIg8APz8yKxEAMxg%2FMzMSOTkxMAEyFzM%2BATMyFhUUBwMjEzY1NCMiBgcDIxM2NTQjIgYHAyMTMwczNgMn3CIIS79nhYsWjOuPE3lsuytl648RdW67LWLs7LgVCZQEZut0d5mLQHX9cwKgXyaB%2BM3%2BHwKgUi2H%2FtP%2BKwRSzeEAAAAAAQAvAAAESgRmABgAHEAODgsSEgVGWRIQDA8ACxUAPzM%2FPysREgA5MTAhEzY1NCMiDgEHAyMTMwczPgEzMhYVFAcDAr6OEoFIjHAcYuzsuBUJU7BnhpMXiQKgWimDcteI%2FisEUs12a5iMRXD9cwAAAAIAXv%2FuBDcEZAANABsAF0AMGQNGWRkQEgpGWRIWAD8rABg%2FKzEwATQmIyIOARUUFjMyPgE3FAIGIyImNTQSJDMyFgNKYltdk1FjYVqQUO2S%2F6bA4o8BAqnD3AK%2Ba3mP9Ytvdoj1icr%2BtbHlxccBTLnoAAAAAv%2FJ%2FhQEUARmABMAIAAmQBQDCgANDRRGWQ0QCA8HGwAbRlkAFgA%2FKwAYPz8%2FKxESADk5MTAFIicjBgcDIwEzBzM2MzIWFRQCBgMiBgIVFBYzMjYSNTQCQrVYCgcSYOkBUrgVCZ27j6KM8QxRoGVdVVWUVhSwYVj%2BMQY%2BvNDOt8z%2BncYDup%2F%2B%2Boxga50BB4%2FJAAAAAAIAXv4UBH8EZgAVACIAJ0AUDAMPAAQPBxsAHUZZABAPFkZZDxYAPysAGD8rABg%2FPxESOTkxMAEyFzM3MwEjEz4BNyMOASMiJjU0EjYTMjYSNTQmIyIGAhUUAnG3WwpAsv6s6UsMPwcIVKBai6CS7w1QnmFbUVaUWQRmsp75wgFdOPgRbFrNttABZsH8RKIBCIlea5v%2B%2BI7LAAAAAAEALwAAA4kEZgAQABRACQUNCgAQChULDwA%2FPz8ROTIxMAEyFwcmIyIGBwMjEzMHMz4BAx0%2BLjM2MH7GJ2rs7LgVCVOmBGYM2w7it%2F4MBFLNeGkAAAEADv%2FsA3EEZgAiACBAEAscAxQUGUdZFBADCEhZAxYAPysAGD8rERIAOTkxMAEUBiMiJzUWMzI2NTQmJy4BNTQ2MzIXByYjIgYVFBYXHgIDDuzSvoSZn2F4RWt9Z9a2xJZMjH5JW0JmaVguAVStu0PLWlBFM0k9Q4tfm7BUsExCOy1GNztUYwABAFz%2F7AMlBUgAGQAnQBMPEUALFA4RERRIWREPBgBGWQYWAD8rABg%2FKxEAMxEzGhgQzTEwJTI3FQ4BIyA1NDcTIz8CMwchByEDBhUUFgHHRFMjeDz%2B7hB5ohW%2BgZI0ARcn%2Fut6DTKqH7IRGvc5SgI6blLo9rL9xDclKzMAAQBv%2F%2BwEhwRSABkAG0ANDxIKGQ8NFRIFRlkSFgA%2FKwAYPz8zEjkxMAEDBhUUMzI%2BATcTMwMjNyMOASMiJjU0NjcTAfqBH39Ijm4eY%2BnpuRUIUrJnhpIYDHsEUv2ejTSFctOOAdX7rs10bZiOP3s%2BAkgAAAABAGQAAARQBFIADAAOtQUKAQ8AFQA%2FPzMyMTAzAzMTFhUzPgE3ATMB54PoNw4HHFQXATf6%2FaoEUv2qn4pKtikCVvuuAAEAeQAABl4EUgAbAB1ADRQMAwwHEBAZCA8ABxUAPzM%2FMzMREjk5ETMxMCEDJzcOAQEhAzMTBgczNjcBMxMXBzM%2BAhMzAQNMEwEDGTX%2Bwf76L90NAgkGQisBFv4TAQMGEVAv5PT9%2BgJzRsg%2Bfv07BFL9eleesGACa%2F2kNeoy2W4CAvuuAAH%2FqgAABFQEUgALABVACQAGAgcEDwsCFQA%2FMz8zEjk5MTAJASEBAzMTASEBEyMB6f7P%2FvIB2%2Bf1kAEfARL%2BM%2Fj2AYP%2BfQI5Ahn%2BiwF1%2Fdv90wAAAAH%2FVv4UBFIEUgAXABhACwUOCQAPDhNGWQ4bAD8rABg%2FMxI5MTATMxMeARUzNjcBMwEOASMiJzUWMzI2PwFk6D8JDgZWMQEl%2Fv1QWtSPTENLMkp4QDMEUv3tPuFF12ICPvsApZkTvBBXcFwAAAH%2F2QAAA6IEUgAJACRAEgcEBQUESFkFDwIIAQEISFkBFQA%2FKxESADkYPysREgA5MTApATcBITchBwEhAs%2F9Ch0Ce%2F5JJwLBJf2RAeaTAw2yqv0KAAEACP68A0oFtgAnACBAEBsJCa8KvwoCCgoTJicUEwMAPzMvMxI5L10zEjkxMAEgNTQ%2FATY1NCM3MjY3Ez4COwEHIgYHAw4BBxUWFRQPAQYVFBYzFQHJ%2FsQRLQ7RJ3iPFjscWpZ7PClgVxJGGH50oBArC0FN%2FrzsPUjJQSGNu1VlAROGhzy4RFL%2By2x9EQYtqiZTwjAaMy%2B5AAAAAAEB8v4fAqQGEAADAAmyAAADAC8%2FMTABMxEjAfKysgYQ%2BA8AAAH%2FqP68AtEFtgAmACBAEBoKCq8JvwkCCQkmExIlJgMAPzMvMxI5L10zEjkxMAEgFRQPAQYVFDMHIgYHAw4BKwE1PgE3Ez4BNzUmNTQ%2FATY1NCYjNwEOAT4RLQ7RJ3mOFj8is7Qdal0SRhh%2BdJ4RKwpWTiMFtus9SMtBIY66VGT%2BzqWGtwJFUAE1bXoRBjCnN0LFLB46KLgAAQBvAjsEKwNoABcAH0AODwYDEhIMUlkSBgBSWQYALysAGC8rABAYxBDGMTABIgYHNTYzMhYXHgEzMjY3FQYjIiYnLgEBWDN6PGSVQG1cRloxMn06Z5M%2Fek1MVwK0Pju%2FbBgnHhk%2BOr5vISEgFwAAAAL%2F0%2F6LAgoEXgADAA8AF0AKAAANAw0HUVkNEAA%2FKwAYLxI5LzEwEzMDIQEUBiMiJjU0NjMyFt2upv7uAjdeUDtEYk5BPAKF%2FAYFVlBkPzxSZEcAAAEAw%2F%2FsBDEFywAeACRAEgIeHhhNWR4BGQkMDBFPWQwKBgA%2FzSsRADMYP8UrEQAzMTAFIzcuATU0EjY%2FATMHFhcHJiMiDgEVFBYzMjY3FQYHAkKcLYSMf%2BWTI5wlfGFFfWFjollwY0qBQYWgFNUiyZ6%2BAULHFqSkDC25NY%2F2j294KyDCRQUAAAAB%2F%2B4AAAS4BcsAHAAxQBkLFxgXT1kIGBgSAAAFTVkABxMPEg9OWRIYAD8rEQAzGD8rERIAORgvMysRADMxMAEyFwcmIyIHAyEHIQcOAQchByE3Nj8BIzczEz4BA1i8pFiPc7kqOQFNIv6wIRVfUwKyLfw0JsgyI8QkxT0m5gXLVrdKzf7qrJhihirPwS3npKwBK7nCAAAAAAIAjQEOBBkEmAAbACcAGEANCQwQExcaAgUIHxUlBwAvM8QyFzkxMBM0Nyc3FzYzMhc3FwcWFRQHFwcnBiMiJwcnNyY3FBYzMjY1NCYjIgbRPYF3f2ZpbGN%2FeYE9PX93f19weFd%2FdX89qH1cW4KCW1x9AtNuX4F3fz0%2FgXWBY2xyX313fzs7fXd9X3BbfnxdXX6AAAABAGoAAAT6BbYAFgA9QCEKDg8OUFkHDwYSExJQWQMAExUPEx8TAg8TDxMMARUGDBgAPz8zEjk5Ly9dERI5MisRADMRMysRADMxMAkBMwEzByEHIQchByM3ITchNyE3MwMzAlIBsPj9%2Btkj%2Fu4fARIh%2FvA13TP%2B7yEBER7%2B8CPTx%2BgDGQKd%2FQiblJv09JuUmwL4AAAAAgHy%2Fh8CpAYQAAMABwATtwMEAwQHAAAHAC8%2FETk5Ly8xMAEzESMRMxEjAfKysrKyBhD85v5F%2FOQAAAAAAgAn%2F%2FID9AYjACwAOAAlQBUCLRQzGikGHwgIDklZCAEfJElZHxYAPysAGD8rERIAFzkxMBM0Ny4BNTQ2MzIXBy4BIyIGFRQWFx4BFRQGBxYVFAYjIic1FjMyNjU0JicuAQEOARUUFhc%2BATU0JqLbLz7fubKaRD6HTVZhSXB%2Fd2lsZvbPvH%2BYp3R0TmaCdgFcRVNdfz5LYwL8vHcgZEGKpU6eHStFPCtDMjiPYFyePUx1nbBDu11RRytJMDyPAUEaaj49VzkkbTw8WQAAAgGqBQIEFwXsAAsAFwAMsw8DFQkALzPNMjEwATQ2MzIWFRQGIyImJTQ2MzIWFRQGIyImAapGPzA5RzovPgF%2FRj8wOUc6Lz4FZDxMLzBBSi8zPEwvMEFKLwAAAAADAIP%2F7AZiBcsAFQAlADUAL0AbBQsPCx8LnwsDABEAERARAgsRCxEiMhoEKiITAD8zPzMSOTkvL10RM10RMzEwASIGFRAzMjY3FQYjIiY1NDYzMhcHJgE0EiQzMgQSFRQCBCMiJAI3FBIEMzIkEjU0AiQjIgQCA6Jxfe4vgix1e8XU48eKgERq%2FIfIAV7KxwFdy8X%2BpM7P%2FqLDe6YBJKutASWipP7draj%2B26gECpib%2FtMgE54z99TY%2BUKTN%2F7RyAFeysb%2Bn8nH%2FqTMzwFaxqj%2B36yuASGmpQEjran%2B2wAAAAIAoAMCAzsFxwASAB0AH0AQBwgDEwAMEAwCDAAEHhkAHwA%2FMj8Q1F0yOTnEMTABMhczNzMDIzcjDgEjIiY1ND4BEzI%2BATU0IyIGFRQB8nE1Bid2k3sKBDJgPVtpXpcHMl87ZlJxBcdnWv1UaT43hHKA3XL9umCfT3fDhX0AAAAAAgBQAGQEEgPjAAYADQAMswwFCAEALzPEMjEwEwEXARMHAyUBFwETBwNQAYuH%2FuCZstkBuAGBif7ok7TRAj8BpHb%2BtP6PTAHFAgGycP6h%2FqJMAa4AAQB1AQAEHQMrAAUAEbYCBQUEUlkFAC8rABgQxDEwAREjESE1BB2z%2FQsDK%2F3VAXe0AAAA%2F%2F8ALwG%2BAlICiRIGABAAAAAEAIP%2F7AZiBcsADwAfACwANQAzQB0lKQ8pHykCNSoAKhAqAictKSoqKS0DDBwEBBQMEwA%2FMz8zEhc5Ly8vM10RM10RMzEwEzQSJDMyBBIVFAIEIyIkAjcUEgQzMiQSNTQCJCMiBAIlFAYHEyMDIxEjESEgATMyNjU0JisBg8gBXsrHAV3Lxf6kzs%2F%2BosN7pgEkq60BJaKk%2Ft2tqP7bqAPAW1XTyKxbsgENAVH%2BVEhUWltTSALbyAFeysb%2Bn8nH%2FqTMzwFaxqj%2B36yuASGmpQEjran%2B2wlTfCT%2BiwFF%2FrsDbv5nSD9JOAAAAQBvBhQEJQa6AAMACLEBAgAvMzEwASE3IQP8%2FHMnA48GFKYAAgC8AzsDTgXLAAwAGAAMsxAJFgMALzPEMjEwEzQ2MzIWFRQGIyIuATcUFjMyNjU0JiMiBrzCiIjAwIhYmliYaEpIaGdJSmgEgYjCwoiJvViWWEZoaEZKaGcAAAACAHUAAAQdBMMACwAPACRAFAwNUlkMQgkBAgFSWQYQAgFwAgECAC9dcTMrEQAzGD8rMTABITUhETMRIRUhESMBNSEVAfD%2BhQF7tAF5%2Foe0%2FoUDqAKRtQF9%2FoO1%2For%2B5bS0AAAAAQBOAkoDEAXJABkAErcKEB8CGBgBIAA%2FMxI5PzMxMAEhNyU%2BAjU0JiMiByc%2BATMyFhUUDgEPASECqv2kHAENb0sjODBbZFBElV5ziS9ldq4BcwJKh99fUkgmLjRQezY3eF9Fb25bjgABAGgCOQMQBckAIwAnQBYDFRUPFh8WAg8WHxYCFhYKHCEfDwohAD8zPzMSOS9dcTMSOTEwARQGBxUeARUUBiMiJzUWMzI2NTQrATczMjY1NCMiByc2MzIWAxBtaE5Kx6qKcH56WmOSbBxdWWt1XGBEfqV8igT4WnYaBBJiQoGaOJ9HSkVxhURBZEF5Wm8AAAABAfwE2QPlBiEACAAKsgOACAAvGs0xMAE2NyEVDgEHIwH8YYABCDbQR5wE8mzDE0K%2FNAAAAf%2FJ%2FhQEkwRSABoAIEAQEgwKBxcPFhsKFQ8DRlkPFgA%2FKwAYPz8%2FMxI5OTEwARQWMzI2NxMzAyM3Iw4BIyInIwYHAyMBMwMGAWZCP3HBLWbn67gWCkucV2wvCAkeQukBUuuNEwEzQUj71AHZ%2B66%2Bb2NRSaL%2BwgY%2B%2FWJUAAEArP78BLQGFAAPABO3CAgBAw4ABQEALzM%2FMxI5LzEwASMRIxEjEQYjIiY1EDYzIQS0i7yMPlPYzNrpAkX%2B%2FAZm%2BZoDMxL6%2BwEE%2Fv%2F%2FAJYCOQHDA2oQBwARAHUCVgAAAAH%2FRP4UAOwAAAASABpADQ0QQAsOSBAQDwgDGw8ALz8zEjkvKzMxMBMUBiMiJzUWMzI1NCYnNzMHHgHspI5ANi8xiUZFYpIySED%2B%2BGp6D4cOYCgrCahgGVQAAAAAAQDBAkoCtgW2AAoADrUJAyAGAB4APzI%2FOTEwATMDIxM2Nw4BBycCFKK6v2MRKBU5fU0FtvyUAc1PihQuUIEAAAIApAMCAwgFxwANABcAFEAKEwAEEAQCBA4LHwA%2FM8RdMjEwARQOASMiJjU0PgEzMhYlIgYVFDMyNjU0AwhUnm56ilija3yC%2FvZRZ3BNZQS2fsZwkoN6x2%2BPCq%2BBja%2BEigAAAAACAAoAXAPPA9sABgANAA60CAEBDAUALzPELzIxMAkBJwEDNxMFAScBAzcTA8%2F%2Bc4YBH5m02f5I%2Fn%2BMARmSs9MB%2Fv5edwFKAXJM%2FjkC%2FlBxAVwBYEz%2BUAD%2F%2FwCVAAAFxQW2ECcA0wKTAAAQJgB71gARBwDUAsH9twAJswMCERgAPzU1AP%2F%2FAHkAAAYeBbYQJwDTAncAABAmAHu5ABEHAHQDDv23AAeyAhAYAD81AAAA%2F%2F8AbAAABi8FyRAnANMDIQAAECcA1AMr%2FbcRBgB1BAAACbMCAQYYAD81NQAAAv%2Fd%2FnUC%2FgRaABkAJQAtQBgHABkQGQILAxkZECMjHVFZIxAQCk1ZECIAPysAGD8rERIAORgvX15dOTEwAQ4BBw4CFRQWMzI2NxcGIyImNTQ2Nz4BNwEUBiMiJjU0NjMyFgKcGW10a00lVFFMk09Lzcyuv4CnXWAWASdgUjhDXU9CPwKDkqpTT05QMEdXNyaxcKuceMZ1QHVfAV5VY0E8TmZEAP%2F%2F%2F4cAAAROB3MSJgAkAAARBwBD%2F%2F0BUgAKtAIQEAUmACsRNf%2F%2F%2F4cAAASsB3MSJgAkAAARBwB2AMcBUgAKtAIXFwUmACsRNf%2F%2F%2F4cAAASFB3MSJgAkAAARBwDFAFoBUgAKtAIVFQUmACsRNf%2F%2F%2F4cAAATLB0gSJgAkAAARBwDHAHMBUgAKtAIYGAUmACsRNf%2F%2F%2F4cAAARzBz4SJgAkAAARBwBqAFwBUgAMtQMCJCQFJgArETU1AAD%2F%2F%2F%2BHAAAETgcHEiYAJAAAEQYAxhttAAmzAwIkAwA%2FNTUAAAAAAv%2BHAAAHJQW2AA8AEwA8QCAKDUxZCgoBBhMDTFkTEwEGBRIJEgYSTFkGAwEOTFkBEgA%2FKwAYPysRADMYPxESOS8rERIAORgvKzEwKQETIQEhASEHIQMhByEDIQETIwEF8Pz3Vv5Q%2FwD%2B%2BgOiA%2Fwr%2FeVUAfgr%2FgpiAhv9TYpS%2FnABlv5qBbbN%2FnXI%2FjUBmwKD%2FX0A%2F%2F8Ah%2F4UBSEFyxImACYAABAHAHoCKwAA%2F%2F8ARgAABIMHcxImACgAABEHAEP%2F8QFSAAq0AQ0NBSYAKxE1%2F%2F8ARgAABIMHcxImACgAABEHAHYAfQFSAAq0ARQUBSYAKxE1%2F%2F8ARgAABIMHcxImACgAABEHAMUAPwFSAAq0ARISBSYAKxE1%2F%2F8ARgAABIMHPhImACgAABEHAGoANQFSAAy1AgEhIQUmACsRNTUAAP%2F%2FAEYAAAJ2B3MSJgAsAAARBwBD%2FuABUgAKtAEFBQUmACsRNf%2F%2FAEYAAAOIB3MSJgAsAAARBwB2%2F6MBUgAKtAEMDAUmACsRNf%2F%2FAEYAAANpB3MSJgAsAAARBwDF%2Fz4BUgAKtAEKCgUmACsRNf%2F%2FAEYAAANgBz4SJgAsAAARBwBq%2F0kBUgAMtQIBGRkFJgArETU1AAAAAgA1AAAFHwW2AA0AGwAtQBcaBwgHTFkXCAgFCgoWTFkKAwUbTFkFEgA%2FKwAYPysREgA5GC8zKxEAMzEwARACBCkBEyM3MxMhIAABMiQSNTQmKwEDIQchAwUfyP6C%2Fv7%2Bb4GSLZCJAXEBDwEk%2FMSxAQiNsKiSXgEdLf7lWgN9%2FvH%2BbNoCb8gCf%2F7e%2FDWsATjIuMH%2BScj%2BWv%2F%2FAEQAAAXdB0gSJgAxAAARBwDHAQABUgAKtAEbGwUmACsRNf%2F%2FAIf%2F7AWNB3MSJgAyAAARBwBDAG8BUgAKtAIdHQUmACsRNf%2F%2FAIf%2F7AWNB3MSJgAyAAARBwB2ARcBUgAKtAIkJAUmACsRNf%2F%2FAIf%2F7AWNB3MSJgAyAAARBwDFAMkBUgAKtAIiIgUmACsRNf%2F%2FAIf%2F7AWNB0gSJgAyAAARBwDHANkBUgAKtAIlJQUmACsRNf%2F%2FAIf%2F7AWNBz4SJgAyAAARBwBqAMUBUgAMtQMCMTEFJgArETU1AAAAAQCTAR8EAASHAAsAFkAKAwAGCQQCCggEAgAvMy8zEhc5MTAJATcJARcJAQcJAScByf7KfQE4ATl%2F%2FsUBN3v%2Bx%2F7IegLTATd9%2FssBNXv%2Bx%2F7HewE1%2Fs17AAMAbf%2BqBbQGBAAVAB4AJwAuQBodIRwiBCQWERQJBgQEDw8WTFkPBAQkTFkEEwA%2FKwAYPysREgAXORESFzkxMAEQAgQjIicHJzcmNRASJDMyFzcXBxYlIgYCFRQXASYTNCcBFjMyNhIFjb7%2Bs9zBfXaFgWfFAVbZvYB3hYVe%2FduN4IIYApxQvxP9a0t3i998A5r%2B6f5M41OVaKCK4wELAbnqXpVopoKOuv6oz1hMA0RB%2FpZYN%2FzHOL8BUgD%2F%2FwCY%2F%2BwFiwdzEiYAOAAAEQcAQwBOAVIACrQBFxcFJgArETX%2F%2FwCY%2F%2BwFiwdzEiYAOAAAEQcAdgEbAVIACrQBHh4FJgArETX%2F%2FwCY%2F%2BwFiwdzEiYAOAAAEQcAxQC2AVIACrQBHBwFJgArETX%2F%2FwCY%2F%2BwFiwc%2BEiYAOAAAEQcAagCwAVIADLUCASsrBSYAKxE1NQAA%2F%2F8AugAABQAHcxImADwAABEHAHYAZgFSAAq0ARERBSYAKxE1AAIARgAABGQFtgAMABUAH0ARCRVMWQ0ETFkJDQkNBgcDBhIAPz8SOTkvLysrMTABFAAhIwMjATMHMzIWATMyNjU0JisBBGT%2Bs%2F7KbELtATXtM2Hj6%2F06YLDFd3l5AzHz%2FvP%2BzwW288r%2BAZ2UbWIAAAAB%2Fv7%2BFAS2BhsAOQAsQBgxFCUDHQwMNEdZDAAdIkhZHRYABUZZABsAPysAGD8rABg%2FKxESABc5MTADIic1FjMyNjcBPgEzMhYVFAcOARUUFx4CFRQGIyInNRYzMjY1NCYnLgE1NDY3PgE1NCYjIgcBDgF1RUg9NEFTFgEGMPrgvNGzdj1Ka0gm6Ma2ZX5%2BaXYvWFJOWVtiUV5V0jT%2B%2BCq5%2FhQXwRVXaATS58ygh6mCV0EjLDlUVmM8rMhByVZYUDBKRkBzRUuAPEJcNEFI7%2FsUxa4A%2F%2F8AXv%2FsBH8GIRImAEQAABEGAEO5AAAKtAIiIhEmACsRNQAA%2F%2F8AXv%2FsBH8GIRImAEQAABEGAHZaAAAKtAIpKREmACsRNQAA%2F%2F8AXv%2FsBH8GIRImAEQAABEGAMX9AAAKtAInJxEmACsRNQAA%2F%2F8AXv%2FsBH8F9hImAEQAABEGAMcSAAAKtAIqKhEmACsRNQAA%2F%2F8AXv%2FsBH8F7BImAEQAABEGAGr%2FAAAMtQMCNjYRJgArETU1%2F%2F8AXv%2FsBH8GmhImAEQAABEGAMboAAAMtQMCJCQRJgArETU1AAMAXv%2FsBo8EZgApADcAQQA%2FQCM7IUhZOzsGAhQXBAkQFQ84MRAxRlkaEBAEFSUqCSpGWQAJFgA%2FMysRADMYPz8zKxEAMxg%2FERIXOTkvKzEwBSInByM3Iw4BIyImNTQSNjMyFhczNzMHPgEzMhYVFAQhIwcUFjMyNxUGJTI2EjU0JiMiBgIVFBYBIgYHMzI2NTQmBKLeUxeXFAhVoV6Gl4rvjViALAk%2FlBkzoGSMof6z%2FswtBHlzfbSv%2FIZVm2BNS1WVU0oDn2erJR%2B71EQUiXWwalrOtckBYsxXW551P0qZfbbNPHV4VL1PvqEBDoRbbqD%2B%2BotpYgMIrI1rYDo0AP%2F%2FAF7%2BFAPNBGYSJgBGAAAQBwB6AYEAAP%2F%2FAF7%2F7AP6BiESJgBIAAARBgBDlwAACrQCJSURJgArETUAAP%2F%2FAF7%2F7AQWBiESJgBIAAARBgB2MQAACrQCLCwRJgArETUAAP%2F%2FAF7%2F7AQJBiESJgBIAAARBgDF3gAACrQCKioRJgArETUAAP%2F%2FAF7%2F7AP6BewSJgBIAAARBgBq2gAADLUDAjk5ESYAKxE1Nf%2F%2FAC8AAAIYBiESJgDCAAARBwBD%2FoIAAAAKtAEFBREmACsRNf%2F%2FAC8AAAMdBiESJgDCAAARBwB2%2FzgAAAAKtAEMDBEmACsRNf%2F%2FAC8AAAMJBiESJgDCAAARBwDF%2Ft4AAAAKtAEKChEmACsRNf%2F%2FAC8AAAL7BewSJgDCAAARBwBq%2FuQAAAAMtQIBGRkRJgArETU1AAAAAgBQ%2F%2BwEewYlAB0AKwA2QBwFCAAbBAYcHAMZDhUVJUdZFRUOBgMBDh5HWQ4WAD8rABg%2FMxI5LysREgA5EjkYLxIXOTEwASYnNxYXNxcHFhEUAgQjIiY1NBI2MzIWFzMmJwcnEzI%2BATU0JiMiDgEVFBYChyxbaoFQ%2BkbZm5L%2B%2BrXF24Puk2CQKQYKe%2FpIUFyLTmhcW4tKYgUtKTeYSEqKf3nN%2Fs3%2F%2FoW%2F1sOiARKcTUbzjI6B%2B%2B53x2phdHDDc2hvAAAA%2F%2F8ALwAABH0F9hImAFEAABEGAMclAAAKtAEiIhEmACsRNQAA%2F%2F8AXv%2FuBDcGIRImAFIAABEGAEOfAAAKtAIdHREmACsRNQAA%2F%2F8AXv%2FuBDcGIRImAFIAABEGAHZIAAAKtAIkJBEmACsRNQAA%2F%2F8AXv%2FuBDcGIRImAFIAABEGAMXzAAAKtAIiIhEmACsRNQAA%2F%2F8AXv%2FuBFoF9hImAFIAABEGAMcCAAAKtAIlJREmACsRNQAA%2F%2F8AXv%2FuBDcF7BImAFIAABEGAGrvAAAMtQMCMTERJgArETU1AAMAdQDsBB0EtgADAA8AGwAcQAwHDRkTDRMBAQBSWQEALysRADMzGC8zLzMxMBM1IRUBNDYzMhYVFAYjIiYRNDYzMhYVFAYjIiZ1A6j9rj8%2BPkFFOjpDPz4%2BQUU6OkMCd7S0%2Fv5AR0g%2FQElHAvxAR0g%2FQElHAAAAAAMAM%2F%2BmBFoEkwAVAB0AJgAuQBocJBslBB4WERQJBgQEDw8WR1kPEAQeR1kEFgA%2FKwAYPysREgAXORESFzkxMAEUAgYjIicHJzcmNTQSJDMyFzcXBxYlIgIVFBcBJgMyPgE1NCcBFgQ1lP2iiWJpe3NGjQECqYhnVn1kP%2F5YjbwIAbotyVmUVQb%2BTCkCvND%2BsK47g2CNaJ3IAUq6PWxgdWRO%2Ft3bJyMCJSP9AIXrjC0W%2FeIh%2F%2F8Ab%2F%2FsBIcGIRImAFgAABEGAEOhAAAKtAEbGxEmACsRNQAA%2F%2F8Ab%2F%2FsBIcGIRImAFgAABEGAHZzAAAKtAEiIhEmACsRNQAA%2F%2F8Ab%2F%2FsBIcGIRImAFgAABEGAMUQAAAKtAEgIBEmACsRNQAA%2F%2F8Ab%2F%2FsBIcF7BImAFgAABEGAGoGAAAMtQIBLy8RJgArETU1%2F%2F%2F%2FVv4UBFIGIRImAFwAABEGAHb5AAAKtAEgIBEmACsRNQAAAAL%2Fyf4UBFAGFAAWACQAJ0AUBA0AEAkACBsQF0ZZEBAAHkZZABYAPysAGD8rABg%2FPxESOTkxMAUiJicjBgcDIwEzDgEHMzYzMhYVFAIGAyIGAhUUFjMyNhI1NCYCSl6OKwgHEmDpAbDrMDIzCJutkKGI6RxUnmBcVlaTVlIUW1VbXv4xCADf6K%2FIzLnM%2Fp3GA7qi%2FveGYmmaAQiRZGUAAP%2F%2F%2F1b%2BFARSBewSJgBcAAARBgBqmQAADLUCAS0tESYAKxE1NQABAC8AAAIGBFIAAwAKswIPARUAPz8xMCEjEzMBG%2Bzs6wRSAAACAIf%2F7AdSBc0AFQAhADpAIBATTFkQEAEMDA9MWQwDChtMWQoEARRMWQESAxZMWQMTAD8rABg%2FKwAYPysAGD8rERIAORgvKzEwKQEGIyAAERASJDMyFyEHIQMhByEDIQUyNxMmIyIGAhUUFgYd%2FTNUVv79%2FuTFAVbZkU4C%2BCv95VQB%2BCv%2BCGACG%2FxsSkHeRHGK4H%2BjFAErAQgBCwG56hfN%2FnXI%2FjUTGwQOH8D%2Bq8qtvAAAAAADAF7%2F7AbDBGYAIgAvADkAO0AeDgMFDDMYSFkzMwUMMCMMI0ZZEQwQHCoFKkZZAAUWAD8zKxEAMxg%2FMysRADMREjkYLysREgA5OTEwBSImJwYjIiY1NBIkMzIXPgEzMhYVFAQhIwcUFjMyNjcVDgEBIg4BFRQWMzISNTQmJSIGBzMyNjU0JgTJeLkwie262pMA%2F6btYknKfZ%2Bv%2FrX%2Bzi8DcXFFg29bqP1dV41XYVuPrWMCiWmuIh%2B90jwUXFy258XOAU2vwFtnlYG3zDxvfiMxvSskA7aA9ZF0egEl6291EKuObGUwOAAAAQFiBNkEKwYhAA0ADrQDC4AGAQAvMxrNMjEwASMmJwYHIzU%2BATczFhcEK5hMVYNppIp%2BG%2FgmiATZP3NuRBmAhyhjzAACAh0E1wP0BpoACwAXABlADg8PCR8JLwkDcAkBCRUDAC8zzF1dMjEwARQGIyImNTQ2MzIWBzQmIyIGFRQWMzI2A%2FSEamp%2FgmdohoM8Ly07NTMvPAW6aHt6Z2d7eWkyOTkyMTc3AAAAAAEBRgTXBFgF9gAVACFAEBAABQsACwALfxSPFAIUgAkALxrMXTk5Ly8RMxEzMTABIi4CIyIGByMSMzIeAjMyNjczAgNULUtEPyAmMhKJOccuTkM8HSgyF4lCBNkiKSI3OAEdIykjNTz%2B4wAAAAEALwHFA6AChwADAAixAAEALzMxMBM3IQcvKwNGKwHFwsIAAAEALwHFB3cChwADAAixAAEALzMxMBM3IQcvKwcdKwHFwsIAAAEAdwPBAjEFtgAHAAmyAAQDAD%2FNMTATJzYSNzMCB30GIpFXsHpNA8EWTAEKif7i1wAAAAABAHMDwQIvBbYACAAJsgUIAwA%2FzjEwARcGAgcjNhI3AicIJZNSsit%2BHQW2FlP%2B839fAUBWAAAAAAH%2Fmv74AVYA7gAGAAixBAAAL80xMCUXBgcjNhMBTghsnrJpX%2B4X6fbuAQgAAgB3A8EDyQW2AAYADgANtAAHAwsDAD8zzTIxMAEnNhMzAgchJzYSNzMCBwIXCVS3sHpN%2FXsGIpFXsHpNA8EWvgEh%2FuLXFkwBCon%2B4tcAAAACAHMDwQPHBbYACAAQAA20DQUQCAMAPzPOMjEwARcGAgcjNhI3IRcGAyM2EjcCJwglk1KyK34dAoUJYquwM3QgBbYWU%2F7zf18BQFYW3P79cgEmXQAC%2F5r%2B%2BALuAO4ABgANAAyzCwQNAAAvMs0yMTAlFwYHIzYTIRcGAyMSNwFOCGyesmlfAoMJXK%2BweE%2FuF%2Bn27gEIF87%2B7wEZ3QABAJgBzQKkBAgACwAIsQkDAC8vMTATNDYzMhYVFAYjIiaYp4xkdaSRZnECrJzAbXKcwHMAAQBQAGQCYgPjAAYACLEFAQAvxDEwEwEXARMHA1ABi4f%2B4Jmy2QI9AaZ2%2FrL%2BkUwBwQAAAAEACgBcAh0D2wAGAAixAQUAL8QxMAkBJwEDNxMCHf50hwEhmrPZAgL%2BWncBTgFuTP5AAAAB%2FgIAAAMCBbYAAwAKswMDAhIAPz8xMAkBIwEDAvvFxQQ9Bbb6SgW2AAAAAAIARgJKAwQFvAAKABAAJUAUDQcBBQkFBgMPEB8QAhAQAwceAyAAPz8SOS9dFzMRMxEzMTABIwcjNyE3ATMDMyE%2FAQYPAQLneie3J%2F6QGgHdxXl7%2Fs80IiBCuwL6sLCJAjn9zd2BM1DbAAAAAAEAM%2F%2FsBNkFywAnAFNALwYcHRxQWQMdCxcYF1BZCBgPHR8dAgkAGHAYAgsDHRgdGBMhIQBNWSEHEw5OWRMZAD8rABg%2FKxESADk5GC8vX15dXl0RMysRADMRMysRADMxMAEiBgchByEGByEHIRQWMzI3FQYjIgI1IzczNjcjNzMSADMyFhcHLgEDkXbBQQGDIf5uEgoBVCH%2BwXmHeIqBsdjkoiGLDwyJIJRcAUfQWJlQZjZqBQKuqJpDSJuhkzzLPQEE%2FJtfLJoBBAEbLDe0IiwAAAAAAAABAAAjAAABBdMYAAAKCvIABQAk%2F3EABQA3ACkABQA5ACkABQA6ACkABQA8ABQABQBE%2F64ABQBG%2F4UABQBH%2F4UABQBI%2F4UABQBK%2F8MABQBQ%2F8MABQBR%2F8MABQBS%2F4UABQBT%2F8MABQBU%2F4UABQBV%2F8MABQBW%2F8MABQBY%2F8MABQCC%2F3EABQCD%2F3EABQCE%2F3EABQCF%2F3EABQCG%2F3EABQCH%2F3EABQCfABQABQCi%2F4UABQCj%2F64ABQCk%2F64ABQCl%2F64ABQCm%2F64ABQCn%2F64ABQCo%2F64ABQCp%2F4UABQCq%2F4UABQCr%2F4UABQCs%2F4UABQCt%2F4UABQC0%2F4UABQC1%2F4UABQC2%2F4UABQC3%2F4UABQC4%2F4UABQC6%2F4UABQC7%2F8MABQC8%2F8MABQC9%2F8MABQC%2B%2F8MABQDE%2F4UACgAk%2F3EACgA3ACkACgA5ACkACgA6ACkACgA8ABQACgBE%2F64ACgBG%2F4UACgBH%2F4UACgBI%2F4UACgBK%2F8MACgBQ%2F8MACgBR%2F8MACgBS%2F4UACgBT%2F8MACgBU%2F4UACgBV%2F8MACgBW%2F8MACgBY%2F8MACgCC%2F3EACgCD%2F3EACgCE%2F3EACgCF%2F3EACgCG%2F3EACgCH%2F3EACgCfABQACgCi%2F4UACgCj%2F64ACgCk%2F64ACgCl%2F64ACgCm%2F64ACgCn%2F64ACgCo%2F64ACgCp%2F4UACgCq%2F4UACgCr%2F4UACgCs%2F4UACgCt%2F4UACgC0%2F4UACgC1%2F4UACgC2%2F4UACgC3%2F4UACgC4%2F4UACgC6%2F4UACgC7%2F8MACgC8%2F8MACgC9%2F8MACgC%2B%2F8MACgDE%2F4UACwAtALgADwAm%2F5oADwAq%2F5oADwAy%2F5oADwA0%2F5oADwA3%2F3EADwA4%2F9cADwA5%2F4UADwA6%2F4UADwA8%2F4UADwCJ%2F5oADwCU%2F5oADwCV%2F5oADwCW%2F5oADwCX%2F5oADwCY%2F5oADwCa%2F5oADwCb%2F9cADwCc%2F9cADwCd%2F9cADwCe%2F9cADwCf%2F4UADwDD%2F5oAEAA3%2F64AEQAm%2F5oAEQAq%2F5oAEQAy%2F5oAEQA0%2F5oAEQA3%2F3EAEQA4%2F9cAEQA5%2F4UAEQA6%2F4UAEQA8%2F4UAEQCJ%2F5oAEQCU%2F5oAEQCV%2F5oAEQCW%2F5oAEQCX%2F5oAEQCY%2F5oAEQCa%2F5oAEQCb%2F9cAEQCc%2F9cAEQCd%2F9cAEQCe%2F9cAEQCf%2F4UAEQDD%2F5oAJAAF%2F3EAJAAK%2F3EAJAAm%2F9cAJAAq%2F9cAJAAtAQoAJAAy%2F9cAJAA0%2F9cAJAA3%2F3EAJAA5%2F64AJAA6%2F64AJAA8%2F4UAJACJ%2F9cAJACU%2F9cAJACV%2F9cAJACW%2F9cAJACX%2F9cAJACY%2F9cAJACa%2F9cAJACf%2F4UAJADD%2F9cAJADL%2F3EAJADO%2F3EAJQAP%2F64AJQAR%2F64AJQAk%2F9cAJQA3%2F8MAJQA5%2F%2BwAJQA6%2F%2BwAJQA7%2F9cAJQA8%2F%2BwAJQA9%2F%2BwAJQCC%2F9cAJQCD%2F9cAJQCE%2F9cAJQCF%2F9cAJQCG%2F9cAJQCH%2F9cAJQCf%2F%2BwAJQDM%2F64AJQDP%2F64AJgAm%2F9cAJgAq%2F9cAJgAy%2F9cAJgA0%2F9cAJgCJ%2F9cAJgCU%2F9cAJgCV%2F9cAJgCW%2F9cAJgCX%2F9cAJgCY%2F9cAJgCa%2F9cAJgDD%2F9cAJwAP%2F64AJwAR%2F64AJwAk%2F9cAJwA3%2F8MAJwA5%2F%2BwAJwA6%2F%2BwAJwA7%2F9cAJwA8%2F%2BwAJwA9%2F%2BwAJwCC%2F9cAJwCD%2F9cAJwCE%2F9cAJwCF%2F9cAJwCG%2F9cAJwCH%2F9cAJwCf%2F%2BwAJwDM%2F64AJwDP%2F64AKAAtAHsAKQAP%2F4UAKQAR%2F4UAKQAiACkAKQAk%2F9cAKQCC%2F9cAKQCD%2F9cAKQCE%2F9cAKQCF%2F9cAKQCG%2F9cAKQCH%2F9cAKQDM%2F4UAKQDP%2F4UALgAm%2F9cALgAq%2F9cALgAy%2F9cALgA0%2F9cALgCJ%2F9cALgCU%2F9cALgCV%2F9cALgCW%2F9cALgCX%2F9cALgCY%2F9cALgCa%2F9cALgDD%2F9cALwAF%2F1wALwAK%2F1wALwAm%2F9cALwAq%2F9cALwAy%2F9cALwA0%2F9cALwA3%2F9cALwA4%2F%2BwALwA5%2F9cALwA6%2F9cALwA8%2F8MALwCJ%2F9cALwCU%2F9cALwCV%2F9cALwCW%2F9cALwCX%2F9cALwCY%2F9cALwCa%2F9cALwCb%2F%2BwALwCc%2F%2BwALwCd%2F%2BwALwCe%2F%2BwALwCf%2F8MALwDD%2F9cALwDL%2F1wALwDO%2F1wAMgAP%2F64AMgAR%2F64AMgAk%2F9cAMgA3%2F8MAMgA5%2F%2BwAMgA6%2F%2BwAMgA7%2F9cAMgA8%2F%2BwAMgA9%2F%2BwAMgCC%2F9cAMgCD%2F9cAMgCE%2F9cAMgCF%2F9cAMgCG%2F9cAMgCH%2F9cAMgCf%2F%2BwAMgDM%2F64AMgDP%2F64AMwAP%2FvYAMwAR%2FvYAMwAk%2F5oAMwA7%2F9cAMwA9%2F%2BwAMwCC%2F5oAMwCD%2F5oAMwCE%2F5oAMwCF%2F5oAMwCG%2F5oAMwCH%2F5oAMwDM%2FvYAMwDP%2FvYANAAP%2F64ANAAR%2F64ANAAk%2F9cANAA3%2F8MANAA5%2F%2BwANAA6%2F%2BwANAA7%2F9cANAA8%2F%2BwANAA9%2F%2BwANACC%2F9cANACD%2F9cANACE%2F9cANACF%2F9cANACG%2F9cANACH%2F9cANACf%2F%2BwANADM%2F64ANADP%2F64ANwAP%2F4UANwAQ%2F64ANwAR%2F4UANwAiACkANwAk%2F3EANwAm%2F9cANwAq%2F9cANwAy%2F9cANwA0%2F9cANwA3ACkANwBE%2F1wANwBG%2F3EANwBH%2F3EANwBI%2F3EANwBK%2F3EANwBQ%2F5oANwBR%2F5oANwBS%2F3EANwBT%2F5oANwBU%2F3EANwBV%2F5oANwBW%2F4UANwBY%2F5oANwBZ%2F9cANwBa%2F9cANwBb%2F9cANwBc%2F9cANwBd%2F64ANwCC%2F3EANwCD%2F3EANwCE%2F3EANwCF%2F3EANwCG%2F3EANwCH%2F3EANwCJ%2F9cANwCU%2F9cANwCV%2F9cANwCW%2F9cANwCX%2F9cANwCY%2F9cANwCa%2F9cANwCi%2F3EANwCj%2F1wANwCk%2F1wANwCl%2F1wANwCm%2F1wANwCn%2F1wANwCo%2F1wANwCp%2F3EANwCq%2F3EANwCr%2F3EANwCs%2F3EANwCt%2F3EANwC0%2F3EANwC1%2F3EANwC2%2F3EANwC3%2F3EANwC4%2F3EANwC6%2F3EANwC7%2F5oANwC8%2F5oANwC9%2F5oANwC%2B%2F5oANwC%2F%2F9cANwDD%2F9cANwDE%2F3EANwDI%2F64ANwDJ%2F64ANwDM%2F4UANwDP%2F4UAOAAP%2F9cAOAAR%2F9cAOAAk%2F%2BwAOACC%2F%2BwAOACD%2F%2BwAOACE%2F%2BwAOACF%2F%2BwAOACG%2F%2BwAOACH%2F%2BwAOADM%2F9cAOADP%2F9cAOQAP%2F5oAOQAR%2F5oAOQAiACkAOQAk%2F64AOQAm%2F%2BwAOQAq%2F%2BwAOQAy%2F%2BwAOQA0%2F%2BwAOQBE%2F9cAOQBG%2F9cAOQBH%2F9cAOQBI%2F9cAOQBK%2F%2BwAOQBQ%2F%2BwAOQBR%2F%2BwAOQBS%2F9cAOQBT%2F%2BwAOQBU%2F9cAOQBV%2F%2BwAOQBW%2F%2BwAOQBY%2F%2BwAOQCC%2F64AOQCD%2F64AOQCE%2F64AOQCF%2F64AOQCG%2F64AOQCH%2F64AOQCJ%2F%2BwAOQCU%2F%2BwAOQCV%2F%2BwAOQCW%2F%2BwAOQCX%2F%2BwAOQCY%2F%2BwAOQCa%2F%2BwAOQCi%2F9cAOQCj%2F9cAOQCk%2F9cAOQCl%2F9cAOQCm%2F9cAOQCn%2F9cAOQCo%2F9cAOQCp%2F9cAOQCq%2F9cAOQCr%2F9cAOQCs%2F9cAOQCt%2F9cAOQC0%2F9cAOQC1%2F9cAOQC2%2F9cAOQC3%2F9cAOQC4%2F9cAOQC6%2F9cAOQC7%2F%2BwAOQC8%2F%2BwAOQC9%2F%2BwAOQC%2B%2F%2BwAOQDD%2F%2BwAOQDE%2F9cAOQDM%2F5oAOQDP%2F5oAOgAP%2F5oAOgAR%2F5oAOgAiACkAOgAk%2F64AOgAm%2F%2BwAOgAq%2F%2BwAOgAy%2F%2BwAOgA0%2F%2BwAOgBE%2F9cAOgBG%2F9cAOgBH%2F9cAOgBI%2F9cAOgBK%2F%2BwAOgBQ%2F%2BwAOgBR%2F%2BwAOgBS%2F9cAOgBT%2F%2BwAOgBU%2F9cAOgBV%2F%2BwAOgBW%2F%2BwAOgBY%2F%2BwAOgCC%2F64AOgCD%2F64AOgCE%2F64AOgCF%2F64AOgCG%2F64AOgCH%2F64AOgCJ%2F%2BwAOgCU%2F%2BwAOgCV%2F%2BwAOgCW%2F%2BwAOgCX%2F%2BwAOgCY%2F%2BwAOgCa%2F%2BwAOgCi%2F9cAOgCj%2F9cAOgCk%2F9cAOgCl%2F9cAOgCm%2F9cAOgCn%2F9cAOgCo%2F9cAOgCp%2F9cAOgCq%2F9cAOgCr%2F9cAOgCs%2F9cAOgCt%2F9cAOgC0%2F9cAOgC1%2F9cAOgC2%2F9cAOgC3%2F9cAOgC4%2F9cAOgC6%2F9cAOgC7%2F%2BwAOgC8%2F%2BwAOgC9%2F%2BwAOgC%2B%2F%2BwAOgDD%2F%2BwAOgDE%2F9cAOgDM%2F5oAOgDP%2F5oAOwAm%2F9cAOwAq%2F9cAOwAy%2F9cAOwA0%2F9cAOwCJ%2F9cAOwCU%2F9cAOwCV%2F9cAOwCW%2F9cAOwCX%2F9cAOwCY%2F9cAOwCa%2F9cAOwDD%2F9cAPAAP%2F4UAPAAR%2F4UAPAAiACkAPAAk%2F4UAPAAm%2F9cAPAAq%2F9cAPAAy%2F9cAPAA0%2F9cAPABE%2F5oAPABG%2F5oAPABH%2F5oAPABI%2F5oAPABK%2F9cAPABQ%2F8MAPABR%2F8MAPABS%2F5oAPABT%2F8MAPABU%2F5oAPABV%2F8MAPABW%2F64APABY%2F8MAPABd%2F9cAPACC%2F4UAPACD%2F4UAPACE%2F4UAPACF%2F4UAPACG%2F4UAPACH%2F4UAPACJ%2F9cAPACU%2F9cAPACV%2F9cAPACW%2F9cAPACX%2F9cAPACY%2F9cAPACa%2F9cAPACi%2F5oAPACj%2F5oAPACk%2F5oAPACl%2F5oAPACm%2F5oAPACn%2F5oAPACo%2F5oAPACp%2F5oAPACq%2F5oAPACr%2F5oAPACs%2F5oAPACt%2F5oAPAC0%2F5oAPAC1%2F5oAPAC2%2F5oAPAC3%2F5oAPAC4%2F5oAPAC6%2F5oAPAC7%2F8MAPAC8%2F8MAPAC9%2F8MAPAC%2B%2F8MAPADD%2F9cAPADE%2F5oAPADM%2F4UAPADP%2F4UAPQAm%2F%2BwAPQAq%2F%2BwAPQAy%2F%2BwAPQA0%2F%2BwAPQCJ%2F%2BwAPQCU%2F%2BwAPQCV%2F%2BwAPQCW%2F%2BwAPQCX%2F%2BwAPQCY%2F%2BwAPQCa%2F%2BwAPQDD%2F%2BwAPgAtALgARAAF%2F%2BwARAAK%2F%2BwARADL%2F%2BwARADO%2F%2BwARQAF%2F%2BwARQAK%2F%2BwARQBZ%2F9cARQBa%2F9cARQBb%2F9cARQBc%2F9cARQBd%2F%2BwARQC%2F%2F9cARQDL%2F%2BwARQDO%2F%2BwARgAFACkARgAKACkARgDLACkARgDOACkASAAF%2F%2BwASAAK%2F%2BwASABZ%2F9cASABa%2F9cASABb%2F9cASABc%2F9cASABd%2F%2BwASAC%2F%2F9cASADL%2F%2BwASADO%2F%2BwASQAFAHsASQAKAHsASQDLAHsASQDOAHsASwAF%2F%2BwASwAK%2F%2BwASwDL%2F%2BwASwDO%2F%2BwATgBG%2F9cATgBH%2F9cATgBI%2F9cATgBS%2F9cATgBU%2F9cATgCi%2F9cATgCp%2F9cATgCq%2F9cATgCr%2F9cATgCs%2F9cATgCt%2F9cATgC0%2F9cATgC1%2F9cATgC2%2F9cATgC3%2F9cATgC4%2F9cATgC6%2F9cATgDE%2F9cAUAAF%2F%2BwAUAAK%2F%2BwAUADL%2F%2BwAUADO%2F%2BwAUQAF%2F%2BwAUQAK%2F%2BwAUQDL%2F%2BwAUQDO%2F%2BwAUgAF%2F%2BwAUgAK%2F%2BwAUgBZ%2F9cAUgBa%2F9cAUgBb%2F9cAUgBc%2F9cAUgBd%2F%2BwAUgC%2F%2F9cAUgDL%2F%2BwAUgDO%2F%2BwAUwAF%2F%2BwAUwAK%2F%2BwAUwBZ%2F9cAUwBa%2F9cAUwBb%2F9cAUwBc%2F9cAUwBd%2F%2BwAUwC%2F%2F9cAUwDL%2F%2BwAUwDO%2F%2BwAVQAFAFIAVQAKAFIAVQBE%2F9cAVQBG%2F9cAVQBH%2F9cAVQBI%2F9cAVQBK%2F%2BwAVQBS%2F9cAVQBU%2F9cAVQCi%2F9cAVQCj%2F9cAVQCk%2F9cAVQCl%2F9cAVQCm%2F9cAVQCn%2F9cAVQCo%2F9cAVQCp%2F9cAVQCq%2F9cAVQCr%2F9cAVQCs%2F9cAVQCt%2F9cAVQC0%2F9cAVQC1%2F9cAVQC2%2F9cAVQC3%2F9cAVQC4%2F9cAVQC6%2F9cAVQDE%2F9cAVQDLAFIAVQDOAFIAVwAFACkAVwAKACkAVwDLACkAVwDOACkAWQAFAFIAWQAKAFIAWQAP%2F64AWQAR%2F64AWQAiACkAWQDLAFIAWQDM%2F64AWQDOAFIAWQDP%2F64AWgAFAFIAWgAKAFIAWgAP%2F64AWgAR%2F64AWgAiACkAWgDLAFIAWgDM%2F64AWgDOAFIAWgDP%2F64AWwBG%2F9cAWwBH%2F9cAWwBI%2F9cAWwBS%2F9cAWwBU%2F9cAWwCi%2F9cAWwCp%2F9cAWwCq%2F9cAWwCr%2F9cAWwCs%2F9cAWwCt%2F9cAWwC0%2F9cAWwC1%2F9cAWwC2%2F9cAWwC3%2F9cAWwC4%2F9cAWwC6%2F9cAWwDE%2F9cAXAAFAFIAXAAKAFIAXAAP%2F64AXAAR%2F64AXAAiACkAXADLAFIAXADM%2F64AXADOAFIAXADP%2F64AXgAtALgAggAF%2F3EAggAK%2F3EAggAm%2F9cAggAq%2F9cAggAtAQoAggAy%2F9cAggA0%2F9cAggA3%2F3EAggA5%2F64AggA6%2F64AggA8%2F4UAggCJ%2F9cAggCU%2F9cAggCV%2F9cAggCW%2F9cAggCX%2F9cAggCY%2F9cAggCa%2F9cAggCf%2F4UAggDD%2F9cAggDL%2F3EAggDO%2F3EAgwAF%2F3EAgwAK%2F3EAgwAm%2F9cAgwAq%2F9cAgwAtAQoAgwAy%2F9cAgwA0%2F9cAgwA3%2F3EAgwA5%2F64AgwA6%2F64AgwA8%2F4UAgwCJ%2F9cAgwCU%2F9cAgwCV%2F9cAgwCW%2F9cAgwCX%2F9cAgwCY%2F9cAgwCa%2F9cAgwCf%2F4UAgwDD%2F9cAgwDL%2F3EAgwDO%2F3EAhAAF%2F3EAhAAK%2F3EAhAAm%2F9cAhAAq%2F9cAhAAtAQoAhAAy%2F9cAhAA0%2F9cAhAA3%2F3EAhAA5%2F64AhAA6%2F64AhAA8%2F4UAhACJ%2F9cAhACU%2F9cAhACV%2F9cAhACW%2F9cAhACX%2F9cAhACY%2F9cAhACa%2F9cAhACf%2F4UAhADD%2F9cAhADL%2F3EAhADO%2F3EAhQAF%2F3EAhQAK%2F3EAhQAm%2F9cAhQAq%2F9cAhQAtAQoAhQAy%2F9cAhQA0%2F9cAhQA3%2F3EAhQA5%2F64AhQA6%2F64AhQA8%2F4UAhQCJ%2F9cAhQCU%2F9cAhQCV%2F9cAhQCW%2F9cAhQCX%2F9cAhQCY%2F9cAhQCa%2F9cAhQCf%2F4UAhQDD%2F9cAhQDL%2F3EAhQDO%2F3EAhgAF%2F3EAhgAK%2F3EAhgAm%2F9cAhgAq%2F9cAhgAtAQoAhgAy%2F9cAhgA0%2F9cAhgA3%2F3EAhgA5%2F64AhgA6%2F64AhgA8%2F4UAhgCJ%2F9cAhgCU%2F9cAhgCV%2F9cAhgCW%2F9cAhgCX%2F9cAhgCY%2F9cAhgCa%2F9cAhgCf%2F4UAhgDD%2F9cAhgDL%2F3EAhgDO%2F3EAhwAF%2F3EAhwAK%2F3EAhwAm%2F9cAhwAq%2F9cAhwAtAQoAhwAy%2F9cAhwA0%2F9cAhwA3%2F3EAhwA5%2F64AhwA6%2F64AhwA8%2F4UAhwCJ%2F9cAhwCU%2F9cAhwCV%2F9cAhwCW%2F9cAhwCX%2F9cAhwCY%2F9cAhwCa%2F9cAhwCf%2F4UAhwDD%2F9cAhwDL%2F3EAhwDO%2F3EAiAAtAHsAiQAm%2F9cAiQAq%2F9cAiQAy%2F9cAiQA0%2F9cAiQCJ%2F9cAiQCU%2F9cAiQCV%2F9cAiQCW%2F9cAiQCX%2F9cAiQCY%2F9cAiQCa%2F9cAiQDD%2F9cAigAtAHsAiwAtAHsAjAAtAHsAjQAtAHsAkgAP%2F64AkgAR%2F64AkgAk%2F9cAkgA3%2F8MAkgA5%2F%2BwAkgA6%2F%2BwAkgA7%2F9cAkgA8%2F%2BwAkgA9%2F%2BwAkgCC%2F9cAkgCD%2F9cAkgCE%2F9cAkgCF%2F9cAkgCG%2F9cAkgCH%2F9cAkgCf%2F%2BwAkgDM%2F64AkgDP%2F64AlAAP%2F64AlAAR%2F64AlAAk%2F9cAlAA3%2F8MAlAA5%2F%2BwAlAA6%2F%2BwAlAA7%2F9cAlAA8%2F%2BwAlAA9%2F%2BwAlACC%2F9cAlACD%2F9cAlACE%2F9cAlACF%2F9cAlACG%2F9cAlACH%2F9cAlACf%2F%2BwAlADM%2F64AlADP%2F64AlQAP%2F64AlQAR%2F64AlQAk%2F9cAlQA3%2F8MAlQA5%2F%2BwAlQA6%2F%2BwAlQA7%2F9cAlQA8%2F%2BwAlQA9%2F%2BwAlQCC%2F9cAlQCD%2F9cAlQCE%2F9cAlQCF%2F9cAlQCG%2F9cAlQCH%2F9cAlQCf%2F%2BwAlQDM%2F64AlQDP%2F64AlgAP%2F64AlgAR%2F64AlgAk%2F9cAlgA3%2F8MAlgA5%2F%2BwAlgA6%2F%2BwAlgA7%2F9cAlgA8%2F%2BwAlgA9%2F%2BwAlgCC%2F9cAlgCD%2F9cAlgCE%2F9cAlgCF%2F9cAlgCG%2F9cAlgCH%2F9cAlgCf%2F%2BwAlgDM%2F64AlgDP%2F64AlwAP%2F64AlwAR%2F64AlwAk%2F9cAlwA3%2F8MAlwA5%2F%2BwAlwA6%2F%2BwAlwA7%2F9cAlwA8%2F%2BwAlwA9%2F%2BwAlwCC%2F9cAlwCD%2F9cAlwCE%2F9cAlwCF%2F9cAlwCG%2F9cAlwCH%2F9cAlwCf%2F%2BwAlwDM%2F64AlwDP%2F64AmAAP%2F64AmAAR%2F64AmAAk%2F9cAmAA3%2F8MAmAA5%2F%2BwAmAA6%2F%2BwAmAA7%2F9cAmAA8%2F%2BwAmAA9%2F%2BwAmACC%2F9cAmACD%2F9cAmACE%2F9cAmACF%2F9cAmACG%2F9cAmACH%2F9cAmACf%2F%2BwAmADM%2F64AmADP%2F64AmgAP%2F64AmgAR%2F64AmgAk%2F9cAmgA3%2F8MAmgA5%2F%2BwAmgA6%2F%2BwAmgA7%2F9cAmgA8%2F%2BwAmgA9%2F%2BwAmgCC%2F9cAmgCD%2F9cAmgCE%2F9cAmgCF%2F9cAmgCG%2F9cAmgCH%2F9cAmgCf%2F%2BwAmgDM%2F64AmgDP%2F64AmwAP%2F9cAmwAR%2F9cAmwAk%2F%2BwAmwCC%2F%2BwAmwCD%2F%2BwAmwCE%2F%2BwAmwCF%2F%2BwAmwCG%2F%2BwAmwCH%2F%2BwAmwDM%2F9cAmwDP%2F9cAnAAP%2F9cAnAAR%2F9cAnAAk%2F%2BwAnACC%2F%2BwAnACD%2F%2BwAnACE%2F%2BwAnACF%2F%2BwAnACG%2F%2BwAnACH%2F%2BwAnADM%2F9cAnADP%2F9cAnQAP%2F9cAnQAR%2F9cAnQAk%2F%2BwAnQCC%2F%2BwAnQCD%2F%2BwAnQCE%2F%2BwAnQCF%2F%2BwAnQCG%2F%2BwAnQCH%2F%2BwAnQDM%2F9cAnQDP%2F9cAngAP%2F9cAngAR%2F9cAngAk%2F%2BwAngCC%2F%2BwAngCD%2F%2BwAngCE%2F%2BwAngCF%2F%2BwAngCG%2F%2BwAngCH%2F%2BwAngDM%2F9cAngDP%2F9cAnwAP%2F4UAnwAR%2F4UAnwAiACkAnwAk%2F4UAnwAm%2F9cAnwAq%2F9cAnwAy%2F9cAnwA0%2F9cAnwBE%2F5oAnwBG%2F5oAnwBH%2F5oAnwBI%2F5oAnwBK%2F9cAnwBQ%2F8MAnwBR%2F8MAnwBS%2F5oAnwBT%2F8MAnwBU%2F5oAnwBV%2F8MAnwBW%2F64AnwBY%2F8MAnwBd%2F9cAnwCC%2F4UAnwCD%2F4UAnwCE%2F4UAnwCF%2F4UAnwCG%2F4UAnwCH%2F4UAnwCJ%2F9cAnwCU%2F9cAnwCV%2F9cAnwCW%2F9cAnwCX%2F9cAnwCY%2F9cAnwCa%2F9cAnwCi%2F5oAnwCj%2F5oAnwCk%2F5oAnwCl%2F5oAnwCm%2F5oAnwCn%2F5oAnwCo%2F5oAnwCp%2F5oAnwCq%2F5oAnwCr%2F5oAnwCs%2F5oAnwCt%2F5oAnwC0%2F5oAnwC1%2F5oAnwC2%2F5oAnwC3%2F5oAnwC4%2F5oAnwC6%2F5oAnwC7%2F8MAnwC8%2F8MAnwC9%2F8MAnwC%2B%2F8MAnwDD%2F9cAnwDE%2F5oAnwDM%2F4UAnwDP%2F4UAoAAP%2FvYAoAAR%2FvYAoAAk%2F5oAoAA7%2F9cAoAA9%2F%2BwAoACC%2F5oAoACD%2F5oAoACE%2F5oAoACF%2F5oAoACG%2F5oAoACH%2F5oAoADM%2FvYAoADP%2FvYAogAF%2F%2BwAogAK%2F%2BwAogDL%2F%2BwAogDO%2F%2BwAowAF%2F%2BwAowAK%2F%2BwAowDL%2F%2BwAowDO%2F%2BwApAAF%2F%2BwApAAK%2F%2BwApADL%2F%2BwApADO%2F%2BwApQAF%2F%2BwApQAK%2F%2BwApQDL%2F%2BwApQDO%2F%2BwApgAF%2F%2BwApgAK%2F%2BwApgDL%2F%2BwApgDO%2F%2BwApwAF%2F%2BwApwAK%2F%2BwApwDL%2F%2BwApwDO%2F%2BwAqgAF%2F%2BwAqgAK%2F%2BwAqgBZ%2F9cAqgBa%2F9cAqgBb%2F9cAqgBc%2F9cAqgBd%2F%2BwAqgC%2F%2F9cAqgDL%2F%2BwAqgDO%2F%2BwAqwAF%2F%2BwAqwAK%2F%2BwAqwBZ%2F9cAqwBa%2F9cAqwBb%2F9cAqwBc%2F9cAqwBd%2F%2BwAqwC%2F%2F9cAqwDL%2F%2BwAqwDO%2F%2BwArAAF%2F%2BwArAAK%2F%2BwArABZ%2F9cArABa%2F9cArABb%2F9cArABc%2F9cArABd%2F%2BwArAC%2F%2F9cArADL%2F%2BwArADO%2F%2BwArQAF%2F%2BwArQAK%2F%2BwArQBZ%2F9cArQBa%2F9cArQBb%2F9cArQBc%2F9cArQBd%2F%2BwArQC%2F%2F9cArQDL%2F%2BwArQDO%2F%2BwAsgAF%2F%2BwAsgAK%2F%2BwAsgBZ%2F9cAsgBa%2F9cAsgBb%2F9cAsgBc%2F9cAsgBd%2F%2BwAsgC%2F%2F9cAsgDL%2F%2BwAsgDO%2F%2BwAtAAF%2F%2BwAtAAK%2F%2BwAtABZ%2F9cAtABa%2F9cAtABb%2F9cAtABc%2F9cAtABd%2F%2BwAtAC%2F%2F9cAtADL%2F%2BwAtADO%2F%2BwAtQAF%2F%2BwAtQAK%2F%2BwAtQBZ%2F9cAtQBa%2F9cAtQBb%2F9cAtQBc%2F9cAtQBd%2F%2BwAtQC%2F%2F9cAtQDL%2F%2BwAtQDO%2F%2BwAtgAF%2F%2BwAtgAK%2F%2BwAtgBZ%2F9cAtgBa%2F9cAtgBb%2F9cAtgBc%2F9cAtgBd%2F%2BwAtgC%2F%2F9cAtgDL%2F%2BwAtgDO%2F%2BwAuAAF%2F9cAuAAK%2F9cAuADL%2F9cAuADO%2F9cAugAF%2F%2BwAugAK%2F%2BwAugBZ%2F9cAugBa%2F9cAugBb%2F9cAugBc%2F9cAugBd%2F%2BwAugC%2F%2F9cAugDL%2F%2BwAugDO%2F%2BwAvwAFAFIAvwAKAFIAvwAP%2F64AvwAR%2F64AvwAiACkAvwDLAFIAvwDM%2F64AvwDOAFIAvwDP%2F64AwAAF%2F%2BwAwAAK%2F%2BwAwABZ%2F9cAwABa%2F9cAwABb%2F9cAwABc%2F9cAwABd%2F%2BwAwAC%2F%2F9cAwADL%2F%2BwAwADO%2F%2BwAwQAFAFIAwQAKAFIAwQAP%2F64AwQAR%2F64AwQAiACkAwQDLAFIAwQDM%2F64AwQDOAFIAwQDP%2F64AwwAtAHsAyAA3%2F64AyQA3%2F64AygAk%2F3EAygA3ACkAygA5ACkAygA6ACkAygA8ABQAygBE%2F64AygBG%2F4UAygBH%2F4UAygBI%2F4UAygBK%2F8MAygBQ%2F8MAygBR%2F8MAygBS%2F4UAygBT%2F8MAygBU%2F4UAygBV%2F8MAygBW%2F8MAygBY%2F8MAygCC%2F3EAygCD%2F3EAygCE%2F3EAygCF%2F3EAygCG%2F3EAygCH%2F3EAygCfABQAygCi%2F4UAygCj%2F64AygCk%2F64AygCl%2F64AygCm%2F64AygCn%2F64AygCo%2F64AygCp%2F4UAygCq%2F4UAygCr%2F4UAygCs%2F4UAygCt%2F4UAygC0%2F4UAygC1%2F4UAygC2%2F4UAygC3%2F4UAygC4%2F4UAygC6%2F4UAygC7%2F8MAygC8%2F8MAygC9%2F8MAygC%2B%2F8MAygDE%2F4UAywAk%2F3EAywA3ACkAywA5ACkAywA6ACkAywA8ABQAywBE%2F64AywBG%2F4UAywBH%2F4UAywBI%2F4UAywBK%2F8MAywBQ%2F8MAywBR%2F8MAywBS%2F4UAywBT%2F8MAywBU%2F4UAywBV%2F8MAywBW%2F8MAywBY%2F8MAywCC%2F3EAywCD%2F3EAywCE%2F3EAywCF%2F3EAywCG%2F3EAywCH%2F3EAywCfABQAywCi%2F4UAywCj%2F64AywCk%2F64AywCl%2F64AywCm%2F64AywCn%2F64AywCo%2F64AywCp%2F4UAywCq%2F4UAywCr%2F4UAywCs%2F4UAywCt%2F4UAywC0%2F4UAywC1%2F4UAywC2%2F4UAywC3%2F4UAywC4%2F4UAywC6%2F4UAywC7%2F8MAywC8%2F8MAywC9%2F8MAywC%2B%2F8MAywDE%2F4UAzAAm%2F5oAzAAq%2F5oAzAAy%2F5oAzAA0%2F5oAzAA3%2F3EAzAA4%2F9cAzAA5%2F4UAzAA6%2F4UAzAA8%2F4UAzACJ%2F5oAzACU%2F5oAzACV%2F5oAzACW%2F5oAzACX%2F5oAzACY%2F5oAzACa%2F5oAzACb%2F9cAzACc%2F9cAzACd%2F9cAzACe%2F9cAzACf%2F4UAzADD%2F5oAzQAk%2F3EAzQA3ACkAzQA5ACkAzQA6ACkAzQA8ABQAzQBE%2F64AzQBG%2F4UAzQBH%2F4UAzQBI%2F4UAzQBK%2F8MAzQBQ%2F8MAzQBR%2F8MAzQBS%2F4UAzQBT%2F8MAzQBU%2F4UAzQBV%2F8MAzQBW%2F8MAzQBY%2F8MAzQCC%2F3EAzQCD%2F3EAzQCE%2F3EAzQCF%2F3EAzQCG%2F3EAzQCH%2F3EAzQCfABQAzQCi%2F4UAzQCj%2F64AzQCk%2F64AzQCl%2F64AzQCm%2F64AzQCn%2F64AzQCo%2F64AzQCp%2F4UAzQCq%2F4UAzQCr%2F4UAzQCs%2F4UAzQCt%2F4UAzQC0%2F4UAzQC1%2F4UAzQC2%2F4UAzQC3%2F4UAzQC4%2F4UAzQC6%2F4UAzQC7%2F8MAzQC8%2F8MAzQC9%2F8MAzQC%2B%2F8MAzQDE%2F4UAzwAm%2F5oAzwAq%2F5oAzwAy%2F5oAzwA0%2F5oAzwA3%2F3EAzwA4%2F9cAzwA5%2F4UAzwA6%2F4UAzwA8%2F4UAzwCJ%2F5oAzwCU%2F5oAzwCV%2F5oAzwCW%2F5oAzwCX%2F5oAzwCY%2F5oAzwCa%2F5oAzwCb%2F9cAzwCc%2F9cAzwCd%2F9cAzwCe%2F9cAzwCf%2F4UAzwDD%2F5oAAAAeAW4AAQAAAAAAAAA5AHQAAQAAAAAAAQASANQAAQAAAAAAAgAGAPUAAQAAAAAAAwAuAVoAAQAAAAAABAAZAb0AAQAAAAAABQAMAfEAAQAAAAAABgAXAi4AAQAAAAAABwBSAuwAAQAAAAAACAAUA2kAAQAAAAAACwAcA7gAAQAAAAAADAAuBDMAAQAAAAAADQAuBMAAAQAAAAAADgAqBUUAAQAAAAAAEAAJBYQAAQAAAAAAEQAPBa4AAwABBAkAAAByAAAAAwABBAkAAQAkAK4AAwABBAkAAgAMAOcAAwABBAkAAwBcAPwAAwABBAkABAAyAYkAAwABBAkABQAYAdcAAwABBAkABgAuAf4AAwABBAkABwCkAkYAAwABBAkACAAoAz8AAwABBAkACwA4A34AAwABBAkADABcA9UAAwABBAkADQBcBGIAAwABBAkADgBUBO8AAwABBAkAEAASBXAAAwABBAkAEQAeBY4ARABpAGcAaQB0AGkAegBlAGQAIABkAGEAdABhACAAYwBvAHAAeQByAGkAZwBoAHQAIACpACAAMgAwADEAMAAtADIAMAAxADEALAAgAEcAbwBvAGcAbABlACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAC4AAERpZ2l0aXplZCBkYXRhIGNvcHlyaWdodCCpIDIwMTAtMjAxMSwgR29vZ2xlIENvcnBvcmF0aW9uLgAATwBwAGUAbgAgAFMAYQBuAHMAIABTAGUAbQBpAGIAbwBsAGQAAE9wZW4gU2FucyBTZW1pYm9sZAAASQB0AGEAbABpAGMAAEl0YWxpYwAAQQBzAGMAZQBuAGQAZQByACAALQAgAE8AcABlAG4AIABTAGEAbgBzACAAUwBlAG0AaQBiAG8AbABkACAASQB0AGEAbABpAGMAIABCAHUAaQBsAGQAIAAxADAAMAAAQXNjZW5kZXIgLSBPcGVuIFNhbnMgU2VtaWJvbGQgSXRhbGljIEJ1aWxkIDEwMAAATwBwAGUAbgAgAFMAYQBuAHMAIABTAGUAbQBpAGIAbwBsAGQAIABJAHQAYQBsAGkAYwAAT3BlbiBTYW5zIFNlbWlib2xkIEl0YWxpYwAAVgBlAHIAcwBpAG8AbgAgADEALgAxADAAAFZlcnNpb24gMS4xMAAATwBwAGUAbgBTAGEAbgBzAC0AUwBlAG0AaQBiAG8AbABkAEkAdABhAGwAaQBjAABPcGVuU2Fucy1TZW1pYm9sZEl0YWxpYwAATwBwAGUAbgAgAFMAYQBuAHMAIABpAHMAIABhACAAdAByAGEAZABlAG0AYQByAGsAIABvAGYAIABHAG8AbwBnAGwAZQAgAGEAbgBkACAAbQBhAHkAIABiAGUAIAByAGUAZwBpAHMAdABlAHIAZQBkACAAaQBuACAAYwBlAHIAdABhAGkAbgAgAGoAdQByAGkAcwBkAGkAYwB0AGkAbwBuAHMALgAAT3BlbiBTYW5zIGlzIGEgdHJhZGVtYXJrIG9mIEdvb2dsZSBhbmQgbWF5IGJlIHJlZ2lzdGVyZWQgaW4gY2VydGFpbiBqdXJpc2RpY3Rpb25zLgAAQQBzAGMAZQBuAGQAZQByACAAQwBvAHIAcABvAHIAYQB0AGkAbwBuAABBc2NlbmRlciBDb3Jwb3JhdGlvbgAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tLwAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcwBjAGUAbgBkAGUAcgBjAG8AcgBwAC4AYwBvAG0ALwB0AHkAcABlAGQAZQBzAGkAZwBuAGUAcgBzAC4AaAB0AG0AbAAAaHR0cDovL3d3dy5hc2NlbmRlcmNvcnAuY29tL3R5cGVkZXNpZ25lcnMuaHRtbAAATABpAGMAZQBuAHMAZQBkACAAdQBuAGQAZQByACAAdABoAGUAIABBAHAAYQBjAGgAZQAgAEwAaQBjAGUAbgBzAGUALAAgAFYAZQByAHMAaQBvAG4AIAAyAC4AMAAATGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMAAAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAcABhAGMAaABlAC4AbwByAGcALwBsAGkAYwBlAG4AcwBlAHMALwBMAEkAQwBFAE4AUwBFAC0AMgAuADAAAGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMAAATwBwAGUAbgAgAFMAYQBuAHMAAE9wZW4gU2FucwAAUwBlAG0AaQBiAG8AbABkACAASQB0AGEAbABpAGMAAFNlbWlib2xkIEl0YWxpYwAAAgAA%2F%2FQAAP9mAGYAAAAAAAAAAAAAAAAAAAAAAAAAAADWAAAAAQACAAMABAAFAAYABwAIAAkACgALAAwADQAOAA8AEAARABIAEwAUABUAFgAXABgAGQAaABsAHAAdAB4AHwAgACEAIgAjACQAJQAmACcAKAApACoAKwAsAC0ALgAvADAAMQAyADMANAA1ADYANwA4ADkAOgA7ADwAPQA%2BAD8AQABBAEIAQwBEAEUARgBHAEgASQBKAEsATABNAE4ATwBQAFEAUgBTAFQAVQBWAFcAWABZAFoAWwBcAF0AXgBfAGAAYQCsAKMAhACFAL0AlgDoAIYAjgCLAJ0AqQCkAQIAigEDAIMAkwDyAPMAjQCXAIgAwwDeAPEAngCqAPUA9AD2AKIArQDJAMcArgBiAGMAkABkAMsAZQDIAMoAzwDMAM0AzgDpAGYA0wDQANEArwBnAPAAkQDWANQA1QBoAOsA7QCJAGoAaQBrAG0AbABuAKAAbwBxAHAAcgBzAHUAdAB2AHcA6gB4AHoAeQB7AH0AfAC4AKEAfwB%2BAIAAgQDsAO4AugDXALAAsQDYAN0A2QCyALMAtgC3AMQAtAC1AMUAhwC%2BAL8AvAEEAQUHdW5pMDBBRAlvdmVyc2NvcmUMZm91cnN1cGVyaW9yBEV1cm8AAAABAAIACAAK%2F%2F8ADwAAAAEAAAAAyYlvMQAAAADJY0iWAAAAAMnt2GQ%3D%29%20format%28%27truetype%27%29%3B%0A%7D%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20%27Source%20Code%20Pro%27%3B%0Afont%2Dstyle%3A%20normal%3B%0Afont%2Dweight%3A%20400%3B%0Asrc%3A%20url%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAPAIAAAwBwRkZUTWaiaLcAAKVwAAAAHE9TLzJyvPgMAAABeAAAAGBjbWFwVIOo9QAAA8QAAAICY3Z0IAC%2FC3EAAAeAAAAAImZwZ20GWZw3AAAFyAAAAXNnYXNw%2F%2F8AAwAApWgAAAAIZ2x5ZrbD8a4AAAmIAABdUGhlYWT7xXV0AAAA%2FAAAADZoaGVhBi4C3QAAATQAAAAkaG10eDZGLdMAAAHYAAAB6mxvY2F%2FBGjeAAAHpAAAAeJtYXhwAwgBUgAAAVgAAAAgbmFtZXFCsfwAAGbYAAA7ZHBvc3QKYvRKAACiPAAAAylwcmVwJrMjsAAABzwAAABBAAEAAAABBFos1IC0Xw889QAfA%2BgAAAAAzR8W4gAAAADNHxbi%2F%2F%2F%2FBgJVA2sAAAAIAAIAAAAAAAAAAQAAA9j%2B7wAAA%2Bj%2F%2FwAAAlUAAQAAAAAAAAAAAAAAAAAAAAUAAQAAAPAAVgAEAEgABgABAAAAAAAKAAACAACyAAMAAQADAlgBkAAFAAACigJYAAAASwKKAlgAAAFeADIBIAAAAgsFCQMEAwICBCAAAAcAABgBAAAAAAAAAABBREJFAEAADSIVAu7%2FBgAAA9gBEWAAAZMAAAAAAeYCkAAAACAAAQPoAAAAAAAAAU0AAAAAAAACWAAAAAAA4wCDAFcAVQAcACoA9QDQAHoAVABVAMUAVQDbAGMARwBiAEUAOQAnADgATQBGAEQAQwDbAMUAeABVAGsAbQAxACAAZwBCAFUAcwCHADUATwBfAFEAYgCGAFEAUwAwAGYAMQBkAEMAKgBPACsACgA2ACYAQQDiAGMAYwBvADwAuQBRAF0AUAA8AEUAZwBIAF0AWgA3AGoAUQA8AF0APABdADwAkgBIAEUATQAzAAgAQAAxAEcAeAEHAGMATAAAAOMAcQBNADoANQEHAFsAlgAeAKcAUwBVAFUAcACxAK8AVQCuAKwA6wBNAEgA2wDdANAAjgBhABwAHAAnAHsAIAAgACAAIAAgACD%2F%2FwBCAHMAcwBzAHMAXwBfAF8AXwAQAFMAMAAwADAAMAAwAGYALQBPAE8ATwBPACYAZQBYAFEAUQBRAFEAUQBRABEAUABFAEUARQBFAFoAWgBaAFoAPABdADwAPAA8ADwAPABVADwATQBNAE0ATQAxAF0AMQBaACEACwCoAM8AngC5AOsAqACeALEAlgDPANcApwCOAFAAFADRANkA2QBfAGcAZwCXAMUA0wAcAKwAOgBVABwAoQDQAK0ArACsAKkA%2BQCkAJsApQDPANIAAAAAAAMAAAADAAAAHAABAAAAAAD8AAMAAQAAABwABADgAAAANAAgAAQAFAAAAA0AfgD%2FATEBUwLGAtoC3AMEAwgDCgMnHUMdUiAUIBogHiAiIDogRCB0IKwiEiIV%2F%2F8AAAAAAA0AIACgATEBUgLGAtoC3AMAAwgDCgMnHUMdUiATIBggHCAiIDkgRCB0IKwiEiIV%2F%2F8AA%2F%2F3%2F%2BX%2FxP%2BT%2F3P%2BAf3u%2Fe39yv3H%2Fcb9quOP44HgweC%2B4L3guuCk4JvgbOA13tDezgABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYAAAMAAAAAAAAAAQIAAAAEAAAAAAAAAAAAAAAAAAAAAQAABQYHCAkKCwwNDg8QERITFBUWFxgZGhscHR4fICEiIyQlJicoKSorLC0uLzAxMjM0NTY3ODk6Ozw9Pj9AQUJDREVGR0hJSktMTU5PUFFSU1RVVldYWVpbXF1eX2BhYmMAiImLjZWaoKWkpqinqautrK6vsbCys7W3tri6ub69v8AAdGZna9x6o3JtAHhsAIqcAHUAAGl5AAAAAABufgCqvINlcAAAAABvfwBkhIeZxcbU1dna1te7AMMA3%2BHd3gAAAHvY2wCGjoWPjJGSk5CXmACWnp%2BdxMfJcwAAyHwAAAAAALgAACxLuAAJUFixAQGOWbgB%2F4W4AEQduQAJAANfXi24AAEsICBFaUSwAWAtuAACLLgAASohLbgAAywgRrADJUZSWCNZIIogiklkiiBGIGhhZLAEJUYgaGFkUlgjZYpZLyCwAFNYaSCwAFRYIbBAWRtpILAAVFghsEBlWVk6LbgABCwgRrAEJUZSWCOKWSBGIGphZLAEJUYgamFkUlgjilkv%2FS24AAUsSyCwAyZQWFFYsIBEG7BARFkbISEgRbDAUFiwwEQbIVlZLbgABiwgIEVpRLABYCAgRX1pGESwAWAtuAAHLLgABiotuAAILEsgsAMmU1iwQBuwAFmKiiCwAyZTWCMhsICKihuKI1kgsAMmU1gjIbgAwIqKG4ojWSCwAyZTWCMhuAEAioobiiNZILADJlNYIyG4AUCKihuKI1kguAADJlNYsAMlRbgBgFBYIyG4AYAjIRuwAyVFIyEjIVkbIVlELbgACSxLU1hFRBshIVktALAAKwCyAQECKwGyAgECKwG3AkA2KiEUAAgrALcBTUAyJBcACCsAsgMHByuwACBFfWkYREuwYFJYsAEbsABZsAGOAAAAABQARABWAAAADP8zAAwB5gAMAj4ADAJ%2BAAwCkAAMAsgADAAAAAAAAAAAAAAAAAAAAAAAOABEALoBJAE0AeYB%2FAIeAj4CdAKYAr4CxgLoAwIDZAOcA%2B4EYASyBRgFjAXCBkgGvAbIBtQHBgcSB0QHlggMCFAItAkECUIJgAm2ChYKUgqICsQLFAs6C5AL4Aw0DH4M8A1EDbIN3g4gDlgOuA8UD1IPiA%2BmD8AP3hAIEBwQJBCqESYRdhHuEkwSnBNqE8IUABRWFKYU3hViFboWDhaIFwAXTBeyGAIYVhiQGQIZYBm%2BGfQaVhpqGswbChsKGzgbohwKHGQcxhzkHXAdeB4AHggeFB4qHjIeqh6yHu4fLB82H0AfSB%2B%2BH%2FAf%2BiACIAwgFCAgIDAgQCBQIKAgrCC4IMQg0CDcIOghQiFOIVohZiFyIX4hiiGWIaIhriH%2BIgoiFiIiIi4iOiJGInQi%2FCMIIxQjICMsIzgjfCP4JAQkECQcJCgkNCRAJPglBCUQJRwlKCU0JUAlTCVYJWQl8CX8JggmFCYgJiwmOCZ4JwAnDCcYJyQnMCc8J7YnwifqKDwo5CjsKPQo%2FCkOKSIpQil6KY4pwin0KiIqdiqyKsYq2isAKyQrLis6K0YrVCt6K5IrqivGK9AsTixiLGospCzGLQQtWC2SLaQtuC3YLhQuSC56LqgAAAACAOP%2F9AF1Ap4ABQARAC0AuAAARVi4AAEvG7kAAQANPlm4AABFWLgADy8buQAPAAM%2BWbgACdy4AAXcMDEBJzMHAyMHNDYzMhYVFAYjIiYBBgJQAgo4LSseHisrHh4rAkBeXv6opiMpKSMkKioAAAD%2F%2FwCDAWAB1gKvEiYADI4AEAYADHMAAAAAAgBXAAACBwKKABsAHwCLALgAAEVYuAAILxu5AAgACz5ZuAAARVi4AAwvG7kADAALPlm4AABFWLgAGy8buQAbAAM%2BWbgAAEVYuAAXLxu5ABcAAz5ZuwACAAEAAQAEK7sABgABAAUABCu4AAYQuAAK0LgADtC4AAUQuAAe0LgAEdC4AAIQuAAf0LgAEtC4AAEQuAAZ0LgAFdAwMTcjNTM3IzUzNzMHMzczBzMVIwczFSMHIzcjByMTNyMHpk9WE1VbGDUXhBg1F1FXE1ZdGDYZhRg22ROFEsw5lDq3t7e3OpQ5zMzMAQWUlAAAAAABAFX%2FkgIAAuwAMQBHALgAFi%2B4ACwvuAAr3LkABQAB9LgAFhC4ABfcugAIABcAKxESObgAFNC4ABcQuQAeAAH0ugAhACsAFxESObgAKxC4AC7QMDEBLgMjIgYVFB4EFRQOAgcVIzUuASc3HgEzMjY1NC4ENTQ2NzUzFR4BFwHDER8iKBkzOy9HUkcvGS9BJzw4ZCMnJls5PD0vRlNGL1lJPDdKHgHtDRUPCC0mHCQeHio8LiA3KRsEkpEFLB05GykxJh8pIB4pOSw%2FUAiEgwUqHQAA%2F%2F8AHP%2F0Aj0CihInAOT%2FewFNECYA3wAAEAcA5ACGAAAAAwAq%2F%2FQCQQKcAA0AGwBHAJAAuAAARVi4ADMvG7kAMwANPlm4AABFWLgAIS8buQAhAAM%2BWbgAAEVYuAAcLxu5ABwAAz5ZuAAhELkABQAB9LoACAAhADMREjm6ABEAMwAhERI5uAARELgAK9C4AAvQuAAzELkAGQAB9LgACBC4AB7QuAARELkAOwAB9LgAHhC4AEXQuAA%2B0LgAHBC4AEfQMDE3FB4CMzI2Ny4BJw4BExQWFz4DNTQmIyIGASYnDgEjIi4CNTQ%2BAjcuATU0PgIzMhYVFA4CBx4BFz4BNzMOAQcWF3oUIi4aHzoaMFUiICpGEA4VJR0QGyEjJgFqQUgkVzgsSDMdFCMsGBUXFSU1IT1CGSgyGiBTLRwpDkwSNCQ8Na8bLSARHBgqZDYcPQEtGzoeDx8hJRYdKzb9yRQ3IygbMEMoIDYtJxIpTyMhOCoYSDogNC8pFDNeJyhfOUF2NC4RAAABAPUBYAFjAq8ABQALALoAAgAEAAMrMDETJzMPASP3Am4CGTgCQW5u4QAAAAEA0P9QAd4C3AAOAAsAugAGAAAAAyswMQUuATU0NjcXDgEVFBYXBwGxaHl5aC1lX19lLbBR5JGR5FEqVch%2Ff8hVKgAAAQB6%2F1ABiALcAA0ACwC6AAcADQADKzAxFz4BNTQmJzceARUUBgd6ZV9fZS1oeXlohlXIf3%2FIVSpR5JGR5FEAAAEAVABvAgQCLAAOAC8AuAAOL7oAAQAOAAUREjm4AAEQuQAEAAH0uAAH0LgAARC4AArQuAAOELgADNAwMT8BJzcXNzMXNxcHFwcnB4psohCnCTAJpxCibCp4eI2lRi43vb03LkalHp%2BfAAAAAAEAVQBoAgMCLAALAB0AuwACAAEAAQAEK7gAAhC4AAbQuAABELgACdAwMQEjNTM1MxUzFSMVIwELtrZCtrZCASs%2Bw8M%2BwwAAAAEAxf8rAYwAmwASAAsAugAMAAYAAyswMRc%2BATcOASMiJjU0NjMyFhUUBgfFPj4CBQkFIC4wIC0tXVOhHE88AQElJiUnRTtYeR8AAP%2F%2FAFUBKwIDAWkSBgDiAAAAAQDb%2F%2FQBfQCdAAsAGAC4AABFWLgACS8buQAJAAM%2BWbgAA9wwMTc0NjMyFhUUBiMiJtsvIiIvLyIiL0gmLy8mJi4uAAABAGP%2FYAH1AsYAAwAYALgAAEVYuAACLxu5AAIADz5ZuAAA3DAxFyMBM61KAUhKoANmAAAAAwBH%2F%2FQCEQKKAAsAGwAnAEsAuAAARVi4AAYvG7kABgALPlm4AABFWLgAAC8buQAAAAM%2BWbgABhC5AAwAAfS4AAAQuQAUAAH0ugAcABQADBESObgAHC%2B4ACLcMDEFIiY1NDYzMhYVFAYDIg4CFRQWMzI2NTQuAgMiJjU0NjMyFhUUBgEsa3p6a2t6emshOCkWVUNDVRYpOCEZJSUZGSUlDK2goaiooaCtAlQeQWNFiYKCiUVjQR7%2BvSMgHyMjHyAjAAAAAAEAYgAAAhACfgAMAD0AuAAARVi4AAovG7kACgALPlm4AABFWLgAAi8buQACAAM%2BWbkAAwAB9LgAANC4AAoQuAAF0LkABwAB9DAxJRUhNTMRIzU%2BATczEQIQ%2FlK1iDNMHj1EREQB1jUIFxD9xgAAAAABAEUAAAIKAooAHwBDALgAAEVYuAAPLxu5AA8ACz5ZuAAARVi4AB4vG7kAHgADPlm5ABwAAfS4AADQugAFAA8AHhESObgADxC5AAgAAfQwMTc%2BAzU0JiMiBgcnPgEzMh4CFRQOAgc%2BATsBFSFJUX1VLERHLU0fLytjRDBNNh0rTmxBHT0d0v4%2FMUh0YVQoN0YtIC8sNRsxRiotW2FpOwIERwAAAAEAOf%2F0AgYCigAzAFMAuAAARVi4AB0vG7kAHQALPlm4AABFWLgAMC8buQAwAAM%2BWbkAAwAB9LoADQAdADAREjm4AA0vuQAOAAH0uAAdELkAFgAB9LoAJgANAA4REjkwMTceATMyPgI1NC4CIzUyPgI1NCYjIgYHJz4BMzIeAhUUBgcVHgMVFA4CIyImJ2MgWT4hOCkXGThYPzlPMhdHOy1QICwoZj4tTTkgTDwgOSwZJD9UMFNwI4QeLhEeKxscLyISPxIgLBkvNiQdNCMtFik8JzpKFAQHGyk2ISpELxk3IwAAAAIAJwAAAiECfgAJABQAWQC4AABFWLgAES8buQARAAs%2BWbgAAEVYuAANLxu5AA0AAz5ZuwAOAAEAAAAEK7gAERC5AAQAAfS4AAAQuAAJ0LgADhC4AAvQuAAJELgAENC4AAAQuAAT0DAxJTU%2BATcjDgEPAQUjFSM1ITUBMxEzAXABAgIFDyIQrQGfY07%2BtwE%2FWGPyxho9GhcvF9pCsLA3AZf%2BdAAAAQA4%2F%2FQCCgJ%2BACgAVQC4AABFWLgAEi8buQASAAs%2BWbgAAEVYuAAjLxu5ACMAAz5ZuwAZAAEADQAEK7gAIxC5AAUAAfS6ABYAIwASERI5uAAWELgAEdC4ABIQuQAUAAH0MDE3HgMzMj4CNTQmIyIGBycTIRUhBz4BMzIeAhUUDgIjIi4CJ2EQJCs1ICI7LBlVSCg4IiwVAWn%2B4BEcNSUuUDsiJ0JVLitFNy0SgQ4bFAwVJjYhQkoUExwBM0e9DA4YMUs0NFA3HQ8YHxEAAgBN%2F%2FQCFgKKAA0AMABXALgAAEVYuAAtLxu5AC0ACz5ZuAAARVi4ACMvG7kAIwADPlm7AAgAAQAZAAQruAAjELkAAAAB9LoAFgAjAC0REjm4ABYQuQALAAH0uAAtELkAEQAB9DAxJTI%2BAjU0JiMiBgceARMuASMiDgIHPgEzMh4CFRQOAiMiLgI1ND4CMzIWFwFBHDIkFUZCJlQpCVXhGUIkJkY1IQEmXzAsSTUdIzpNKzRZQiUsSmE0O1cgNRQlMyBCRScvXWAB3hcbHEBpTSYtGTFKMS5LNh4mTXNNYIdVJycdAAAAAAEARgAAAhQCfgAPADMAuAAARVi4AAcvG7kABwALPlm4AABFWLgAAC8buQAAAAM%2BWbgABxC5AAUAAfS4AAnQMDEzPgM3ITUhFQ4DByPiBBoyTTf%2BkAHOP1IyFgNWW5WGfkNHM0iEiZheAAAAAAMARP%2F0AhMCigANABoAQABXALgAAEVYuAApLxu5ACkACz5ZuAAARVi4ADwvG7kAPAADPlm5AAMAAfS4ACkQuQATAAH0ugALAAMAExESObgACy%2B4ADHQuAAxL7gADty4AAsQuAAg3DAxNxQWMzI2NTQuAicOATc2NTQmIyIGFRQeAgc0PgI3NS4BNTQ%2BAjMyHgIVFAYHFR4DFRQOAiMiLgKPV0pITB82SSovPtFQQj82QhouPfgYJjEaKDkdNUgrL0kzGzkoGi4iEx86VTc2VzwhqzZEPjIhLSAZDhpBgTpGMEE4Lx0pIBnEITQqHwwEGUkzJTwrGBktPyUtTxwEDR4mMyIkPi4aGi9AAAACAEP%2F9AIMAooADQAwAFcAuAAARVi4ACMvG7kAIwALPlm4AABFWLgALS8buQAtAAM%2BWbsAAAABABkABCu6ABYALQAjERI5uAAWELkAAwAB9LgAIxC5AAYAAfS4AC0QuQARAAH0MDEBMjY3LgEjIg4CFRQWBx4BMzI%2BAjcOASMiLgI1ND4CMzIeAhUUDgIjIiYnARklVCoKU0cdMSQVRVkYQiUmRTUgAiddMSxJNB0iO00qNFpCJS1KYDQ7VyABNicuXmAUJTQfQkXLFxwcQWhNJiwZMUoxLks2HiZNc01gh1UnJh0AAAD%2F%2FwDb%2F%2FQBfQIDEicAEwAAAWYQBgATAAD%2F%2FwDF%2FysBjAIDEicAEwAAAWYQBgARAAAAAQB4ADAB7QJoAAcAOwC7AAAAAQAHAAQruAAAELgAAtC4AAIvuQABAAH0ugAEAAAABxESObgABxC4AAXQuAAFL7kABgAB9DAxEyUVBRUFFSV4AXX%2B0wEt%2FosBa%2F1PywTLT%2F0A%2F%2F8AVQDBAgMB1BImAOIAaxAGAOIAlgAAAAEAawAwAeACaAAHADsAuwAHAAEAAAAEK7gAABC4AALQuAACL7kAAQAB9LoABAAHAAAREjm4AAcQuAAF0LgABS%2B5AAYAAfQwMQEFNSU1JTUFAeD%2BiwEt%2FtMBdQEt%2FU%2FLBMtP%2FQACAG3%2F9AHfAqoAHQApACoAuAAARVi4ACcvG7kAJwADPlm7ABEAAQAKAAQruAAnELgAIdy4AADcMDE3Jj4ENTQmIyIGByc%2BATMyHgIVFA4EFwc0NjMyFhUUBiMiJvIGEiMsJxo3NyZBGzEiXDoqRDEbGyctJRUFZiseHisrHh4r6CQ4LignKhoqNx8bLSMuFik5JCEzKygsMyCmIykpIyQqKgAAAAIAMf9wAiICewA0AD0APwC7AB4AAQAlAAQruwAvAAEAFAAEK7sAOAABAAYABCu7ADsAAQAOAAQrugACAAYALxESObgAAhC5ADoAAfQwMSUjJyMOASMiLgI1NDY3NTQuAiMiDgIVFB4CMzI2NxcOASMiLgI1ND4CMzIeAhUFFBYzMjc1DgECIjIHBBZHJxsvIxSIgBEkOSctUj8lJD5UMS1DHRwnUjI7alAvLVBrPjRMMhn%2FACslODhoWGQ6HCoSIjEeTU4QDiRAMBwqU31TUH1WLRcWLRscM2OUYGCQYDEkQFczsCMoQH4ONwAAAgAgAAACOAKQAAkAEQBBALgAAEVYuAAOLxu5AA4ADT5ZuAAARVi4AA0vG7kADQADPlm7AAoAAQAJAAQruAAOELkABQAB9LgADRC4ABHQMDEBJy4BJyMOAQ8BFyMHIxMzEyMBjR8RIBAEECARH9nuP1XdXt1YAQtkN205OW03ZEPIApD9cAAAAAMAZwAAAiECkAATABwAJQBXALgAAEVYuAAALxu5AAAADT5ZuAAARVi4ABMvG7kAEwADPlm6ACQAEwAAERI5uAAkL7kAHAAB9LoACgAkABwREjm4AAAQuQAbAAH0uAATELkAJQAB9DAxEzMyHgIVFAYHFR4BFRQOAisBEzI2NTQmKwEVEzI2NTQmKwEVZ7QyUzshOTpIUCRBWzfDplRJTUxWY1VcWldjApASJj0rMU8PBAtORDBIMBgBeDo3Ni%2FW%2Fso%2FQz05%2BAAAAQBC%2F%2FQCKgKcACEAOQC4AABFWLgABS8buQAFAA0%2BWbgAAEVYuAAdLxu5AB0AAz5ZuAAFELkADAAB9LgAHRC5ABYAAfQwMRM0PgIzMhYXBy4BIyIOAhUUHgIzMjY3Fw4BIyIuAkIrTmxAPFodLxpAKi9NNh0dNk0vLUYgMCdiPz5pTSwBSE9%2BWC8wIDUbISVFYj0%2BY0YmJiMzLTIuV38AAAIAVQAAAiUCkAAKABMAOQC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAAKLxu5AAoAAz5ZuAAAELkAEgAB9LgAChC5ABMAAfQwMRMzMhYVFA4CKwE3MjY1NCYrARFVoJWbJ0xwSaSbcG9vcEgCkKidTntVLUSKfX2E%2FfgAAAABAHMAAAISApAACwBNALgAAEVYuAAALxu5AAAADT5ZuAAARVi4AAsvG7kACwADPlm4AAAQuQADAAH0ugAHAAsAABESObgABy%2B5AAQAAfS4AAsQuQAIAAH0MDETIRUhFSEVIRUhFSFzAZX%2BvwEP%2FvEBS%2F5hApBGzkfuRwAAAQCHAAACGAKQAAkAQwC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAAJLxu5AAkAAz5ZuAAAELkAAwAB9LoABwAJAAAREjm4AAcvuQAEAAH0MDETIRUhFSEVIREjhwGR%2FsIBDf7zUwKQRt5G%2FtoAAQA1%2F%2FQCFQKcACcATQC4AABFWLgABS8buQAFAA0%2BWbgAAEVYuAAjLxu5ACMAAz5ZuAAFELkADgAB9LgAIxC5ABgAAfS6AB0AIwAFERI5uAAdL7kAHgAB9DAxEzQ%2BAjMyHgIXBy4BIyIOAhUUHgIzMjY3NSM1MxEOASMiLgI1K01rQCE2LSMOLxg%2BMC5LNh0bM0wwIzwTg9AgZEA%2BaEwqAUhPf1cvDhccDzUaIiVFYj0%2BY0YmFRKrRf7sICwuV38AAQBPAAACCQKQAAsASQC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAALLxu5AAsAAz5ZugAJAAsAABESObgACS%2B5AAIAAfS4AAAQuAAE0LgACxC4AAfQMDETMxEhETMRIxEhESNPVAESVFT%2B7lQCkP7tARP9cAE1%2FssAAQBfAAAB%2BQKQAAsAQQC4AABFWLgABC8buQAEAA0%2BWbgAAEVYuAALLxu5AAsAAz5ZuQAAAAH0uAAEELkAAwAB9LgABtC4AAAQuAAJ0DAxNzMRIzUhFSMRMxUhX6OjAZqjo%2F5mRwIDRkb9%2FUcAAQBR%2F%2FQB7QKRABMANQC4AABFWLgACS8buQAJAA0%2BWbgAAEVYuAAQLxu5ABAAAz5ZuQADAAH0uAAJELkABwAB9DAxNx4BMzI2NREhNSERFA4CIyImJ4cdSCZHQf7tAWYWM1M9OGkikywqS1EBckb%2BQS5RPCM0OQAAAQBiAAACQwKQAAwAawC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAAELxu5AAQADT5ZuAAARVi4AAsvG7kACwADPlm4AABFWLgACC8buQAIAAM%2BWboAAwAHAAAREjm6AAkABwAAERI5uAAJELgABtC4AAMQuAAK0DAxEzMRMwEzBxMjAwcVI2JUAwEUXs%2FnXb5yVAKQ%2FrcBSfr%2BagFVhdAAAAEAhgAAAh0CkAAFACsAuAAARVi4AAAvG7kAAAANPlm4AABFWLgABS8buQAFAAM%2BWbkAAgAB9DAxEzMRIRUhhlIBRf5pApD9t0cAAAABAFEAAAIHApAAHQBNALgAAEVYuAAALxu5AAAADT5ZuAAARVi4AB0vG7kAHQADPlm7ABIAAQAEAAQruAAAELgABtC4AB0QuAAJ0LgAABC5ABYAAfS4ABDQMDETMxMXMzcTMxEjETQ%2BAjcjDwEjLwEjHgMVESNRXF0hBCBcXEcCAwMCAytaLVosAwEEBAJGApD%2B6WpqARf9cAFxFDY3NRSM%2Ff2MFDU3NhT%2BjwAAAQBTAAACBQKQABMAWQC4AABFWLgAAS8buQABAA0%2BWbgAAEVYuAALLxu5AAsAAz5ZugACAAEACxESObkABAAB9LgAARC4AAjQugAMAAsAARESObgAARC5AA0AAfS4AAsQuAAS0DAxEzMTFzMuATURMxEjAycjHgEVESNTVdVCAgIJT1XVQgICCU8CkP5ihjFrNAFU%2FXABnoYzZzP%2BqQAAAAIAMP%2F0AigCnAATACcANQC4AABFWLgACi8buQAKAA0%2BWbgAAEVYuAAALxu5AAAAAz5ZuQAUAAH0uAAKELkAHgAB9DAxBSIuAjU0PgIzMh4CFRQOAicyPgI1NC4CIyIOAhUUHgIBLDhcQyUlQ1w4N11DJSVDXTclPisYGCs%2BJSY9KxgYKz0MMFl%2FT099Vy4vV31OT39ZMEkmR2M%2BPWJEJSVEYj0%2BY0cmAAIAZgAAAiECkAAOABcARwC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAAOLxu5AA4AAz5ZugAMAA4AABESObgADC%2B4AAAQuQAWAAH0uAAMELkAFwAB9DAxEzMyHgIVFA4CKwERIxMyNjU0JisBEWbJNlo%2FIyNAWTZ2U75XU1VVawKQFC1KNjRMMhn%2B%2FAFIQUZHN%2F77AAACADH%2FXQIpAp0AEwA0AEsAuAAARVi4ACQvG7kAJAANPlm4AABFWLgAGi8buQAaAAM%2BWbsAMQABABcABCu4ABoQuQAFAAH0uAAkELkADwAB9LgAGhC4AC7QMDETFB4CMzI%2BAjU0LgIjIg4CAQ4BIyImJy4DNTQ%2BAjMyHgIVFA4CBx4BMzI2N4YXKz0mJT0rFxcrPSUmPSsXAaMQJBZXbRkvTTceJEJcODdcQiQdNEstEUozDxkJAUs9ZEcnJ0dkPT1jRSUlRWP94wYIWEMIN1d2R099Vy8vV35ORnRXOAkqKwYEAAACAGQAAAIpApAACAAYAFMAuAAARVi4AA4vG7kADgANPlm4AABFWLgADS8buQANAAM%2BWboACwANAA4REjm4AAsvuQAAAAH0uAAOELkACAAB9LgADRC4AAnQuAALELgAF9AwMRMzMjY1NCYrAQEDIxEjETMyHgIVFAYHE7dtTVFRTW0BE551U8wyVD0iUEOnAVk%2FQEE0%2FbMBFf7rApATLEYzTVwR%2FuIAAAABAEP%2F9AIZApwAMwBJALgAAEVYuAAWLxu5ABYADT5ZuAAARVi4ADAvG7kAMAADPlm5AAMAAfS6AAYAMAAWERI5uAAWELkAHQAB9LoAIAAWADAREjkwMTceATMyNjU0LgIvAS4DNTQ%2BAjMyFhcHLgEjIgYVFB4CHwEeAxUUDgIjIiYndSViNkZMEiArGV4ZMikaIDlPLz5oJCwgTTE8RhUhKhVcHjUnFyA8VjZIeS2PJS07MBkjGRQLKQocKDckJUAvGi0kNh0hMy0YIRkSCSgMHyk3JCdEMx00LQAAAQAqAAACLgKQAAcAMwC4AABFWLgAAi8buQACAA0%2BWbgAAEVYuAAHLxu5AAcAAz5ZuAACELkAAQAB9LgABdAwMQEjNSEVIxEjAQLYAgTYVAJKRkb9tgAAAAEAT%2F%2F0AgkCkAAZADMAuAAARVi4AAAvG7kAAAANPlm4AABFWLgAFC8buQAUAAM%2BWbkABwAB9LgAABC4AA3QMDETMxEUHgIzMj4CNREzERQOAiMiLgI1T1QVJTIeHjImFVEhOlEwMFI7IQKQ%2FmYzRysUFCtHMwGa%2FmhHYj8cHD9iRwAAAAEAKwAAAi0CkAAPADMAuAAARVi4AAAvG7kAAAANPlm4AABFWLgADy8buQAPAAM%2BWbkABQAB9LgAABC4AAzQMDETMxMeARczPgM3EzMDIytYahEcEgQJEA8PCGlV0GECkP6eO2Q6HTU0Nh0BYv1wAAABAAoAAAJOApEAIQBNALgAAEVYuAABLxu5AAEADT5ZuAAARVi4ACAvG7kAIAADPlm7ABwAAQAKAAQruAAgELkABgAB9LgAD9C4AAEQuAAU0LgAIBC4ABfQMDETMxMeARczPgE%2FATMXHgEXMz4BNxMzAyMDLgEnIw4BBwMjClM1AgkDAwsVCkU7RQkVCwQDCAMyT2FcSwcMBQMGDAhIWgKR%2FmQqTykpUCny8ihRKSlQKQGc%2FW8BEx08HR08Hf7tAAABADYAAAIiApAAGQBdALgAAEVYuAACLxu5AAIADT5ZuAAARVi4ABgvG7kAGAADPlm6AAAAGAACERI5ugAGABgAAhESObgAAhC4AAvQugANABgAAhESObgAGBC4AA%2FQugAUABgAAhESOTAxEwMzFx4BFzM%2BAT8BMwMTIycuAScjDgEPASP6t1xcDRgQBA4VDFpYt8RcYw4bEQQOGg1iWAFTAT2oFysdHSsXqP6%2F%2FrGxGDMeHjMYsQAAAQAmAAACMgKQAA8AQAC4AABFWLgAAS8buQABAA0%2BWbgAAEVYuAALLxu5AAsADT5ZuAAARVi4AA4vG7kADgADPlm6AAcADgABERI5MDElAzMXHgEXMz4BPwEzAxUjAQLcWGMTJBQEFCYTX1bcVOoBpsMmSygoTCbC%2FlrqAAEAQQAAAhsCkQAJAD0AuAAARVi4AAMvG7kAAwANPlm4AABFWLgACC8buQAIAAM%2BWbkABgAB9LgAANC4AAMQuQABAAH0uAAF0DAxNwEhNSEVASEVIUEBb%2F6xAbX%2BkAF1%2FiYyAhlGMv3oRwAAAAEA4v9oAfYCxAAHABcAuwAFAAEABgAEK7sAAQABAAIABCswMRMhFSMRMxUh4gEU09P%2B7ALEMP0EMAAAAAEAY%2F9gAfUCxgADABgAuAAARVi4AAAvG7kAAAAPPlm4AALcMDETMwEjY0oBSEoCxvyaAAABAGP%2FaAF3AsQABwAXALsAAAABAAUABCu7AAQAAQABAAQrMDEFESM1IREhNQE10gEU%2FuxoAvww%2FKQwAAABAG8BHAHpAp4ACQAmALgAAEVYuAAALxu5AAAADT5ZuAAC3LoABQAAAAIREjm4AAnQMDEBMxMjLwEjDwEjAQhImUhCMQQxQkgCnv5%2BsIWFsAAAAAABADz%2FdAIc%2F7sAAwANALsAAAABAAEABCswMQUVITUCHP4gRUdHAAD%2F%2FwC5Aj0BbQLREgYAygAAAAIAUf%2F0AgMB8gAhAC8AgAC4AABFWLgAEy8buQATAAc%2BWbgAAEVYuAAdLxu5AB0AAz5ZuAAARVi4ABcvG7kAFwADPlm6AAUAEwAXERI5uAAFL7gAExC5AAoAAfS4AB0QuQAnAAH0ugANAAoAJxESOboAGQAXABMREjm4ABkQuQAqAAH0uAAFELkAKwAB9DAxNzQ%2BAjcuAyMiBgcnPgMzMhYVESMnIw4BIyIuAjcUHgIzMjY3NQ4DUSdVhl4BDh4xIzBYIiASMTc%2BIGRhQwcDKWM0IjwtGlASHScVKlEqTmk%2FGn4pPSwcCBksIRQlFTgMGRQNbVv%2B1kIgLhMjMycVHRMJJSOABhYfJwAAAAACAF3%2F9AIcAsgAFgAnAIMAuAAARVi4AAYvG7kABgAHPlm4AABFWLgAAC8buQAAAA8%2BWbgAAEVYuAAQLxu5ABAAAz5ZuAAARVi4ABYvG7kAFgADPlm6AAMABgAQERI5ugAUABAABhESObgAFBC5ABcAAfS4ABAQuQAaAAH0uAAGELkAJAAB9LgAAxC5ACcAAfQwMRMzFQc%2BATMyHgIVFA4CIyImJyMHIzceATMyPgI1NC4CIyIGB11SAiNXKzFMMxokPVArI1EjAwdCUiNHGiA2KBYQITQkIEkmAsjCXiIoI0FbOD5iRCMjHzZyHxobMUgtKEIvGiMmAAEAUP%2F0AhsB8gAhADkAuAAARVi4AAUvG7kABQAHPlm4AABFWLgAHS8buQAdAAM%2BWbgABRC5AAwAAfS4AB0QuQAWAAH0MDE3ND4CMzIWFwcuASMiDgIVFB4CMzI2NxcOASMiLgJQK0pjNzxXHikeQSYqRjEcGzFFKi1LHyQoYzY5YUgo8j1fQiIqHTUaHhsyRSoqRDEbIxo1JCgiQV8AAAACADz%2F9AH7AsgAFgAkAIMAuAAARVi4AAUvG7kABQAHPlm4AABFWLgACi8buQAKAA8%2BWbgAAEVYuAASLxu5ABIAAz5ZuAAARVi4AAwvG7kADAADPlm6AAgABQASERI5ugAOABIABRESObgAEhC5ABoAAfS4AA4QuQAcAAH0uAAIELkAHQAB9LgABRC5ACAAAfQwMTc0PgIzMhYXJzUzESMnIw4BIyIuAjcUFjMyNzUuASMiDgI8JT1QKy1EIgNSRAcDHlMtME04HlVLREhBIT8gIDcpGPI7X0IkIh1au%2F04QB8tIkFePlhiSfIfGhsxRAACAEX%2F9AIZAfIAHgAnAEMAuAAARVi4AAUvG7kABQAHPlm4AABFWLgAGi8buQAaAAM%2BWbsAJwABAA0ABCu4ABoQuQATAAH0uAAFELkAIgAB9DAxNzQ%2BAjMyHgIVFAYHIR4DMzI2NxcOASMiLgIlNCYjIg4CB0UqRVkvNFI5HgEC%2FoQBHTFDKCtHIh0kXDs2X0cpAYhMRB43LB4F8jxfQiMhPFQzDRkJJz4sGBgVNhciI0FeZElOFCc4JAAAAAEAZwAAAkIC1AAWAFYAuAAARVi4ABQvG7kAFAAPPlm4AABFWLgAEC8buQAQAAc%2BWbgAAEVYuAAMLxu5AAwAAz5ZuAAUELkAAwAB9LgAEBC4AAfQuAAQELkADQAB9LgACtAwMQEuASMiBh0BMxUjESMRIzU3NTQ2MzIXAi8eMyBCOczMUYuLX2VIRAJ6DglDPCxD%2Fl0Boz4FKVlsHAAAAAADAEj%2FIAI2AfIAEQBFAFUAsgC4AABFWLgAJS8buQAlAAc%2BWbgAAEVYuAAoLxu5ACgABz5ZuAAARVi4ACcvG7kAJwAHPlm4AABFWLgAQy8buQBDAAU%2BWbgAAEVYuAAMLxu5AAwAAz5ZuABDELkAAwAB9LgADBC4AA%2FQuAAV0LgADBC5ADoAAfS4ADLcuQBGAAH0ugA1AEYAMhESObgANRC4ABzQuAAoELkAKQAB9LgAJxC5ACoAAfS4ACUQuQBOAAH0MDEXFBYzMj4CNTQmKwEiJicOAQc0Njc1LgE1NDY3NS4BNTQ%2BAjMyFzMVIx4BFRQOAiMiJicGFRQWOwEyFhUUDgIjIiYTMjY1NC4CIyIOAhUUFo9RTipEMBk3OF8VJRAjG0cpJxQeHhwZIx80RScoIMmCERwdM0UnEysUJjUwbV5bJkZkPmt12y9BEh4pFxcpHhJCUSYwERwkEyMYAwUTKR0dOBcECyYfFzETBBM%2FLChALRkMPxI0ICc%2BKxcJCRggHRs0PiI%2BLhxGAWs%2BNRkqHhERHioZNT4AAAAAAQBdAAACCwLIABYAZQC4AABFWLgAAC8buQAAAA8%2BWbgAAEVYuAAGLxu5AAYABz5ZuAAARVi4ABYvG7kAFgADPlm4AABFWLgACy8buQALAAM%2BWboAAwAGAAsREjm4AAYQuQAPAAH0uAADELkAFAAB9DAxEzMVBz4BMzIWFREjETQmIyIOAgcRI11SBCdYOVdRUjQ8FiUkJhVSAsjCcyk2Y2H%2B0gEjRUMLFiEW%2Fq0AAAACAFoAAAGeAskABQARADsAuAAARVi4AAAvG7kAAAAHPlm4AABFWLgAAi8buQACAAM%2BWbgAABC5AAQAAfS4AAAQuAAG3LgADNwwMRMhESMRIyUiJjU0NjMyFhUUBloBNFLiAQIdJSUdHCYmAeb%2BGgGjpyIdHSMjHR0iAAAAAgA3%2FycBngLJABUAIQBBALgAAEVYuAAALxu5AAAABz5ZuAAARVi4AAcvG7kABwAFPlm5AA4AAfS4AAAQuQAUAAH0uAAAELgAFty4ABzcMDETIREUDgIjIiYnNx4BMzI%2BAjURIyUiJjU0NjMyFhUUBloBNBQvTjsmSB0bGjkcJDAcC%2BIBAh0lJR0cJiYB5v4OLUs3HhMOPQ0OEiIxHwG1pyIdHSMjHR0iAAAAAAEAagAAAj4CyAAMAG0AuAAARVi4AAQvG7kABAAHPlm4AABFWLgAAC8buQAAAA8%2BWbgAAEVYuAAMLxu5AAwAAz5ZuAAARVi4AAgvG7kACAADPlm6AAIAAAAMERI5ugAJAAAACBESObgACRC4AAbQuAACELkACgAB9DAxEzMRMwEzBxMjJwcVI2pSBAEGXsLcXLNzUgLI%2Fh4BAMH%2B2%2FNvhAABAFH%2F9AIZAsgAEAA1ALgAAEVYuAAALxu5AAAADz5ZuAAARVi4AAsvG7kACwADPlm5AAUAAfS4AAAQuQAQAAH0MDETMxEUFjMyNxcOASMiJjURI1H4MywoNBUhOihOUaYCyP3VNi8XPgwRWFcB4gAAAQA8AAACLAHyACAAowC4AABFWLgABi8buQAGAAc%2BWbgAAEVYuAALLxu5AAsABz5ZuAAARVi4AAAvG7kAAAAHPlm4AABFWLgAIC8buQAgAAM%2BWbgAAEVYuAAYLxu5ABgAAz5ZuAAARVi4ABAvG7kAEAADPlm6AAIAIAAAERI5uAACELgACNC4AAsQuQATAAH0uAAIELkAFgAB9LgABhC5ABsAAfS4AAIQuQAeAAH0MDETMxczPgEzMhc%2BATMyFhURIxE0IyIGBxEjETQjIgYHESM8QAcDEjEqShIWNCkzN081GiYTQjcaJBNPAeZAIipUJi5NSf6kAVVWJSb%2BoAFVViUm%2FqAAAAAAAQBdAAACCwHyABYAZQC4AABFWLgABi8buQAGAAc%2BWbgAAEVYuAAALxu5AAAABz5ZuAAARVi4ABYvG7kAFgADPlm4AABFWLgACy8buQALAAM%2BWboAAgAGABYREjm4AAYQuQAPAAH0uAACELkAFAAB9DAxEzMXMz4BMzIWFREjETQmIyIOAgcRI11EBwQmWDlXUVI0PBYlJCYVUgHmUyk2Y2H%2B0gEjRUMLFiEW%2Fq0AAAACADz%2F9AIcAfIAEwAnADUAuAAARVi4AAUvG7kABQAHPlm4AABFWLgADy8buQAPAAM%2BWbkAGQAB9LgABRC5ACMAAfQwMTc0PgIzMh4CFRQOAiMiLgI3FB4CMzI%2BAjU0LgIjIg4CPCdCVzAwV0InJ0JXMDBXQidVFik5IyM5KRYWKTkjIzkpFvI9X0IiIkJfPTxfQSIiQV88KkQxGxsxRCoqRTIbGzJFAAACAF3%2FMwIcAfIAFgAlAIMAuAAARVi4AAkvG7kACQAHPlm4AABFWLgAAy8buQADAAc%2BWbgAAEVYuAATLxu5ABMAAz5ZuAAARVi4AAIvG7kAAgAFPlm6AAUACQATERI5ugAWABMACRESObgAFhC5ABcAAfS4ABMQuQAaAAH0uAAJELkAIgAB9LgABRC5ACUAAfQwMRcVIxEzFzM%2BATMyHgIVFA4CIyImJzceATMyNjU0LgIjIgYHr1JEBwMiWS0xSzMaJD1QLCJPIQIjRhlCVBAhNCQgSSYppAKzPiAqI0FbOT5hRCMhHj8fGmZbKEIvGiMmAAAAAgA8%2FzMB%2BwHyABYAJACDALgAAEVYuAAFLxu5AAUABz5ZuAAARVi4AAsvG7kACwAHPlm4AABFWLgAEi8buQASAAM%2BWbgAAEVYuAANLxu5AA0ABT5ZugAIAAUAEhESOboADwASAAUREjm4ABIQuQAaAAH0uAAPELkAHAAB9LgACBC5AB0AAfS4AAUQuQAgAAH0MDE3ND4CMzIWFzM3MxEjNTcOASMiLgI3FBYzMjc1LgEjIg4CPCU9UCstRiMDB0JSBCBRLTBNOB5VS0RIQSE%2FICA3KRjyO19CJCIgNv1Ns1gfKyJBXj5YYknyHxobMUQAAQCSAAACGQHyABIAVAC4AABFWLgAAC8buQAAAAc%2BWbgAAEVYuAAGLxu5AAYABz5ZuAAARVi4ABEvG7kAEQADPlm6AAIAEQAAERI5uAAGELkADQAB9LgAAhC5ABAAAfQwMRMzFzM%2BATMyFhcHLgEjIgYHESOSRAcDJm9EGy4XExojHTdlLFIB5nM7RAkLRwkIP0z%2B4wAAAAABAEj%2F9AIOAfIALQBJALgAAEVYuAATLxu5ABMABz5ZuAAARVi4ACovG7kAKgADPlm5AAMAAfS6AAYAKgATERI5uAATELkAGgAB9LoAHwATACoREjkwMTceATMyNjU0JicuAzU0PgIzMhYXBy4BIyIOAhUUFhceARUUDgIjIiYncCleQkJARVkmQzIeGjNNMjdoJCggTi0iLhwMUkJjXxw3UTRIeS12HiQsIBwsFgkaIyoaHTMlFSUZNRccCxMaDh4nERlAOB40KBctHwABAEX%2F9AIiAm4AGwBNALgABS%2B4AABFWLgAAy8buQADAAc%2BWbgAAEVYuAAWLxu5ABYAAz5ZuAADELkAAQAB9LgAAxC4AAfQuAABELgACNC4ABYQuQAPAAH0MDETIzU%2FATMVMxUjFRQeAjMyNjcXDgEjIi4CNc6JjAtE7%2B8MHDAjIzgaEiFQKDVIKxMBoz4FiIhD5yExIhEMCjwMER01Si0AAQBN%2F%2FQB%2BQHmABQAZQC4AABFWLgACi8buQAKAAc%2BWbgAAEVYuAATLxu5ABMABz5ZuAAARVi4AAYvG7kABgADPlm4AABFWLgAAC8buQAAAAM%2BWboAAgAGABMREjm4AAYQuQAPAAH0uAACELkAEgAB9DAxISMnIw4BIyImNREzERQWMzI2NxEzAflDBwQlVzlYUVMzPSpEKVJVKzZjYQEu%2Ft1FQysvAVEAAQAzAAACJQHmAA0APAC4AABFWLgAAC8buQAAAAc%2BWbgAAEVYuAAKLxu5AAoABz5ZuAAARVi4AA0vG7kADQADPlm5AAUAAfQwMRMzEx4BFzM%2BATcTMwMjM1NwDxsNBA0ZD3BPyVwB5v7sJUcjI0clART%2BGgABAAgAAAJQAeYAIQB0ALgAAEVYuAAALxu5AAAABz5ZuAAARVi4AAovG7kACgAHPlm4AABFWLgAFC8buQAUAAc%2BWbgAAEVYuAAhLxu5ACEAAz5ZuAAARVi4ABcvG7kAFwADPlm6AAYAAAAhERI5uAAGELgAD9C6ABwAAAAXERI5MDETMxMeARczPgE%2FATMXHgEXMz4BNxMzAyMnLgEnIw4BDwEjCFQ7BwwFBAcOCDtGPAgOCAQHCwY7TmpjOgcMCAQGDAk4YgHm%2FucjQiIiQyL8%2FCNCIiJCIwEZ%2Fhr2I0UlIEQq9QABAEAAAAIXAeYAGQBlALgAAEVYuAABLxu5AAEABz5ZuAAARVi4AAsvG7kACwAHPlm4AABFWLgAGS8buQAZAAM%2BWbgAAEVYuAAPLxu5AA8AAz5ZugATAAEAGRESObgAExC4AADQuAATELgADdC4AAfQMDE3JzMXHgEXMz4BPwEzBxcjJy4BJyMOAQ8BI%2FmrW00NHQ8EDhwNSVetulpVDyEQBA8eD1BY%2FOprFCoUFCwUafH1cBUuFRYrF3AAAAEAMf8vAicB5gAcAFsAuAAARVi4AAgvG7kACAAHPlm4AABFWLgAEi8buQASAAc%2BWbgAAEVYuAAZLxu5ABkABT5ZuAAARVi4AAcvG7kABwADPlm4ABkQuQADAAH0ugAOAAgABxESOTAxFx4BMzI2PwEDMxMeARczPgE3EzMDDgMjIic3VAoXCzNAEg%2FjU3cOHw8EDRsMak7WDiQyQSkkHBGGAwQ7LSQB5%2F7zIEojI0khAQ398iQ%2BLRoKQQAAAQBHAAACFAHmAAkAPQC4AABFWLgAAy8buQADAAc%2BWbgAAEVYuAAILxu5AAgAAz5ZuQAGAAH0uAAA0LgAAxC5AAEAAfS4AAXQMDE3ASE1IRUBIRUhRwFN%2FtgBnv6yAVj%2BMywBd0Ms%2FolDAAAAAQB4%2F2gB9gLEADkAKwC7ADMAAQA0AAQruwAZAAEAGgAEK7sACwABAAoABCu6ACcACgALERI5MDEFND4CNTQuAiM1Mj4CNTQmNTQ%2BAjsBFSMiDgIVFBYVFAYHFR4BFRQGFRQeAjsBFSMiLgIBAAMDAwwgOSwsOSAMCRYuRi89NCYxGwoGJzQ0JwYKGzEmND0vRi4WExsxLi4ZDxsWDjQOFhsPMF00JzMeDTAKFSMYK1svMTMJBAkzMTNULhgjFQowDR4zAAEBB%2F8GAVEC7gADAAsAugABAAIAAyswMQEzESMBB0pKAu78GAAAAAABAGP%2FaAHgAsQAOQArALsAAAABADcABCu7ABoAAQAXAAQruwAnAAEAKAAEK7oADAAoACcREjkwMRcyPgI1NCY1NDY3NS4BNTQ2NTQuAisBNTMyHgIVFAYVFB4CMxUiDgIVFB4CFRQOAisBNZYmMRwKBiY0NCYGChwxJjM9L0UuFgkMIDksLDkgDAMDAxYuRS89aAoVIxguVDMxMwkECTMxL1srGCMVCjANHjMnNF0wDxsWDjQOFhsPGS4uMRsnMx4NMAAAAQBMAP8CDAGVABkAJwC7AAMAAQAWAAQruwARAAEACAAEK7gAAxC4AA3QuAARELgAGdAwMRM%2BATMyHgIzMj4CNxcOASMiLgIjIgYHTBpIJh4vKScVDBUVEgk1GkgmHi8pJxUXKREBFkY3GiAaBxMiGhhGNhogGiI0AAAAAAIA4%2F9IAXUB8gAFABEAHAC4AABFWLgADy8buQAPAAc%2BWbgACdy4AATcMDEFFyM3EzM3FAYjIiY1NDYzMhYBUgJQAgo4LSseHisrHh4rWl5eAVinJCkpJCMqKgAAAgBx%2F98B%2BgKNAAYAJQBcALgAAEVYuAAYLxu5ABgACz5ZuwAiAAEACgAEK7sAGgABACEABCu4ACEQuAAA0LgAAC%2B4ACIQuAAG0LgABi%2B4AAoQuAAN0LgADS%2B4AAzcuAAaELgAF9C4ABcvMDEBDgEVFBYfAQ4BBxUjNS4DNTQ%2BAjc1MxUeARcHLgEnET4BNwE6OEA%2FOcAeSCczLUo1HR82SiozLEAXKBQtGiA0FQHdDVhCQ1gNCRoiA2doBSQ9VDU0UzwkBmpnAiIWNBIWAv6oAhsSAAABAE0AAAITAooAKQBXALgAAEVYuAATLxu5ABMACz5ZuAAARVi4AAEvG7kAAQADPlm7AAgAAQALAAQruAABELkAAAAB9LgAA9C4ABMQuQAaAAH0uAALELgAINC4AAgQuAAj0DAxJRUhNT4BNTQnIzU3LgE1ND4CMzIWFwcuASMiBhUUFhczFSMWFRQGBxUCE%2F47Pz0IdWMLFR43TTA%2BVR0wFzsqQkUTC72tBiUmR0cyHF85Gh00BCA9ICpEMBorIC8XHkE0IDsgOBsdNUYfBAAAAgA6AFMCHgJBACAANAAXALsAJgABAB0ABCu7AAwAAQAwAAQrMDE%2FAS4BNTQ2Nyc3FzYzMhc3FwceARUUBgcXBycOASMiJwc3FB4CMzI%2BAjU0LgIjIg4COlQRExIRUyxXMD8%2BMVcsVBETExFULFgXOR4%2BMVdQEyArGBgrIBMTICsYGCsgE4BVFzojIzsXVi1aJSVaLVYXOyMjOhdVLVkTEyZZ9h4xJBMTJDEeHjEkExMkMQAAAQA1AAACIwJ%2BAB0AbAC4AABFWLgAAC8buQAAAAs%2BWbgAAEVYuAAJLxu5AAkACz5ZuAAARVi4ABMvG7kAEwADPlm6AAUAEwAJERI5uAAFELgAC9C5AA4AAfS4ABnQuAAY3LgAD9C5ABIAAfS4ABXQuAALELgAHNAwMRMXHgEXMz4BPwEzAzMVIxUzFSMVIzUjNTM1IzUzA4pcESETBBIiElxSuqK3t7dStbW1obkCfqshQyMjQyGr%2FsAvQTCenjBBLwFAAAIBB%2F8GAVEC7gADAAcAEwC6AAEABQADK7oAAwAHAAMrMDEBMxEjFxEjEQEHSkpKSgLu%2FjVN%2FjAB0AAAAAIAW%2F%2FAAf0CrAAPAEcATwC7AC8AAQAoAAQruwBEAAEAEwAEK7oAMgAoABMREjm6ABYARAAvERI5ugAgADIAFhESObgAIBC4AADQugA8ABYAMhESObgAPBC4AAjQMDElPgE1NC4CJw4BFRQeAhMuASMiBhUUHgQVFAYHHgEVFA4CIyImJzceATMyNjU0LgQ1NDY3LgE1ND4CMzIWFwFzICMpPkkgHyUpP0lUGjgjKiYqP0k%2FKjEpDg8YKjskN1wgMho9KiktKj5KPiozKA4REyY4JjJRHsAOJiIiLCEdEhApHyErIRwBaxQaJRobJB4eKz0uMDwWECcaHjIkFSYhLRgcKB0cJh4dKj0uLUAVECcaGi8kFSIXAP%2F%2FAJYCTAHCAroSBgDPAAAAAwAe%2F%2FUCOgKNABMAJwBFAE0AuAAARVi4AAUvG7kABQALPlm4AABFWLgADy8buQAPAAM%2BWbkAGQAB9LgABRC5ACMAAfS4AC3QuQA0AAH0uAAZELgAQdC5ADoAAfQwMRM0PgIzMh4CFRQOAiMiLgI3FB4CMzI%2BAjU0LgIjIg4CFzQ%2BAjMyFhcHLgEjIgYVFBYzMjY3Fw4BIyIuAh4pSWM5OWNJKSlJYzk5Y0kpLiA7UzIyUzsgIDtTMjJTOyBGGy47ISMxFCIQHxQuODUtGiYRHhc0JiI7LBkBQ0x7VS4uVXtMTXtXLy9Xe01Ca00qKk1rQkJqTCkpTGpCK0YyGhsUJw4RSztCTRQOKhQbGzNJAP%2F%2FAKcA%2FAG6Ak4SBgDSAAD%2F%2FwBTADQB%2BAHEEiYA3Y4AEAYA3XMAAAAAAQBVAGgCAwFpAAUADQC7AAEAAQAEAAQrMDETIREjNSFVAa5C%2FpQBaf7%2Fw%2F%2F%2FAFUBKwIDAWkSBgDiAAAABABwAT8B6ALJABMAJwA1AD4APQC7ABQAAQAAAAQruwAKAAEAHgAEK7sANgABADIABCu4AB4QuAAp0LgAMhC4AC%2FQuAAUELgANNC4ADHQMDEBIi4CNTQ%2BAjMyHgIVFA4CJzI%2BAjU0LgIjIg4CFRQeAgMzMhYVFAYHFyMnIxUjNzI2NTQmKwEVASwnRTMdHTNFJydEMx4eM0QnHzcnFxcnNx8gNigXFyg2KUwgLxURLi4jKSlDFBgTFxwBPx00SCwsSDQdHTRILCxINB0lFyo7JCM7KxgYKzsjJDsqFwEIHSQSHwZTRkZmEREPEkMAAAD%2F%2FwCxAlkBpwKSEgYAzgAAAAIArwGtAaoCrQATAB8AFwC7AAoAAQAaAAQruwAUAAEAAAAEKzAxASIuAjU0PgIzMh4CFRQOAicyNjU0JiMiBhUUFgEsGS0jFBQjLRkZLiIVFSIuGSIqKiIhKioBrRIhLx0eLyISEiIvHh0vIRIuLiMlLi4lIy4AAAIAVQAAAgMCLAALAA8ARAC4AABFWLgADi8buQAOAAM%2BWbsAAwABAAAABCu4AAMQuAAE3LgAAxC4AAbQuAAAELgACNC4AA4QuQAMAAH0uAAL3DAxASM1MzUzFTMVIxUjByEVIQELtrZCtrZCtgGu%2FlIBMD6%2Bvj6xQT4AAP%2F%2FAK4BuAGnAvUSBwDmAAEBuAAA%2F%2F8ArAGsAaQC9RIHAOcAAAG4AAD%2F%2FwDrAj0BnwLREgYAywAAAAEATf9FAi4B5gAoAHMAuAAoL7gAAEVYuAAALxu5AAAABz5ZuAAARVi4AAsvG7kACwAHPlm4AABFWLgAHy8buQAfAAM%2BWbgAAEVYuAAYLxu5ABgAAz5ZuAAfELkABQAB9LoAHAALAB8REjm4ABwQuQAKAAH0uAAYELkAEgAB9DAxEzMRFBYzMj4CNxEzDgEVFBYzOgE3FwYjIiYnIw4BIyImJxwBHgEXI01TNDkTJiYnFFMCAxALBAcHDBMdJiQFAyBRLyM7FAICAlMB5v7dQ0UJGCsjATxjz1gUEAI%2BCDU6ODUVICY7NDMeAAAAAgBI%2F7AB5QKQAAMAEAAlALgAAEVYuAAALxu5AAAADT5ZuAAARVi4AA8vG7kADwANPlkwMQEzESMDIyIuAjU0PgI7AQGUUVE2IDVaQiUkP1YyKwKQ%2FSABMhk1Ujk7UTMWAAAA%2F%2F8A2wEHAX0BsBIHABMAAAETAAD%2F%2FwDd%2FysBdgADEgYA0QYA%2F%2F8A0AG4AWEC6RIHAOUAAAG4AAD%2F%2FwCOAPwBygJOEgYA0wAA%2F%2F8AYQA0AgYBxBImAN6OABAGAN5zAAAA%2F%2F8AHAAAAj8CfhInAOX%2FewFNECYA3wAAEAcA6ACGAAD%2F%2FwAcAAACPAJ%2BEicA5f97AU0QJgDfAAAQBwDmAIcAAP%2F%2FACcAAAJVAooSJwDn%2F3sBTRAmAN8ZABAHAOgAhgAAAAIAe%2F88AewB8gAbACcAKgC4AABFWLgAJS8buQAlAAc%2BWbsACgABABEABCu4ACUQuAAf3LgAG9wwMSUWDgQVFBYzMjY3Fw4BIyImNTQ%2BBCc3FAYjIiY1NDYzMhYBZwYSIywnGjg3JkEbMCFdOlRlGyctJBQEZyweHisrHh4s%2FiQ4LignKxkqNh4bLSMuVEghMysoLDIhpyQpKSQjKioAAP%2F%2FACAAAAI4AzISJgAmAAAQBgDpAAAAAP%2F%2FACAAAAI4AzISJgAmAAAQBgDqAAAAAP%2F%2FACAAAAI4AzISJgAmAAAQBgDrAAAAAP%2F%2FACAAAAI4AzMSJgAmAAAQBgDsAAAAAP%2F%2FACAAAAI4Ay0SJgAmAAAQBgDtAAAAAP%2F%2FACAAAAI4A2sSJgAmAAAQBgDuAAAAAAAC%2F%2F8AAAJPApAABgAWAGYAuAAARVi4AA4vG7kADgANPlm4AABFWLgACC8buQAIAAM%2BWbgAAEVYuAAMLxu5AAwAAz5ZuwAAAAEACgAEK7sAEwABABQABCu4AA4QuQABAAH0uAAIELkABwAB9LgAARC4ABHQMDEBESMOAQ8BBRUhNSMHIwEhFSMVMxUjFQE9AxQrFC4Blv7unklXAQQBQ72TkwECAUw2aTZ3u0e%2FvwKQRs1H7%2F%2F%2FAEL%2FKwIqApwSJgAoAAAQBgDvLwAAAP%2F%2FAHMAAAISAzISJgAqAAAQBgDpHwAAAP%2F%2FAHMAAAISAzISJgAqAAAQBgDqHwAAAP%2F%2FAHMAAAISAzISJgAqAAAQBgDrHwAAAP%2F%2FAHMAAAISAy0SJgAqAAAQBgDtHwAAAP%2F%2FAF8AAAH5AzISJgAuAAAQBgDpAAAAAP%2F%2FAF8AAAH5AzISJgAuAAAQBgDqAAAAAP%2F%2FAF8AAAH5AzISJgAuAAAQBgDrAAAAAP%2F%2FAF8AAAH5Ay0SJgAuAAAQBgDtAAAAAAACABAAAAIrApAADAAZAFMAuAAARVi4AAQvG7kABAANPlm4AABFWLgACy8buQALAAM%2BWbsAAwABAAAABCu4AAsQuQANAAH0uAAEELkAEwAB9LgAAxC4ABXQuAAAELgAF9AwMRMjNTcRMzIWFRQGKwE3MjY1NCYrARUzFSMVW0tLoZSbm5Gkm3Bvb3BIj48BQSoFASConZ2uRIp9fYTcL%2F3%2F%2FwBTAAACBQMzEiYAMwAAEAYA7AYAAAD%2F%2FwAw%2F%2FQCKAMyEiYANAAAEAYA6QAAAAD%2F%2FwAw%2F%2FQCKAMyEiYANAAAEAYA6gAAAAD%2F%2FwAw%2F%2FQCKAMyEiYANAAAEAYA6wAAAAD%2F%2FwAw%2F%2FQCKAMzEiYANAAAEAYA7AAAAAD%2F%2FwAw%2F%2FQCKAMtEiYANAAAEAYA7QAAAAAAAQBmAH4B8gIVAAsAKQC6AAUACQADK7oACgAJAAUREjm4AAoQuAAB0LgAChC4AAfQuAAE0DAxPwEnNxc3FwcXBycHZpqaLJqaLJqaLJqaq5%2BeLZ%2BfLZ6fLaCgAAADAC3%2F4gIsAq4ACgAVAC8AfQC4AABFWLgAKy8buQArAA0%2BWbgAAEVYuAAeLxu5AB4AAz5ZugAVAB4AKxESObgAFRC4AADQuAAeELkAAwAB9LoACgAeACsREjm4AAoQuAAL0LgAKxC5AA4AAfS4AAoQuAAW0LgAABC4ACDQuAAVELgAI9C4AAsQuAAt0DAxNx4BMzI%2BAjU0LwEuASMiDgIVFBcBHgEVFA4CIyInByc3LgE1ND4CMzIXNxfAFTcgJT4rGBkfFTghJj0rGBsBTB0eJUNdN1pANTA%2FHR8lQ1w4XD82L3QaHSZHYz5ZQDgaHSVEYj1fQAGFK3NIT39ZMD1PIF0tdklPfVcuPU8gAAAA%2F%2F8AT%2F%2F0AgkDMhImADoAABAGAOkAAAAA%2F%2F8AT%2F%2F0AgkDMhImADoAABAGAOoAAAAA%2F%2F8AT%2F%2F0AgkDMhImADoAABAGAOsAAAAA%2F%2F8AT%2F%2F0AgkDLRImADoAABAGAO0AAAAA%2F%2F8AJgAAAjIDMhImAD4AABAGAOoAAAAAAAIAZQAAAiECkAAQABkAOQC4AABFWLgAAC8buQAAAA0%2BWbgAAEVYuAAPLxu5AA8AAz5ZuwARAAEADQAEK7sAAwABABcABCswMRMzFTMyHgIVFA4CKwEVIzcyNjU0JisBEWVUdjZaPyMjQFk2dlS%2FV1NVVWsCkG4ULkk2NE0yGJbaQEdHNv78AAABAFj%2F9AI0AtQAOQBaALgAAEVYuAAFLxu5AAUADz5ZuAAARVi4ADkvG7kAOQADPlm4AABFWLgAGy8buQAbAAM%2BWbkAIgAB9LoADwAFACIREjm4AAUQuQA0AAH0ugAlABsANBESOTAxEzQ%2BAjMyHgIVFA4CFRQeBBUUDgIjIiYnNx4BMzI2NTQuBDU0PgI1NCYjIgYVESNYHDRKLyg9KhUcIhweLDUsHhcrPCUqRiAhHDQdKi0eLTQtHhwiHCwqNz9SAgcuTDYdGCk1HiY1LCkaGCAbGiQ1JyA2KBcYFToUEy8fHSYdGSEtIyIxLS8gJTFLS%2F4FAAAA%2F%2F8AUf%2F0AgMC0RImAEYAABAGAMoOAAAA%2F%2F8AUf%2F0AgMC0RImAEYAABAGAMsOAAAA%2F%2F8AUf%2F0AgMC0RImAEYAABAGAMwOAAAA%2F%2F8AUf%2F0AgMCsBImAEYAABAGAM0OAAAA%2F%2F8AUf%2F0AgMCuhImAEYAABAGAM8OAAAA%2F%2F8AUf%2F0AgMC1xImAEYAABAGANAOAAAAAAMAEf%2F0AlUB8gAuADcARAClALgAAEVYuAANLxu5AA0ABz5ZuAAARVi4ABMvG7kAEwAHPlm4AABFWLgAJi8buQAmAAM%2BWbgAAEVYuAAsLxu5ACwAAz5ZuwAvAAEAGwAEK7oAAwANACwREjm4AAMvuAANELkABgAB9LoAEAAmAA0REjm4ACYQuQAfAAH0ugApACYADRESObgAExC5ADQAAfS4ACwQuQA7AAH0uAADELkAQgAB9DAxNzQ2Ny4BIyIGByc%2BATMyFhc%2BATMyHgIVFAYHIR4BMzI2NxcOASMiJicOASMiJiU0LgIjIgYPARQWMzI2Ny4BLwEOARF8fAEnLxpBFx8eUC0wOw4YRTAlNyUSAgL%2B%2FgM8OxwvFR0ZQSY1SBgpTyY8RgH%2FCBQhGC85BfEoIho%2BGggHAQFcT4FJVxM2RRkQOBQgOCovMyQ9UC0OGg1MXRINNhEaMCstLkvXHzgrGVJJkScoJCMWNR0ZEDr%2F%2FwBQ%2FysCGwHyEiYASAAAEAYA0SoAAAD%2F%2FwBF%2F%2FQCGQLREiYASgAAEAYAyg8AAAD%2F%2FwBF%2F%2FQCGQLREiYASgAAEAYAyw8AAAD%2F%2FwBF%2F%2FQCGQLREiYASgAAEAYAzA8AAAD%2F%2FwBF%2F%2FQCGQK6EiYASgAAEAYAzw8AAAD%2F%2FwBaAAABnQLREiYAxAAAEAYAyjAAAAD%2F%2FwBaAAABzwLREiYAxAAAEAYAyzAAAAD%2F%2FwBaAAAB4ALREiYAxAAAEAYAzDAAAAD%2F%2FwBaAAAB8gK6EiYAxAAAEAYAzzAAAAAAAgA8%2F%2FQCGALaABQAOQBrALgAAEVYuAA0Lxu5ADQADz5ZuAAARVi4AB0vG7kAHQADPlm7ACcAAQALAAQruAAdELkAAAAB9LoAKgA0AB0REjm4ACoQuQAIAAH0ugAVADQAHRESObgAFRC4AC3QuAAVELgAN9C4ADDQMDElMj4CNTwBJy4BIyIOAhUUHgITHgEVFA4CIyIuAjU0PgIzMhYXLgEnByc3LgEnNx4BFzcXASwoOycTASNSJyg9KRUaLDx7QlAhPlg3L1ZCJyI9UzIvVBwOPS6WF4QaPCImKEoihxc4HTVILAsWCy8mGCw7IiY9KxgCKj2reTxjRycgPVc2M1M7IComRWUoTSlEEyERNBMqGkUpAAAA%2F%2F8AXQAAAgsCsBImAFMAABAGAM0SAAAA%2F%2F8APP%2F0AhwC0RImAFQAABAGAMoAAAAA%2F%2F8APP%2F0AhwC0RImAFQAABAGAMsAAAAA%2F%2F8APP%2F0AhwC0RImAFQAABAGAMwAAAAA%2F%2F8APP%2F0AhwCsBImAFQAABAGAM0AAAAA%2F%2F8APP%2F0AhwCuhImAFQAABAGAM8AAAAAAAMAVQBgAgMCMwALABcAGwAlALsAGQABABoABCu4ABkQuAAA3LgABty4ABoQuAAP3LgAFdwwMQEiJjU0NjMyFhUUBgM0NjMyFhUUBiMiJichFSEBLBcfHxcXHx9NHxcXHx8XFx%2BhAa7%2BUgHIHhgXHh4XGB7%2BzhceHhcYHh7rPgAAAwA8%2F%2BkCHAH9AAoAFgAwAH0AuAAARVi4ACwvG7kALAAHPlm4AABFWLgAHy8buQAfAAM%2BWboAFgAfACwREjm4ABYQuAAA0LgAHxC5AAIAAfS6AAoALAAfERI5uAAKELgAC9C4ACwQuQAOAAH0uAAKELgAF9C4AAAQuAAh0LgAFhC4ACTQuAALELgALtAwMTcWMzI%2BAjU0Ji8BLgEjIg4CFRQWFwEeARUUDgIjIicHJzcuATU0PgIzMhc3F8kpOiM5KRYODR4TMh0jOSkWDg0BNRsgJ0JXMFM%2FMyU1GyAnQlcwUz8zJVwmHDFFKiE6FyYSFBwyRiohOBcBICBZNzxfQSIwOx0%2BIFg2PV9CIjA7Hf%2F%2FAE3%2F9AH5AtESJgBaAAAQBgDK%2FAAAAP%2F%2FAE3%2F9AH5AtESJgBaAAAQBgDL%2FAAAAP%2F%2FAE3%2F9AH5AtESJgBaAAAQBgDM%2FAAAAP%2F%2FAE3%2F9AH5AroSJgBaAAAQBgDP%2FAAAAP%2F%2FADH%2FLwInAtESJgBeAAAQBgDLBAAAAAACAF3%2FMwIcAsgAFgAlAIMAuAAARVi4AAIvG7kAAgAPPlm4AABFWLgACC8buQAIAAc%2BWbgAAEVYuAABLxu5AAEABT5ZuAAARVi4ABIvG7kAEgADPlm6AAUACAASERI5ugAVABIACBESObgAFRC5ABcAAfS4ABIQuQAaAAH0uAAIELkAIgAB9LgABRC5ACUAAfQwMRcjETMVBz4BMzIeAhUUDgIjIiYnFzUeATMyPgI1NCYjIgYHr1JSAiNWKzFMMxslPVArJEwhASNFGiA3KBdBSSBIJs0DlclXIigjQVs5PmFEIyIdXJsfGhsxSC1QYyMmAAD%2F%2FwAx%2Fy8CJwK6EiYAXgAAEAYAzwQAAAAAAQBaAAABjgHmAAUALwC4AABFWLgAAC8buQAAAAc%2BWbgAAEVYuAACLxu5AAIAAz5ZuAAAELkABAAB9DAxEyERIxEjWgE0UuIB5v4aAaMAAAACACEAAAJPApEAEgAbAE8AuAAARVi4AAMvG7kAAwANPlm4AABFWLgADS8buQANAAM%2BWbsACAABAAkABCu4AAMQuQAGAAH0uAANELkACwAB9LgAFtC4AAYQuAAY0DAxEzQ2MyEVIxUzFSMVMxUhIi4CNxQWOwERIyIGIY19ARrClJTM%2Ftk%2BYUQkVlRWFRVWVAFLnqhGz0fuRy1Ve05%2BiQIIgwAAAAMAC%2F%2F0AlQB8gATADsARACNALgAAEVYuAAZLxu5ABkABz5ZuAAARVi4AB8vG7kAHwAHPlm4AABFWLgAMi8buQAyAAM%2BWbgAAEVYuAA3Lxu5ADcAAz5ZuwA8AAEAJwAEK7gANxC5AAUAAfS4ABkQuQAPAAH0ugAcADIAGRESObgAMhC5ACsAAfS6ADUAMgAZERI5uAAfELkAQQAB9DAxNxQeAjMyPgI1NC4CIyIOAgc0PgIzMhYXPgEzMh4CFRQGByMeATMyNjcXDgEjIiYnBiMiLgIlNC4CIyIGB1gNGiYaFiUaDg4aJRYaJhoNTRswQCUvRRQUQTAiNSMSAQLxBDo2GicUHRc7IzBIFitdJkAvGwIFCBIeFi0wBvMqRTEcHDFFKipEMhsbMkQqPV9BIj04Nz4kPFEtDhcQTF0RDjYRGjk3cCJBX2AfOCsZU0gA%2F%2F8AqAI9AbAC0RIGAMwAAP%2F%2FAM8CHgGJAtcSBgDQAAD%2F%2FwCeAkMBugKwEgYAzQAAAAEAuQI9AW0C0QADAAsAugABAAMAAyswMRMzFyO5Wlo%2FAtGUAAEA6wI9AZ8C0QADAAsAugACAAAAAyswMQEjNzMBKj9aWgI9lAAAAAABAKgCPQGwAtEABwAZALsAAQABAAQABCu4AAQQuAAD3LgABtAwMQEzFyMnIwcjAQlGYT9DBEM%2FAtGUY2MAAAAAAQCeAkMBugKwABYAJwC7AAgAAQAOAAQruAAOELgAE9y5AAMAAfS4AArQuAAOELgAFdAwMRM%2BATMyHgIzMjczDgEjIi4CIyIHI54FKygSHhkYDB8JLwUrKBIeGRgMHwkvAkMwPREUETYvPhEVETcAAAEAsQJZAacCkgADAA0AuwABAAEAAgAEKzAxEzMVI7H29gKSOQAAAAACAJYCTAHCAroACwAXAB0AuwAAAAEABgAEK7gAABC4AAzQuAAGELgAEtAwMRMiJjU0NjMyFhUUBjMiJjU0NjMyFhUUBswYHh4YFx8fqRcfHxcYHh4CTCAXFyAgFxcgIBcXICAXFyAAAAIAzwIeAYkC1wALABcAFwC6AAwAAAADK7gADBC4ABLcuAAG3DAxASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASwpNDQpKTQ0KRQcHBQUHBwCHjMqKjIyKiozJR4aGR4eGRoeAAABANf%2FKwFwAAMAEQAdALoAAQACAAMruAACELgAEdC4AAvcuQAKAAH0MDElMwceARUUDgIHJz4BNTQmJwEZNRkYIxgoNRwIKDEhHgM1CCAfFiAWDQMpBRcUFBUIAAIApwD8AboCTgAZACMAOQC4ABIvuwAdAAEAFwAEK7sADQABAAYABCu7AAMAAQAhAAQrugATAA0AFxESObgAExC5ACAAAfQwMRM0NjcuASMiBgcnPgEzMhYdASMnIw4BIyImNxQWMzI2NzUOAadmbQEeJx00FhkaSCg%2FPTQFAhg5ICs8PyIZFysXUUMBWTU4Cx4sFQ0rDxtIP8MlExoyLxgXFRNSCSUAAAIAjgD8AcoCTgATAB8AFwC7ABcAAQAPAAQruwAFAAEAHQAEKzAxEzQ%2BAjMyHgIVFA4CIyIuAjcUFjMyNjU0JiMiBo4aKzkgIDksGRksOSAgOSsaQjErKzExKysxAaUoPysXFys%2FKCg%2FKxcXKz8oNUBANTRBQQAAAAEAUADYAggBIAADAA0AuwABAAEAAgAEKzAxEyEVIVABuP5IASBIAAABABQA2AJEASAAAwANALsAAQABAAIABCswMRMhFSEUAjD90AEgSAAAAQDRAV4BfAK7ABEACwC6AAUACwADKzAxAQ4BBzYzMhYVFAYjIiY1NDY3AXwvNQMMDh8nKiAnM0xEAosbTzQGKCAjKj85S3cjAAAAAAEA2QFeAYQCuwARAAsAugAFAAsAAyswMRM%2BATcGIyImNTQ2MzIWFRQGB9kwNQMMDiAnKiAoMkxDAY4aTzUGJyAjK0A5S3Yj%2F%2F8A2f8fAYQAfBIHANcAAP3BAAD%2F%2FwBfAV4B7wK7EiYA1o4AEAYA1nMAAAD%2F%2FwBnAV4B9wK7EiYA144AEAYA13MAAAD%2F%2FwBn%2Fx8B9wB8EicA1%2F%2BO%2FcEQBwDXAHP9wQAAAAEAlwBzAcEBmQATAAsAugAKAAAAAyswMSUiLgI1ND4CMzIeAhUUDgIBLB42KRgYKTYeHjYpGBgpNnMVJzYhITYnFRUnNiEhNicVAAABAMUANAGFAcQABgALALoAAgAGAAMrMDE3NTcXBxcHxZknf38n1FCgI6WmIgAAAAABANMANAGTAcQABgALALoAAgAFAAMrMDElJzcXFQcnAVJ%2FJ5mZJ%2FylI6BQoCIAAAACABwAIAI8AnAAAwAHAAsAugAHAAMAAyswMT8BFwcBByc3HLchpwHvtyGnTbweywIjvB7LAAAA%2F%2F8ArAG4AbkC6RIHAOgAAAG4AAAAAQA6%2F%2FQCNgKKADEAbQC4AABFWLgAFS8buQAVAAs%2BWbgAAEVYuAADLxu5AAMAAz5ZugAoACIAAyu4ACgQuQArAAH0uAAG0LgAKBC4AAnQuAAiELgAD9C4ACIQuQAfAAH0uAAS0LgAFRC5ABwAAfS4AAMQuQAuAAH0MDElDgEjIiYnIzU3JjQ1PAE3IzU3PgEzMhYXBy4BIyIGByEVIQYUFRwBFyEVIx4BMzI2NwI2Jlw%2BYocTQDsBATtAE41qM1geMRo7JkpaDgEm%2FtUBAQED%2FQ5YRStBHlEsMYF2KwQJEgkIEAgsBXaFLSEvGiFiVzEHDggKEwkwVWAkIwAAAQBVASsCAwFpAAMADQC7AAEAAQACAAQrMDETIRUhVQGu%2FlIBaT4A%2F%2F8AHAAgAjwCcBIGAN8AAAACAKH%2F9AG3AT0ACwAXACgAuAAARVi4AAAvG7kAAAADPlm7AAYAAQASAAQruAAAELkADAAB9DAxBSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASw9Tk49PU5OPSAuLiAgLi4MWE9OVFROT1gyOTw8NTU8PDkAAAEA0AAAAWEBMQAIAB4AuAAARVi4AAgvG7kACAADPlm7AAUAAQAAAAQrMDElIzU%2BATczESMBIlIhKRUyP%2BYqBRAM%2Fs8AAQCtAAABpgE9ABgALAC4AABFWLgAFy8buQAXAAM%2BWbsADQABAAYABCu4ABcQuQAVAAH0uAAA0DAxNz4BNTQmIyIGByc%2BATMyFhUUDgIHMxUjt05THx0UJg4nFzskNj4TISwZiO8kO04hGyAXEyEaIzUyFCcnKRY1AAAAAAEArP%2F0AaQBPQAkADwAuAAARVi4ACEvG7kAIQADPlm7ABYAAQAPAAQruwAJAAEACAAEK7gAIRC5AAMAAfS6ABsACAAJERI5MDE3HgEzMjY1NCM1MjY1NCYjIgYHJz4BMzIWFRQHHgEVFAYjIiYnzA8xGxsjYConGh0SKA8eEz0jLzs4ICdGMyNDGVESGRYZMyYcFxQXEw8mFBksKDcUCCYfLTAcGgAAAAIArAAAAbkBMQAFABAAOAC4AABFWLgACS8buQAJAAM%2BWbsAEAABAAYABCu7AAIAAQANAAQruAAQELgAANC4AAYQuAAK0DAxJTU3Iw8BFyMVIzUjNTczFTMBTgQDLTbNMjmilEcydDhSQUkrSUkfyb0AAAAAAQCpAsIBXwMyAAMACwC6AAEAAwADKzAxEzMXI6leWEUDMnAAAQD5AsIBrwMyAAMACwC6AAIAAAADKzAxASM3MwE%2BRVheAsJwAAAAAAEApALCAbQDMgAHABkAuwACAAEABQAEK7gABRC4AATcuAAH0DAxEzczFyMnIwekYFBgQ0MEQwLCcHBERAAAAAABAJsCxwG9AzMAFwArALsAEQABAAAABCu4AAAQuAAF3LgAABC4AAjQuAAFELkADAAB9LgAFNAwMQEiLgIjIgYHIz4BMzIeAjMyNjczDgEBaBQgGxoODhYELgUsJBQgGxoODhYELgUsAscQFBAaGi89EBQQGxkuPgACAKUCywGzAy0ACwAXAB0AuwAGAAEAAAAEK7gAABC4AAzQuAAGELgAEtAwMRMiJjU0NjMyFhUUBjMiJjU0NjMyFhUUBtYWGxsWFRwclxUcHBUWGxsCyxwVFhsbFhUcHBUWGxsWFRwAAAIAzwK7AYkDawALABcAFwC6AAwAAAADK7gADBC4ABLcuAAG3DAxASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASwpNDQpKDU1KBMcHBMUHBwCuy8pKDAwKCkvJBsZFxwcFxkbAAABANL%2FKwFrAAMAEQAdALoAAQACAAMruAACELgAEdC4AAvcuQAKAAH0MDElMwceARUUDgIHJz4BNTQmJwETNhkYIxgoNRwIKDEhHwM1CCAfFiAWDQMpBRcUFBUIAAAAGgE%2BAAEAAAAAAAAAFgAuAAEAAAAAAAEADwBlAAEAAAAAAAIABwCFAAEAAAAAAAMAJgDbAAEAAAAAAAQADwEiAAEAAAAAAAUAQQG2AAEAAAAAAAYAFQIkAAEAAAAAAAcAYAL8AAEAAAAAAAgAGgOTAAEAAAAAAAkADAPIAAEAAAAAAAsAGQQJAAEAAAAAAA0R2yfbAAEAAAAAAA4AJDoBAAMAAQQJAAAALAAAAAMAAQQJAAEAHgBFAAMAAQQJAAIADgB1AAMAAQQJAAMATACNAAMAAQQJAAQAHgECAAMAAQQJAAUAggEyAAMAAQQJAAYAKgH4AAMAAQQJAAcAwAI6AAMAAQQJAAgANANdAAMAAQQJAAkAGAOuAAMAAQQJAAsAMgPVAAMAAQQJAA0jtgQjAAMAAQQJAA4ASDm3AFQAeQBwAG8AZwByAGEAcABoAGkAYwAgAGEAbAB0AGUAcgBuAGEAdABlAHMAAFR5cG9ncmFwaGljIGFsdGVybmF0ZXMAAFMAbwB1AHIAYwBlACAAQwBvAGQAZQAgAFAAcgBvAABTb3VyY2UgQ29kZSBQcm8AAFIAZQBnAHUAbABhAHIAAFJlZ3VsYXIAADEALgAwADEANwA7AEEARABCAEUAOwBTAG8AdQByAGMAZQBDAG8AZABlAFAAcgBvAC0AUgBlAGcAdQBsAGEAcgA7AEEARABPAEIARQAAMS4wMTc7QURCRTtTb3VyY2VDb2RlUHJvLVJlZ3VsYXI7QURPQkUAAFMAbwB1AHIAYwBlACAAQwBvAGQAZQAgAFAAcgBvAABTb3VyY2UgQ29kZSBQcm8AAFYAZQByAHMAaQBvAG4AIAAxAC4AMAAxADcAOwBQAFMAIABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAAwADsAaABvAHQAYwBvAG4AdgAgADEALgAwAC4ANwAwADsAbQBhAGsAZQBvAHQAZgAuAGwAaQBiADIALgA1AC4ANQA5ADAAMAAAVmVyc2lvbiAxLjAxNztQUyBWZXJzaW9uIDEuMDAwO2hvdGNvbnYgMS4wLjcwO21ha2VvdGYubGliMi41LjU5MDAAAFMAbwB1AHIAYwBlAEMAbwBkAGUAUAByAG8ALQBSAGUAZwB1AGwAYQByAABTb3VyY2VDb2RlUHJvLVJlZ3VsYXIAAFMAbwB1AHIAYwBlACAAaQBzACAAYQAgAHQAcgBhAGQAZQBtAGEAcgBrACAAbwBmACAAQQBkAG8AYgBlACAAUwB5AHMAdABlAG0AcwAgAEkAbgBjAG8AcgBwAG8AcgBhAHQAZQBkACAAaQBuACAAdABoAGUAIABVAG4AaQB0AGUAZAAgAFMAdABhAHQAZQBzACAAYQBuAGQALwBvAHIAIABvAHQAaABlAHIAIABjAG8AdQBuAHQAcgBpAGUAcwAuAABTb3VyY2UgaXMgYSB0cmFkZW1hcmsgb2YgQWRvYmUgU3lzdGVtcyBJbmNvcnBvcmF0ZWQgaW4gdGhlIFVuaXRlZCBTdGF0ZXMgYW5kL29yIG90aGVyIGNvdW50cmllcy4AAEEAZABvAGIAZQAgAFMAeQBzAHQAZQBtAHMAIABJAG4AYwBvAHIAcABvAHIAYQB0AGUAZAAAQWRvYmUgU3lzdGVtcyBJbmNvcnBvcmF0ZWQAAFAAYQB1AGwAIABEAC4AIABIAHUAbgB0AABQYXVsIEQuIEh1bnQAAGgAdAB0AHAAOgAvAC8AdwB3AHcALgBhAGQAbwBiAGUALgBjAG8AbQAvAHQAeQBwAGUAAGh0dHA6Ly93d3cuYWRvYmUuY29tL3R5cGUAAEMAbwBwAHkAcgBpAGcAaAB0ACAAMgAwADEAMAAsACAAMgAwADEAMgAgAEEAZABvAGIAZQAgAFMAeQBzAHQAZQBtAHMAIABJAG4AYwBvAHIAcABvAHIAYQB0AGUAZAAgACgAaAB0AHQAcAA6AC8ALwB3AHcAdwAuAGEAZABvAGIAZQAuAGMAbwBtAC8AKQAsACAAdwBpAHQAaAAgAFIAZQBzAGUAcgB2AGUAZAAgAEYAbwBuAHQAIABOAGEAbQBlACAAJwBTAG8AdQByAGMAZQAnAC4AIABBAGwAbAAgAFIAaQBnAGgAdABzACAAUgBlAHMAZQByAHYAZQBkAC4AIABTAG8AdQByAGMAZQAgAGkAcwAgAGEAIAB0AHIAYQBkAGUAbQBhAHIAawAgAG8AZgAgAEEAZABvAGIAZQAgAFMAeQBzAHQAZQBtAHMAIABJAG4AYwBvAHIAcABvAHIAYQB0AGUAZAAgAGkAbgAgAHQAaABlACAAVQBuAGkAdABlAGQAIABTAHQAYQB0AGUAcwAgAGEAbgBkAC8AbwByACAAbwB0AGgAZQByACAAYwBvAHUAbgB0AHIAaQBlAHMALgANAAoADQAKAFQAaABpAHMAIABGAG8AbgB0ACAAUwBvAGYAdAB3AGEAcgBlACAAaQBzACAAbABpAGMAZQBuAHMAZQBkACAAdQBuAGQAZQByACAAdABoAGUAIABTAEkATAAgAE8AcABlAG4AIABGAG8AbgB0ACAATABpAGMAZQBuAHMAZQAsACAAVgBlAHIAcwBpAG8AbgAgADEALgAxAC4ADQAKAA0ACgBUAGgAaQBzACAAbABpAGMAZQBuAHMAZQAgAGkAcwAgAGMAbwBwAGkAZQBkACAAYgBlAGwAbwB3ACwAIABhAG4AZAAgAGkAcwAgAGEAbABzAG8AIABhAHYAYQBpAGwAYQBiAGwAZQAgAHcAaQB0AGgAIABhACAARgBBAFEAIABhAHQAOgAgAGgAdAB0AHAAOgAvAC8AcwBjAHIAaQBwAHQAcwAuAHMAaQBsAC4AbwByAGcALwBPAEYATAANAAoADQAKAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQANAAoAUwBJAEwAIABPAFAARQBOACAARgBPAE4AVAAgAEwASQBDAEUATgBTAEUAIABWAGUAcgBzAGkAbwBuACAAMQAuADEAIAAtACAAMgA2ACAARgBlAGIAcgB1AGEAcgB5ACAAMgAwADAANwANAAoALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAC0ALQAtAA0ACgANAAoAUABSAEUAQQBNAEIATABFAA0ACgBUAGgAZQAgAGcAbwBhAGwAcwAgAG8AZgAgAHQAaABlACAATwBwAGUAbgAgAEYAbwBuAHQAIABMAGkAYwBlAG4AcwBlACAAKABPAEYATAApACAAYQByAGUAIAB0AG8AIABzAHQAaQBtAHUAbABhAHQAZQAgAHcAbwByAGwAZAB3AGkAZABlACAAZABlAHYAZQBsAG8AcABtAGUAbgB0ACAAbwBmACAAYwBvAGwAbABhAGIAbwByAGEAdABpAHYAZQAgAGYAbwBuAHQAIABwAHIAbwBqAGUAYwB0AHMALAAgAHQAbwAgAHMAdQBwAHAAbwByAHQAIAB0AGgAZQAgAGYAbwBuAHQAIABjAHIAZQBhAHQAaQBvAG4AIABlAGYAZgBvAHIAdABzACAAbwBmACAAYQBjAGEAZABlAG0AaQBjACAAYQBuAGQAIABsAGkAbgBnAHUAaQBzAHQAaQBjACAAYwBvAG0AbQB1AG4AaQB0AGkAZQBzACwAIABhAG4AZAAgAHQAbwAgAHAAcgBvAHYAaQBkAGUAIABhACAAZgByAGUAZQAgAGEAbgBkACAAbwBwAGUAbgAgAGYAcgBhAG0AZQB3AG8AcgBrACAAaQBuACAAdwBoAGkAYwBoACAAZgBvAG4AdABzACAAbQBhAHkAIABiAGUAIABzAGgAYQByAGUAZAAgAGEAbgBkACAAaQBtAHAAcgBvAHYAZQBkACAAaQBuACAAcABhAHIAdABuAGUAcgBzAGgAaQBwACAAdwBpAHQAaAAgAG8AdABoAGUAcgBzAC4ADQAKAA0ACgBUAGgAZQAgAE8ARgBMACAAYQBsAGwAbwB3AHMAIAB0AGgAZQAgAGwAaQBjAGUAbgBzAGUAZAAgAGYAbwBuAHQAcwAgAHQAbwAgAGIAZQAgAHUAcwBlAGQALAAgAHMAdAB1AGQAaQBlAGQALAAgAG0AbwBkAGkAZgBpAGUAZAAgAGEAbgBkACAAcgBlAGQAaQBzAHQAcgBpAGIAdQB0AGUAZAAgAGYAcgBlAGUAbAB5ACAAYQBzACAAbABvAG4AZwAgAGEAcwAgAHQAaABlAHkAIABhAHIAZQAgAG4AbwB0ACAAcwBvAGwAZAAgAGIAeQAgAHQAaABlAG0AcwBlAGwAdgBlAHMALgAgAFQAaABlACAAZgBvAG4AdABzACwAIABpAG4AYwBsAHUAZABpAG4AZwAgAGEAbgB5ACAAZABlAHIAaQB2AGEAdABpAHYAZQAgAHcAbwByAGsAcwAsACAAYwBhAG4AIABiAGUAIABiAHUAbgBkAGwAZQBkACwAIABlAG0AYgBlAGQAZABlAGQALAAgAHIAZQBkAGkAcwB0AHIAaQBiAHUAdABlAGQAIABhAG4AZAAvAG8AcgAgAHMAbwBsAGQAIAB3AGkAdABoACAAYQBuAHkAIABzAG8AZgB0AHcAYQByAGUAIABwAHIAbwB2AGkAZABlAGQAIAB0AGgAYQB0ACAAYQBuAHkAIAByAGUAcwBlAHIAdgBlAGQAIABuAGEAbQBlAHMAIABhAHIAZQAgAG4AbwB0ACAAdQBzAGUAZAAgAGIAeQAgAGQAZQByAGkAdgBhAHQAaQB2AGUAIAB3AG8AcgBrAHMALgAgAFQAaABlACAAZgBvAG4AdABzACAAYQBuAGQAIABkAGUAcgBpAHYAYQB0AGkAdgBlAHMALAAgAGgAbwB3AGUAdgBlAHIALAAgAGMAYQBuAG4AbwB0ACAAYgBlACAAcgBlAGwAZQBhAHMAZQBkACAAdQBuAGQAZQByACAAYQBuAHkAIABvAHQAaABlAHIAIAB0AHkAcABlACAAbwBmACAAbABpAGMAZQBuAHMAZQAuACAAVABoAGUAIAByAGUAcQB1AGkAcgBlAG0AZQBuAHQAIABmAG8AcgAgAGYAbwBuAHQAcwAgAHQAbwAgAHIAZQBtAGEAaQBuACAAdQBuAGQAZQByACAAdABoAGkAcwAgAGwAaQBjAGUAbgBzAGUAIABkAG8AZQBzACAAbgBvAHQAIABhAHAAcABsAHkAIAB0AG8AIABhAG4AeQAgAGQAbwBjAHUAbQBlAG4AdAAgAGMAcgBlAGEAdABlAGQAIAB1AHMAaQBuAGcAIAB0AGgAZQAgAGYAbwBuAHQAcwAgAG8AcgAgAHQAaABlAGkAcgAgAGQAZQByAGkAdgBhAHQAaQB2AGUAcwAuAA0ACgANAAoARABFAEYASQBOAEkAVABJAE8ATgBTAA0ACgAiAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUAIgAgAHIAZQBmAGUAcgBzACAAdABvACAAdABoAGUAIABzAGUAdAAgAG8AZgAgAGYAaQBsAGUAcwAgAHIAZQBsAGUAYQBzAGUAZAAgAGIAeQAgAHQAaABlACAAQwBvAHAAeQByAGkAZwBoAHQAIABIAG8AbABkAGUAcgAoAHMAKQAgAHUAbgBkAGUAcgAgAHQAaABpAHMAIABsAGkAYwBlAG4AcwBlACAAYQBuAGQAIABjAGwAZQBhAHIAbAB5ACAAbQBhAHIAawBlAGQAIABhAHMAIABzAHUAYwBoAC4AIABUAGgAaQBzACAAbQBhAHkAIABpAG4AYwBsAHUAZABlACAAcwBvAHUAcgBjAGUAIABmAGkAbABlAHMALAAgAGIAdQBpAGwAZAAgAHMAYwByAGkAcAB0AHMAIABhAG4AZAAgAGQAbwBjAHUAbQBlAG4AdABhAHQAaQBvAG4ALgANAAoADQAKACIAUgBlAHMAZQByAHYAZQBkACAARgBvAG4AdAAgAE4AYQBtAGUAIgAgAHIAZQBmAGUAcgBzACAAdABvACAAYQBuAHkAIABuAGEAbQBlAHMAIABzAHAAZQBjAGkAZgBpAGUAZAAgAGEAcwAgAHMAdQBjAGgAIABhAGYAdABlAHIAIAB0AGgAZQAgAGMAbwBwAHkAcgBpAGcAaAB0ACAAcwB0AGEAdABlAG0AZQBuAHQAKABzACkALgANAAoADQAKACIATwByAGkAZwBpAG4AYQBsACAAVgBlAHIAcwBpAG8AbgAiACAAcgBlAGYAZQByAHMAIAB0AG8AIAB0AGgAZQAgAGMAbwBsAGwAZQBjAHQAaQBvAG4AIABvAGYAIABGAG8AbgB0ACAAUwBvAGYAdAB3AGEAcgBlACAAYwBvAG0AcABvAG4AZQBuAHQAcwAgAGEAcwAgAGQAaQBzAHQAcgBpAGIAdQB0AGUAZAAgAGIAeQAgAHQAaABlACAAQwBvAHAAeQByAGkAZwBoAHQAIABIAG8AbABkAGUAcgAoAHMAKQAuAA0ACgANAAoAIgBNAG8AZABpAGYAaQBlAGQAIABWAGUAcgBzAGkAbwBuACIAIAByAGUAZgBlAHIAcwAgAHQAbwAgAGEAbgB5ACAAZABlAHIAaQB2AGEAdABpAHYAZQAgAG0AYQBkAGUAIABiAHkAIABhAGQAZABpAG4AZwAgAHQAbwAsACAAZABlAGwAZQB0AGkAbgBnACwAIABvAHIAIABzAHUAYgBzAHQAaQB0AHUAdABpAG4AZwAgAC0ALQAgAGkAbgAgAHAAYQByAHQAIABvAHIAIABpAG4AIAB3AGgAbwBsAGUAIAAtAC0AIABhAG4AeQAgAG8AZgAgAHQAaABlACAAYwBvAG0AcABvAG4AZQBuAHQAcwAgAG8AZgAgAHQAaABlACAATwByAGkAZwBpAG4AYQBsACAAVgBlAHIAcwBpAG8AbgAsACAAYgB5ACAAYwBoAGEAbgBnAGkAbgBnACAAZgBvAHIAbQBhAHQAcwAgAG8AcgAgAGIAeQAgAHAAbwByAHQAaQBuAGcAIAB0AGgAZQAgAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUAIAB0AG8AIABhACAAbgBlAHcAIABlAG4AdgBpAHIAbwBuAG0AZQBuAHQALgANAAoADQAKACIAQQB1AHQAaABvAHIAIgAgAHIAZQBmAGUAcgBzACAAdABvACAAYQBuAHkAIABkAGUAcwBpAGcAbgBlAHIALAAgAGUAbgBnAGkAbgBlAGUAcgAsACAAcAByAG8AZwByAGEAbQBtAGUAcgAsACAAdABlAGMAaABuAGkAYwBhAGwAIAB3AHIAaQB0AGUAcgAgAG8AcgAgAG8AdABoAGUAcgAgAHAAZQByAHMAbwBuACAAdwBoAG8AIABjAG8AbgB0AHIAaQBiAHUAdABlAGQAIAB0AG8AIAB0AGgAZQAgAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUALgANAAoADQAKAFAARQBSAE0ASQBTAFMASQBPAE4AIAAmACAAQwBPAE4ARABJAFQASQBPAE4AUwANAAoAUABlAHIAbQBpAHMAcwBpAG8AbgAgAGkAcwAgAGgAZQByAGUAYgB5ACAAZwByAGEAbgB0AGUAZAAsACAAZgByAGUAZQAgAG8AZgAgAGMAaABhAHIAZwBlACwAIAB0AG8AIABhAG4AeQAgAHAAZQByAHMAbwBuACAAbwBiAHQAYQBpAG4AaQBuAGcAIABhACAAYwBvAHAAeQAgAG8AZgAgAHQAaABlACAARgBvAG4AdAAgAFMAbwBmAHQAdwBhAHIAZQAsACAAdABvACAAdQBzAGUALAAgAHMAdAB1AGQAeQAsACAAYwBvAHAAeQAsACAAbQBlAHIAZwBlACwAIABlAG0AYgBlAGQALAAgAG0AbwBkAGkAZgB5ACwAIAByAGUAZABpAHMAdAByAGkAYgB1AHQAZQAsACAAYQBuAGQAIABzAGUAbABsACAAbQBvAGQAaQBmAGkAZQBkACAAYQBuAGQAIAB1AG4AbQBvAGQAaQBmAGkAZQBkACAAYwBvAHAAaQBlAHMAIABvAGYAIAB0AGgAZQAgAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUALAAgAHMAdQBiAGoAZQBjAHQAIAB0AG8AIAB0AGgAZQAgAGYAbwBsAGwAbwB3AGkAbgBnACAAYwBvAG4AZABpAHQAaQBvAG4AcwA6AA0ACgANAAoAMQApACAATgBlAGkAdABoAGUAcgAgAHQAaABlACAARgBvAG4AdAAgAFMAbwBmAHQAdwBhAHIAZQAgAG4AbwByACAAYQBuAHkAIABvAGYAIABpAHQAcwAgAGkAbgBkAGkAdgBpAGQAdQBhAGwAIABjAG8AbQBwAG8AbgBlAG4AdABzACwAIABpAG4AIABPAHIAaQBnAGkAbgBhAGwAIABvAHIAIABNAG8AZABpAGYAaQBlAGQAIABWAGUAcgBzAGkAbwBuAHMALAAgAG0AYQB5ACAAYgBlACAAcwBvAGwAZAAgAGIAeQAgAGkAdABzAGUAbABmAC4ADQAKAA0ACgAyACkAIABPAHIAaQBnAGkAbgBhAGwAIABvAHIAIABNAG8AZABpAGYAaQBlAGQAIABWAGUAcgBzAGkAbwBuAHMAIABvAGYAIAB0AGgAZQAgAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUAIABtAGEAeQAgAGIAZQAgAGIAdQBuAGQAbABlAGQALAAgAHIAZQBkAGkAcwB0AHIAaQBiAHUAdABlAGQAIABhAG4AZAAvAG8AcgAgAHMAbwBsAGQAIAB3AGkAdABoACAAYQBuAHkAIABzAG8AZgB0AHcAYQByAGUALAAgAHAAcgBvAHYAaQBkAGUAZAAgAHQAaABhAHQAIABlAGEAYwBoACAAYwBvAHAAeQAgAGMAbwBuAHQAYQBpAG4AcwAgAHQAaABlACAAYQBiAG8AdgBlACAAYwBvAHAAeQByAGkAZwBoAHQAIABuAG8AdABpAGMAZQAgAGEAbgBkACAAdABoAGkAcwAgAGwAaQBjAGUAbgBzAGUALgAgAFQAaABlAHMAZQAgAGMAYQBuACAAYgBlACAAaQBuAGMAbAB1AGQAZQBkACAAZQBpAHQAaABlAHIAIABhAHMAIABzAHQAYQBuAGQALQBhAGwAbwBuAGUAIAB0AGUAeAB0ACAAZgBpAGwAZQBzACwAIABoAHUAbQBhAG4ALQByAGUAYQBkAGEAYgBsAGUAIABoAGUAYQBkAGUAcgBzACAAbwByACAAaQBuACAAdABoAGUAIABhAHAAcAByAG8AcAByAGkAYQB0AGUAIABtAGEAYwBoAGkAbgBlAC0AcgBlAGEAZABhAGIAbABlACAAbQBlAHQAYQBkAGEAdABhACAAZgBpAGUAbABkAHMAIAB3AGkAdABoAGkAbgAgAHQAZQB4AHQAIABvAHIAIABiAGkAbgBhAHIAeQAgAGYAaQBsAGUAcwAgAGEAcwAgAGwAbwBuAGcAIABhAHMAIAB0AGgAbwBzAGUAIABmAGkAZQBsAGQAcwAgAGMAYQBuACAAYgBlACAAZQBhAHMAaQBsAHkAIAB2AGkAZQB3AGUAZAAgAGIAeQAgAHQAaABlACAAdQBzAGUAcgAuAA0ACgANAAoAMwApACAATgBvACAATQBvAGQAaQBmAGkAZQBkACAAVgBlAHIAcwBpAG8AbgAgAG8AZgAgAHQAaABlACAARgBvAG4AdAAgAFMAbwBmAHQAdwBhAHIAZQAgAG0AYQB5ACAAdQBzAGUAIAB0AGgAZQAgAFIAZQBzAGUAcgB2AGUAZAAgAEYAbwBuAHQAIABOAGEAbQBlACgAcwApACAAdQBuAGwAZQBzAHMAIABlAHgAcABsAGkAYwBpAHQAIAB3AHIAaQB0AHQAZQBuACAAcABlAHIAbQBpAHMAcwBpAG8AbgAgAGkAcwAgAGcAcgBhAG4AdABlAGQAIABiAHkAIAB0AGgAZQAgAGMAbwByAHIAZQBzAHAAbwBuAGQAaQBuAGcAIABDAG8AcAB5AHIAaQBnAGgAdAAgAEgAbwBsAGQAZQByAC4AIABUAGgAaQBzACAAcgBlAHMAdAByAGkAYwB0AGkAbwBuACAAbwBuAGwAeQAgAGEAcABwAGwAaQBlAHMAIAB0AG8AIAB0AGgAZQAgAHAAcgBpAG0AYQByAHkAIABmAG8AbgB0ACAAbgBhAG0AZQAgAGEAcwAgAHAAcgBlAHMAZQBuAHQAZQBkACAAdABvACAAdABoAGUAIAB1AHMAZQByAHMALgANAAoADQAKADQAKQAgAFQAaABlACAAbgBhAG0AZQAoAHMAKQAgAG8AZgAgAHQAaABlACAAQwBvAHAAeQByAGkAZwBoAHQAIABIAG8AbABkAGUAcgAoAHMAKQAgAG8AcgAgAHQAaABlACAAQQB1AHQAaABvAHIAKABzACkAIABvAGYAIAB0AGgAZQAgAEYAbwBuAHQAIABTAG8AZgB0AHcAYQByAGUAIABzAGgAYQBsAGwAIABuAG8AdAAgAGIAZQAgAHUAcwBlAGQAIAB0AG8AIABwAHIAbwBtAG8AdABlACwAIABlAG4AZABvAHIAcwBlACAAbwByACAAYQBkAHYAZQByAHQAaQBzAGUAIABhAG4AeQAgAE0AbwBkAGkAZgBpAGUAZAAgAFYAZQByAHMAaQBvAG4ALAAgAGUAeABjAGUAcAB0ACAAdABvACAAYQBjAGsAbgBvAHcAbABlAGQAZwBlACAAdABoAGUAIABjAG8AbgB0AHIAaQBiAHUAdABpAG8AbgAoAHMAKQAgAG8AZgAgAHQAaABlACAAQwBvAHAAeQByAGkAZwBoAHQAIABIAG8AbABkAGUAcgAoAHMAKQAgAGEAbgBkACAAdABoAGUAIABBAHUAdABoAG8AcgAoAHMAKQAgAG8AcgAgAHcAaQB0AGgAIAB0AGgAZQBpAHIAIABlAHgAcABsAGkAYwBpAHQAIAB3AHIAaQB0AHQAZQBuACAAcABlAHIAbQBpAHMAcwBpAG8AbgAuAA0ACgANAAoANQApACAAVABoAGUAIABGAG8AbgB0ACAAUwBvAGYAdAB3AGEAcgBlACwAIABtAG8AZABpAGYAaQBlAGQAIABvAHIAIAB1AG4AbQBvAGQAaQBmAGkAZQBkACwAIABpAG4AIABwAGEAcgB0ACAAbwByACAAaQBuACAAdwBoAG8AbABlACwAIABtAHUAcwB0ACAAYgBlACAAZABpAHMAdAByAGkAYgB1AHQAZQBkACAAZQBuAHQAaQByAGUAbAB5ACAAdQBuAGQAZQByACAAdABoAGkAcwAgAGwAaQBjAGUAbgBzAGUALAAgAGEAbgBkACAAbQB1AHMAdAAgAG4AbwB0ACAAYgBlACAAZABpAHMAdAByAGkAYgB1AHQAZQBkACAAdQBuAGQAZQByACAAYQBuAHkAIABvAHQAaABlAHIAIABsAGkAYwBlAG4AcwBlAC4AIABUAGgAZQAgAHIAZQBxAHUAaQByAGUAbQBlAG4AdAAgAGYAbwByACAAZgBvAG4AdABzACAAdABvACAAcgBlAG0AYQBpAG4AIAB1AG4AZABlAHIAIAB0AGgAaQBzACAAbABpAGMAZQBuAHMAZQAgAGQAbwBlAHMAIABuAG8AdAAgAGEAcABwAGwAeQAgAHQAbwAgAGEAbgB5ACAAZABvAGMAdQBtAGUAbgB0ACAAYwByAGUAYQB0AGUAZAAgAHUAcwBpAG4AZwAgAHQAaABlACAARgBvAG4AdAAgAFMAbwBmAHQAdwBhAHIAZQAuAA0ACgANAAoAVABFAFIATQBJAE4AQQBUAEkATwBOAA0ACgBUAGgAaQBzACAAbABpAGMAZQBuAHMAZQAgAGIAZQBjAG8AbQBlAHMAIABuAHUAbABsACAAYQBuAGQAIAB2AG8AaQBkACAAaQBmACAAYQBuAHkAIABvAGYAIAB0AGgAZQAgAGEAYgBvAHYAZQAgAGMAbwBuAGQAaQB0AGkAbwBuAHMAIABhAHIAZQAgAG4AbwB0ACAAbQBlAHQALgANAAoADQAKAEQASQBTAEMATABBAEkATQBFAFIADQAKAFQASABFACAARgBPAE4AVAAgAFMATwBGAFQAVwBBAFIARQAgAEkAUwAgAFAAUgBPAFYASQBEAEUARAAgACIAQQBTACAASQBTACIALAAgAFcASQBUAEgATwBVAFQAIABXAEEAUgBSAEEATgBUAFkAIABPAEYAIABBAE4AWQAgAEsASQBOAEQALAAgAEUAWABQAFIARQBTAFMAIABPAFIAIABJAE0AUABMAEkARQBEACwAIABJAE4AQwBMAFUARABJAE4ARwAgAEIAVQBUACAATgBPAFQAIABMAEkATQBJAFQARQBEACAAVABPACAAQQBOAFkAIABXAEEAUgBSAEEATgBUAEkARQBTACAATwBGACAATQBFAFIAQwBIAEEATgBUAEEAQgBJAEwASQBUAFkALAAgAEYASQBUAE4ARQBTAFMAIABGAE8AUgAgAEEAIABQAEEAUgBUAEkAQwBVAEwAQQBSACAAUABVAFIAUABPAFMARQAgAEEATgBEACAATgBPAE4ASQBOAEYAUgBJAE4ARwBFAE0ARQBOAFQAIABPAEYAIABDAE8AUABZAFIASQBHAEgAVAAsACAAUABBAFQARQBOAFQALAAgAFQAUgBBAEQARQBNAEEAUgBLACwAIABPAFIAIABPAFQASABFAFIAIABSAEkARwBIAFQALgAgAEkATgAgAE4ATwAgAEUAVgBFAE4AVAAgAFMASABBAEwATAAgAFQASABFACAAQwBPAFAAWQBSAEkARwBIAFQAIABIAE8ATABEAEUAUgAgAEIARQAgAEwASQBBAEIATABFACAARgBPAFIAIABBAE4AWQAgAEMATABBAEkATQAsACAARABBAE0AQQBHAEUAUwAgAE8AUgAgAE8AVABIAEUAUgAgAEwASQBBAEIASQBMAEkAVABZACwAIABJAE4AQwBMAFUARABJAE4ARwAgAEEATgBZACAARwBFAE4ARQBSAEEATAAsACAAUwBQAEUAQwBJAEEATAAsACAASQBOAEQASQBSAEUAQwBUACwAIABJAE4AQwBJAEQARQBOAFQAQQBMACwAIABPAFIAIABDAE8ATgBTAEUAUQBVAEUATgBUAEkAQQBMACAARABBAE0AQQBHAEUAUwAsACAAVwBIAEUAVABIAEUAUgAgAEkATgAgAEEATgAgAEEAQwBUAEkATwBOACAATwBGACAAQwBPAE4AVABSAEEAQwBUACwAIABUAE8AUgBUACAATwBSACAATwBUAEgARQBSAFcASQBTAEUALAAgAEEAUgBJAFMASQBOAEcAIABGAFIATwBNACwAIABPAFUAVAAgAE8ARgAgAFQASABFACAAVQBTAEUAIABPAFIAIABJAE4AQQBCAEkATABJAFQAWQAgAFQATwAgAFUAUwBFACAAVABIAEUAIABGAE8ATgBUACAAUwBPAEYAVABXAEEAUgBFACAATwBSACAARgBSAE8ATQAgAE8AVABIAEUAUgAgAEQARQBBAEwASQBOAEcAUwAgAEkATgAgAFQASABFACAARgBPAE4AVAAgAFMATwBGAFQAVwBBAFIARQAuAA0ACgAAQ29weXJpZ2h0IDIwMTAsIDIwMTIgQWRvYmUgU3lzdGVtcyBJbmNvcnBvcmF0ZWQgKGh0dHA6Ly93d3cuYWRvYmUuY29tLyksIHdpdGggUmVzZXJ2ZWQgRm9udCBOYW1lICdTb3VyY2UnLiBBbGwgUmlnaHRzIFJlc2VydmVkLiBTb3VyY2UgaXMgYSB0cmFkZW1hcmsgb2YgQWRvYmUgU3lzdGVtcyBJbmNvcnBvcmF0ZWQgaW4gdGhlIFVuaXRlZCBTdGF0ZXMgYW5kL29yIG90aGVyIGNvdW50cmllcy4NCg0KVGhpcyBGb250IFNvZnR3YXJlIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBTSUwgT3BlbiBGb250IExpY2Vuc2UsIFZlcnNpb24gMS4xLg0KDQpUaGlzIGxpY2Vuc2UgaXMgY29waWVkIGJlbG93LCBhbmQgaXMgYWxzbyBhdmFpbGFibGUgd2l0aCBhIEZBUSBhdDogaHR0cDovL3NjcmlwdHMuc2lsLm9yZy9PRkwNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NClNJTCBPUEVOIEZPTlQgTElDRU5TRSBWZXJzaW9uIDEuMSAtIDI2IEZlYnJ1YXJ5IDIwMDcNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNClBSRUFNQkxFDQpUaGUgZ29hbHMgb2YgdGhlIE9wZW4gRm9udCBMaWNlbnNlIChPRkwpIGFyZSB0byBzdGltdWxhdGUgd29ybGR3aWRlIGRldmVsb3BtZW50IG9mIGNvbGxhYm9yYXRpdmUgZm9udCBwcm9qZWN0cywgdG8gc3VwcG9ydCB0aGUgZm9udCBjcmVhdGlvbiBlZmZvcnRzIG9mIGFjYWRlbWljIGFuZCBsaW5ndWlzdGljIGNvbW11bml0aWVzLCBhbmQgdG8gcHJvdmlkZSBhIGZyZWUgYW5kIG9wZW4gZnJhbWV3b3JrIGluIHdoaWNoIGZvbnRzIG1heSBiZSBzaGFyZWQgYW5kIGltcHJvdmVkIGluIHBhcnRuZXJzaGlwIHdpdGggb3RoZXJzLg0KDQpUaGUgT0ZMIGFsbG93cyB0aGUgbGljZW5zZWQgZm9udHMgdG8gYmUgdXNlZCwgc3R1ZGllZCwgbW9kaWZpZWQgYW5kIHJlZGlzdHJpYnV0ZWQgZnJlZWx5IGFzIGxvbmcgYXMgdGhleSBhcmUgbm90IHNvbGQgYnkgdGhlbXNlbHZlcy4gVGhlIGZvbnRzLCBpbmNsdWRpbmcgYW55IGRlcml2YXRpdmUgd29ya3MsIGNhbiBiZSBidW5kbGVkLCBlbWJlZGRlZCwgcmVkaXN0cmlidXRlZCBhbmQvb3Igc29sZCB3aXRoIGFueSBzb2Z0d2FyZSBwcm92aWRlZCB0aGF0IGFueSByZXNlcnZlZCBuYW1lcyBhcmUgbm90IHVzZWQgYnkgZGVyaXZhdGl2ZSB3b3Jrcy4gVGhlIGZvbnRzIGFuZCBkZXJpdmF0aXZlcywgaG93ZXZlciwgY2Fubm90IGJlIHJlbGVhc2VkIHVuZGVyIGFueSBvdGhlciB0eXBlIG9mIGxpY2Vuc2UuIFRoZSByZXF1aXJlbWVudCBmb3IgZm9udHMgdG8gcmVtYWluIHVuZGVyIHRoaXMgbGljZW5zZSBkb2VzIG5vdCBhcHBseSB0byBhbnkgZG9jdW1lbnQgY3JlYXRlZCB1c2luZyB0aGUgZm9udHMgb3IgdGhlaXIgZGVyaXZhdGl2ZXMuDQoNCkRFRklOSVRJT05TDQoiRm9udCBTb2Z0d2FyZSIgcmVmZXJzIHRvIHRoZSBzZXQgb2YgZmlsZXMgcmVsZWFzZWQgYnkgdGhlIENvcHlyaWdodCBIb2xkZXIocykgdW5kZXIgdGhpcyBsaWNlbnNlIGFuZCBjbGVhcmx5IG1hcmtlZCBhcyBzdWNoLiBUaGlzIG1heSBpbmNsdWRlIHNvdXJjZSBmaWxlcywgYnVpbGQgc2NyaXB0cyBhbmQgZG9jdW1lbnRhdGlvbi4NCg0KIlJlc2VydmVkIEZvbnQgTmFtZSIgcmVmZXJzIHRvIGFueSBuYW1lcyBzcGVjaWZpZWQgYXMgc3VjaCBhZnRlciB0aGUgY29weXJpZ2h0IHN0YXRlbWVudChzKS4NCg0KIk9yaWdpbmFsIFZlcnNpb24iIHJlZmVycyB0byB0aGUgY29sbGVjdGlvbiBvZiBGb250IFNvZnR3YXJlIGNvbXBvbmVudHMgYXMgZGlzdHJpYnV0ZWQgYnkgdGhlIENvcHlyaWdodCBIb2xkZXIocykuDQoNCiJNb2RpZmllZCBWZXJzaW9uIiByZWZlcnMgdG8gYW55IGRlcml2YXRpdmUgbWFkZSBieSBhZGRpbmcgdG8sIGRlbGV0aW5nLCBvciBzdWJzdGl0dXRpbmcgLS0gaW4gcGFydCBvciBpbiB3aG9sZSAtLSBhbnkgb2YgdGhlIGNvbXBvbmVudHMgb2YgdGhlIE9yaWdpbmFsIFZlcnNpb24sIGJ5IGNoYW5naW5nIGZvcm1hdHMgb3IgYnkgcG9ydGluZyB0aGUgRm9udCBTb2Z0d2FyZSB0byBhIG5ldyBlbnZpcm9ubWVudC4NCg0KIkF1dGhvciIgcmVmZXJzIHRvIGFueSBkZXNpZ25lciwgZW5naW5lZXIsIHByb2dyYW1tZXIsIHRlY2huaWNhbCB3cml0ZXIgb3Igb3RoZXIgcGVyc29uIHdobyBjb250cmlidXRlZCB0byB0aGUgRm9udCBTb2Z0d2FyZS4NCg0KUEVSTUlTU0lPTiAmIENPTkRJVElPTlMNClBlcm1pc3Npb24gaXMgaGVyZWJ5IGdyYW50ZWQsIGZyZWUgb2YgY2hhcmdlLCB0byBhbnkgcGVyc29uIG9idGFpbmluZyBhIGNvcHkgb2YgdGhlIEZvbnQgU29mdHdhcmUsIHRvIHVzZSwgc3R1ZHksIGNvcHksIG1lcmdlLCBlbWJlZCwgbW9kaWZ5LCByZWRpc3RyaWJ1dGUsIGFuZCBzZWxsIG1vZGlmaWVkIGFuZCB1bm1vZGlmaWVkIGNvcGllcyBvZiB0aGUgRm9udCBTb2Z0d2FyZSwgc3ViamVjdCB0byB0aGUgZm9sbG93aW5nIGNvbmRpdGlvbnM6DQoNCjEpIE5laXRoZXIgdGhlIEZvbnQgU29mdHdhcmUgbm9yIGFueSBvZiBpdHMgaW5kaXZpZHVhbCBjb21wb25lbnRzLCBpbiBPcmlnaW5hbCBvciBNb2RpZmllZCBWZXJzaW9ucywgbWF5IGJlIHNvbGQgYnkgaXRzZWxmLg0KDQoyKSBPcmlnaW5hbCBvciBNb2RpZmllZCBWZXJzaW9ucyBvZiB0aGUgRm9udCBTb2Z0d2FyZSBtYXkgYmUgYnVuZGxlZCwgcmVkaXN0cmlidXRlZCBhbmQvb3Igc29sZCB3aXRoIGFueSBzb2Z0d2FyZSwgcHJvdmlkZWQgdGhhdCBlYWNoIGNvcHkgY29udGFpbnMgdGhlIGFib3ZlIGNvcHlyaWdodCBub3RpY2UgYW5kIHRoaXMgbGljZW5zZS4gVGhlc2UgY2FuIGJlIGluY2x1ZGVkIGVpdGhlciBhcyBzdGFuZC1hbG9uZSB0ZXh0IGZpbGVzLCBodW1hbi1yZWFkYWJsZSBoZWFkZXJzIG9yIGluIHRoZSBhcHByb3ByaWF0ZSBtYWNoaW5lLXJlYWRhYmxlIG1ldGFkYXRhIGZpZWxkcyB3aXRoaW4gdGV4dCBvciBiaW5hcnkgZmlsZXMgYXMgbG9uZyBhcyB0aG9zZSBmaWVsZHMgY2FuIGJlIGVhc2lseSB2aWV3ZWQgYnkgdGhlIHVzZXIuDQoNCjMpIE5vIE1vZGlmaWVkIFZlcnNpb24gb2YgdGhlIEZvbnQgU29mdHdhcmUgbWF5IHVzZSB0aGUgUmVzZXJ2ZWQgRm9udCBOYW1lKHMpIHVubGVzcyBleHBsaWNpdCB3cml0dGVuIHBlcm1pc3Npb24gaXMgZ3JhbnRlZCBieSB0aGUgY29ycmVzcG9uZGluZyBDb3B5cmlnaHQgSG9sZGVyLiBUaGlzIHJlc3RyaWN0aW9uIG9ubHkgYXBwbGllcyB0byB0aGUgcHJpbWFyeSBmb250IG5hbWUgYXMgcHJlc2VudGVkIHRvIHRoZSB1c2Vycy4NCg0KNCkgVGhlIG5hbWUocykgb2YgdGhlIENvcHlyaWdodCBIb2xkZXIocykgb3IgdGhlIEF1dGhvcihzKSBvZiB0aGUgRm9udCBTb2Z0d2FyZSBzaGFsbCBub3QgYmUgdXNlZCB0byBwcm9tb3RlLCBlbmRvcnNlIG9yIGFkdmVydGlzZSBhbnkgTW9kaWZpZWQgVmVyc2lvbiwgZXhjZXB0IHRvIGFja25vd2xlZGdlIHRoZSBjb250cmlidXRpb24ocykgb2YgdGhlIENvcHlyaWdodCBIb2xkZXIocykgYW5kIHRoZSBBdXRob3Iocykgb3Igd2l0aCB0aGVpciBleHBsaWNpdCB3cml0dGVuIHBlcm1pc3Npb24uDQoNCjUpIFRoZSBGb250IFNvZnR3YXJlLCBtb2RpZmllZCBvciB1bm1vZGlmaWVkLCBpbiBwYXJ0IG9yIGluIHdob2xlLCBtdXN0IGJlIGRpc3RyaWJ1dGVkIGVudGlyZWx5IHVuZGVyIHRoaXMgbGljZW5zZSwgYW5kIG11c3Qgbm90IGJlIGRpc3RyaWJ1dGVkIHVuZGVyIGFueSBvdGhlciBsaWNlbnNlLiBUaGUgcmVxdWlyZW1lbnQgZm9yIGZvbnRzIHRvIHJlbWFpbiB1bmRlciB0aGlzIGxpY2Vuc2UgZG9lcyBub3QgYXBwbHkgdG8gYW55IGRvY3VtZW50IGNyZWF0ZWQgdXNpbmcgdGhlIEZvbnQgU29mdHdhcmUuDQoNClRFUk1JTkFUSU9ODQpUaGlzIGxpY2Vuc2UgYmVjb21lcyBudWxsIGFuZCB2b2lkIGlmIGFueSBvZiB0aGUgYWJvdmUgY29uZGl0aW9ucyBhcmUgbm90IG1ldC4NCg0KRElTQ0xBSU1FUg0KVEhFIEZPTlQgU09GVFdBUkUgSVMgUFJPVklERUQgIkFTIElTIiwgV0lUSE9VVCBXQVJSQU5UWSBPRiBBTlkgS0lORCwgRVhQUkVTUyBPUiBJTVBMSUVELCBJTkNMVURJTkcgQlVUIE5PVCBMSU1JVEVEIFRPIEFOWSBXQVJSQU5USUVTIE9GIE1FUkNIQU5UQUJJTElUWSwgRklUTkVTUyBGT1IgQSBQQVJUSUNVTEFSIFBVUlBPU0UgQU5EIE5PTklORlJJTkdFTUVOVCBPRiBDT1BZUklHSFQsIFBBVEVOVCwgVFJBREVNQVJLLCBPUiBPVEhFUiBSSUdIVC4gSU4gTk8gRVZFTlQgU0hBTEwgVEhFIENPUFlSSUdIVCBIT0xERVIgQkUgTElBQkxFIEZPUiBBTlkgQ0xBSU0sIERBTUFHRVMgT1IgT1RIRVIgTElBQklMSVRZLCBJTkNMVURJTkcgQU5ZIEdFTkVSQUwsIFNQRUNJQUwsIElORElSRUNULCBJTkNJREVOVEFMLCBPUiBDT05TRVFVRU5USUFMIERBTUFHRVMsIFdIRVRIRVIgSU4gQU4gQUNUSU9OIE9GIENPTlRSQUNULCBUT1JUIE9SIE9USEVSV0lTRSwgQVJJU0lORyBGUk9NLCBPVVQgT0YgVEhFIFVTRSBPUiBJTkFCSUxJVFkgVE8gVVNFIFRIRSBGT05UIFNPRlRXQVJFIE9SIEZST00gT1RIRVIgREVBTElOR1MgSU4gVEhFIEZPTlQgU09GVFdBUkUuDQoAAGgAdAB0AHAAOgAvAC8AdwB3AHcALgBhAGQAbwBiAGUALgBjAG8AbQAvAHQAeQBwAGUALwBsAGUAZwBhAGwALgBoAHQAbQBsAABodHRwOi8vd3d3LmFkb2JlLmNvbS90eXBlL2xlZ2FsLmh0bWwAAAIAAAAAAAD%2FtQAyAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAAEAAgECAQMAAwAEAAUABgAHAAgACQAKAAsADAANAA4ADwAQABEAEgATABQAFQAWABcAGAAZABoAGwAcAB0AHgAfACAAIQAiACMAJAAlACYAJwAoACkAKgArACwALQAuAC8AMAAxADIAMwA0ADUANgA3ADgAOQA6ADsAPAA9AD4APwBAAEEAQgBDAEQARQBGAEcASABJAEoASwBMAE0ATgBPAFAAUQBSAFMAVABVAFYAVwBYAFkAWgBbAFwAXQBeAF8AYABhAQQAowCEAIUAvQCWAOgAhgCOAIsAnQCpAKQBBQCKANoAgwCTAQYBBwCNAQgAiADDAN4BCQCeAKoA9QD0APYAogCtAMkAxwCuAGIAYwCQAGQAywBlAMgAygDPAMwAzQDOAOkAZgDTANAA0QCvAGcA8ACRANYA1ADVAGgA6wDtAIkAagBpAGsAbQBsAG4AoABvAHEAcAByAHMAdQB0AHYAdwDqAHgAegB5AHsAfQB8ALgAoQB%2FAH4AgACBAOwA7gC6ANcAsACxANgA3QDZAQoBCwEMAQ0BDgEPARABEQESARMAsgCzALYAtwDEALQAtQDFAIcAvgC%2FALwBFAEVAO8BFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgROVUxMAkNSB3VuaTAwQTAHdW5pMDBBRAh0d28uc3Vwcwp0aHJlZS5zdXBzB3VuaTAwQjUIb25lLnN1cHMHdW5pMDMwMAd1bmkwMzAxB3VuaTAzMDIHdW5pMDMwMwd1bmkwMzA0B3VuaTAzMDgHdW5pMDMwQQd1bmkwMzI3BmEuc3VwcwZvLnN1cHMJZm91ci5zdXBzBEV1cm8HdW5pMjIxNQl6ZXJvLmRub20Ib25lLmRub20IdHdvLmRub20KdGhyZWUuZG5vbQlmb3VyLmRub20LdW5pMDMwMC5jYXALdW5pMDMwMS5jYXALdW5pMDMwMi5jYXALdW5pMDMwMy5jYXALdW5pMDMwOC5jYXALdW5pMDMwQS5jYXALdW5pMDMyNy5jYXAAAAAAAAAB%2F%2F8AAgAAAAEAAAAAzG2xVQAAAADNFaB%2FAAAAAM0fFuI%3D%29%20format%28%27truetype%27%29%3B%0A%7D%0A" rel="stylesheet" /> + <link href="data:text/css;charset=utf-8,%40charset%20%22UTF%2D8%22%3B%0A%0Ahtml%2C%20body%2C%20div%2C%20span%2C%20applet%2C%20object%2C%20iframe%2C%0Ah1%2C%20h2%2C%20h3%2C%20h4%2C%20h5%2C%20h6%2C%20p%2C%20blockquote%2C%20pre%2C%0Aa%2C%20abbr%2C%20acronym%2C%20address%2C%20big%2C%20cite%2C%20code%2C%0Adel%2C%20dfn%2C%20em%2C%20img%2C%20ins%2C%20kbd%2C%20q%2C%20s%2C%20samp%2C%0Asmall%2C%20strike%2C%20strong%2C%20tt%2C%20var%2C%0Ab%2C%20u%2C%20i%2C%20center%2C%0Adl%2C%20dt%2C%20dd%2C%20ol%2C%20ul%2C%20li%2C%0Afieldset%2C%20form%2C%20label%2C%20legend%2C%0Atable%2C%20caption%2C%20tbody%2C%20tfoot%2C%20thead%2C%20tr%2C%20th%2C%20td%2C%0Aarticle%2C%20aside%2C%20canvas%2C%20details%2C%20embed%2C%0Afigure%2C%20figcaption%2C%20footer%2C%20header%2C%20hgroup%2C%0Amenu%2C%20nav%2C%20output%2C%20ruby%2C%20section%2C%20summary%2C%0Atime%2C%20mark%2C%20audio%2C%20video%20%7B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aborder%3A%200%3B%0Afont%3A%20inherit%3B%0Afont%2Dsize%3A%20100%25%3B%0Avertical%2Dalign%3A%20baseline%3B%0A%7D%0A%0Ahtml%20%7B%0Aline%2Dheight%3A%201%2E2%3B%0A%7D%0A%0Aul%20%7B%0Alist%2Dstyle%3A%20none%3B%0A%7D%0A%0Atable%20%7B%0Aborder%2Dcollapse%3A%20collapse%3B%0Aborder%2Dspacing%3A%200%3B%0A%7D%0A%0Acaption%2C%20th%2C%20td%20%7B%0Afont%2Dweight%3A%20normal%3B%0Avertical%2Dalign%3A%20middle%3B%0A%7D%0A%0Aq%2C%20blockquote%20%7B%0Aquotes%3A%20none%3B%0A%7D%0A%0Aq%3Abefore%2C%20q%3Aafter%2C%20blockquote%3Abefore%2C%20blockquote%3Aafter%20%7B%0Acontent%3A%20%22%22%3B%0Acontent%3A%20none%3B%0A%7D%0A%0Aa%20img%20%7B%0Aborder%3A%20none%3B%0A%7D%0A%0Aarticle%2C%20aside%2C%20details%2C%20figcaption%2C%20figure%2C%20footer%2C%20header%2C%20hgroup%2C%20menu%2C%20nav%2C%20section%2C%20summary%20%7B%0Adisplay%3A%20block%3B%0A%7D%0A%0A%0Ahtml%20%7B%0Aheight%3A%20100%25%3B%0Aoverflow%3A%20hidden%3B%0A%7D%0A%0Abody%20%7B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aopacity%3A%200%3B%0Aheight%3A%20100%25%3B%0Amin%2Dheight%3A%20740px%3B%0Awidth%3A%20100%25%3B%0Aoverflow%3A%20hidden%3B%0Acolor%3A%20%23fff%3B%0A%2Dwebkit%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Dmoz%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Dms%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Do%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Dwebkit%2Dtransition%3A%20opacity%20250ms%20ease%2Din%3B%0A%2Dwebkit%2Dtransition%2Ddelay%3A%20100ms%3B%0A%2Dmoz%2Dtransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0A%2Do%2Dtransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0Atransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0A%7D%0A%0Abody%2Eloaded%20%7B%0Aopacity%3A%201%20%21important%3B%0A%7D%0A%0Ainput%2C%20button%20%7B%0Avertical%2Dalign%3A%20middle%3B%0A%7D%0A%0Aslides%20%3E%20slide%5Bhidden%5D%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0Aslides%20%7B%0Awidth%3A%20100%25%3B%0Aheight%3A%20100%25%3B%0Aposition%3A%20absolute%3B%0Aleft%3A%200%3B%0Atop%3A%200%3B%0A%2Dwebkit%2Dtransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0A%2Do%2Dtransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0Atransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0A%2Dwebkit%2Dperspective%3A%201000%3B%0A%2Dmoz%2Dperspective%3A%201000%3B%0A%2Dms%2Dperspective%3A%201000%3B%0A%2Do%2Dperspective%3A%201000%3B%0Aperspective%3A%201000%3B%0A%2Dwebkit%2Dtransform%2Dstyle%3A%20preserve%2D3d%3B%0A%2Dmoz%2Dtransform%2Dstyle%3A%20preserve%2D3d%3B%0A%2Dms%2Dtransform%2Dstyle%3A%20preserve%2D3d%3B%0A%2Do%2Dtransform%2Dstyle%3A%20preserve%2D3d%3B%0Atransform%2Dstyle%3A%20preserve%2D3d%3B%0A%2Dwebkit%2Dtransition%3A%20opacity%20250ms%20ease%2Din%3B%0A%2Dwebkit%2Dtransition%2Ddelay%3A%20100ms%3B%0A%2Dmoz%2Dtransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0A%2Do%2Dtransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0Atransition%3A%20opacity%20250ms%20ease%2Din%20100ms%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%7B%0Adisplay%3A%20block%3B%0Aposition%3A%20absolute%3B%0Aoverflow%3A%20hidden%3B%0Aleft%3A%2050%25%3B%0Atop%3A%2050%25%3B%0A%2Dwebkit%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dmoz%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%7D%0A%0A%0A%0A%0A%3A%3Aselection%20%7B%0Acolor%3A%20white%3B%0Abackground%2Dcolor%3A%20%23ffd14d%3B%0Atext%2Dshadow%3A%20none%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%20%7B%0Aheight%3A%2016px%3B%0Aoverflow%3A%20visible%3B%0Awidth%3A%2016px%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%2Dthumb%20%7B%0Abackground%2Dcolor%3A%20rgba%280%2C%200%2C%200%2C%200%2E1%29%3B%0Abackground%2Dclip%3A%20padding%2Dbox%3B%0Aborder%3A%20solid%20transparent%3B%0Amin%2Dheight%3A%2028px%3B%0Apadding%3A%20100px%200%200%3B%0A%2Dwebkit%2Dbox%2Dshadow%3A%20inset%201px%201px%200%20rgba%280%2C%200%2C%200%2C%200%2E1%29%2C%20inset%200%20%2D1px%200%20rgba%280%2C%200%2C%200%2C%200%2E07%29%3B%0A%2Dmoz%2Dbox%2Dshadow%3A%20inset%201px%201px%200%20rgba%280%2C%200%2C%200%2C%200%2E1%29%2C%20inset%200%20%2D1px%200%20rgba%280%2C%200%2C%200%2C%200%2E07%29%3B%0Abox%2Dshadow%3A%20inset%201px%201px%200%20rgba%280%2C%200%2C%200%2C%200%2E1%29%2C%20inset%200%20%2D1px%200%20rgba%280%2C%200%2C%200%2C%200%2E07%29%3B%0Aborder%2Dwidth%3A%201px%201px%201px%206px%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%2Dthumb%3Ahover%20%7B%0Abackground%2Dcolor%3A%20rgba%280%2C%200%2C%200%2C%200%2E5%29%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%2Dbutton%20%7B%0Aheight%3A%200%3B%0Awidth%3A%200%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%2Dtrack%20%7B%0Abackground%2Dclip%3A%20padding%2Dbox%3B%0Aborder%3A%20solid%20transparent%3B%0Aborder%2Dwidth%3A%200%200%200%204px%3B%0A%7D%0A%0A%3A%3A%2Dwebkit%2Dscrollbar%2Dcorner%20%7B%0Abackground%3A%20transparent%3B%0A%7D%0A%0Abody%20%7B%0Abackground%3A%20black%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%7B%0Adisplay%3A%20none%3B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2026px%3B%0Acolor%3A%20%23797979%3B%0Awidth%3A%20900px%3B%0Aheight%3A%20700px%3B%0Amargin%2Dleft%3A%20%2D450px%3B%0Amargin%2Dtop%3A%20%2D350px%3B%0Apadding%3A%2040px%2060px%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%205px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%205px%3B%0A%2Dms%2Dborder%2Dradius%3A%205px%3B%0A%2Do%2Dborder%2Dradius%3A%205px%3B%0Aborder%2Dradius%3A%205px%3B%0A%2Dwebkit%2Dtransition%3A%20all%200%2E6s%20ease%2Din%2Dout%3B%0A%2Dmoz%2Dtransition%3A%20all%200%2E6s%20ease%2Din%2Dout%3B%0A%2Do%2Dtransition%3A%20all%200%2E6s%20ease%2Din%2Dout%3B%0Atransition%3A%20all%200%2E6s%20ease%2Din%2Dout%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Efar%2Dpast%20%7B%0Adisplay%3A%20none%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Epast%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%200%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Ecurrent%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%201%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Ecurrent%20%2Eauto%2Dfadein%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Ecurrent%20%2Egdbar%20%7B%0A%2Dwebkit%2Dbackground%2Dsize%3A%20100%25%20100%25%3B%0A%2Dmoz%2Dbackground%2Dsize%3A%20100%25%20100%25%3B%0A%2Do%2Dbackground%2Dsize%3A%20100%25%20100%25%3B%0Abackground%2Dsize%3A%20100%25%20100%25%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Enext%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%200%3B%0Apointer%2Devents%3A%20none%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Efar%2Dnext%20%7B%0Adisplay%3A%20none%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Edark%20%7B%0Abackground%3A%20%23515151%20%21important%3B%0A%7D%0A%0Aslides%20%3E%20slide%3Anot%28%2Enobackground%29%3Aafter%20%7B%0Afont%2Dsize%3A%2012pt%3B%0Acontent%3A%20attr%28data%2Dslide%2Dnum%29%20%22%2F%22%20attr%28data%2Dtotal%2Dslides%29%3B%0Aposition%3A%20absolute%3B%0Abottom%3A%2020px%3B%0Aright%3A%2060px%3B%0Aline%2Dheight%3A%201%2E9%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Etitle%2Dslide%3Aafter%20%7B%0Acontent%3A%20%27%27%3B%0Aposition%3A%20absolute%3B%0Abottom%3A%2040px%3B%0Aright%3A%2040px%3B%0Awidth%3A%20100%25%3B%0Aheight%3A%2060px%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Ebackdrop%20%7B%0Az%2Dindex%3A%20%2D10%3B%0Adisplay%3A%20block%20%21important%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%280%25%2C%20%23ffffff%29%2C%20color%2Dstop%2885%25%2C%20%23ffffff%29%2C%20color%2Dstop%28100%25%2C%20%23e6e6e6%29%29%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20linear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%2Dcolor%3A%20white%3B%0A%7D%0A%0Aslides%20%3E%20slide%2Ebackdrop%3Aafter%2C%20slides%20%3E%20slide%2Ebackdrop%3Abefore%20%7B%0Adisplay%3A%20none%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%3E%20hgroup%20%2B%20article%20%7B%0Amargin%2Dtop%3A%2045px%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%3E%20hgroup%20%2B%20article%2Eflexbox%2Evcenter%2C%20slides%20%3E%20slide%20%3E%20hgroup%20%2B%20article%2Eflexbox%2Evleft%2C%20slides%20%3E%20slide%20%3E%20hgroup%20%2B%20article%2Eflexbox%2Evright%20%7B%0Aheight%3A%2080%25%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%3E%20hgroup%20%2B%20article%20p%20%7B%0Amargin%2Dbottom%3A%201em%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%3E%20article%3Aonly%2Dchild%20%7B%0Aheight%3A%20100%25%3B%0A%7D%0A%0Aslides%20%3E%20slide%20%3E%20article%3Aonly%2Dchild%20%3E%20iframe%20%7B%0Aheight%3A%2095%25%3B%0A%7D%0A%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%20%7B%0Apadding%3A%2040px%20160px%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%20%7B%0Amargin%2Dleft%3A%20%2D550px%3B%0Awidth%3A%201100px%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2Efar%2Dpast%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%2Efar%2Dpast%20%7B%0Adisplay%3A%20block%3B%0Adisplay%3A%20none%3B%0A%2Dwebkit%2Dtransform%3A%20translate%28%2D2260px%29%3B%0A%2Dmoz%2Dtransform%3A%20translate%28%2D2260px%29%3B%0A%2Dms%2Dtransform%3A%20translate%28%2D2260px%29%3B%0A%2Do%2Dtransform%3A%20translate%28%2D2260px%29%3B%0Atransform%3A%20translate%28%2D2260px%29%3B%0A%2Dwebkit%2Dtransform%3A%20translate3d%28%2D2260px%2C%200%2C%200%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%28%2D2260px%2C%200%2C%200%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%28%2D2260px%2C%200%2C%200%29%3B%0A%2Do%2Dtransform%3A%20translate3d%28%2D2260px%2C%200%2C%200%29%3B%0Atransform%3A%20translate3d%28%2D2260px%2C%200%2C%200%29%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2Epast%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%2Epast%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%200%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2Ecurrent%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%2Ecurrent%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%201%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2Enext%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%2Enext%20%7B%0Adisplay%3A%20block%3B%0Aopacity%3A%200%3B%0Apointer%2Devents%3A%20none%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%3E%20slide%2Efar%2Dnext%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%3E%20slide%2Efar%2Dnext%20%7B%0Adisplay%3A%20block%3B%0Adisplay%3A%20none%3B%0A%2Dwebkit%2Dtransform%3A%20translate%282260px%29%3B%0A%2Dmoz%2Dtransform%3A%20translate%282260px%29%3B%0A%2Dms%2Dtransform%3A%20translate%282260px%29%3B%0A%2Do%2Dtransform%3A%20translate%282260px%29%3B%0Atransform%3A%20translate%282260px%29%3B%0A%2Dwebkit%2Dtransform%3A%20translate3d%282260px%2C%200%2C%200%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%282260px%2C%200%2C%200%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%282260px%2C%200%2C%200%29%3B%0A%2Do%2Dtransform%3A%20translate3d%282260px%2C%200%2C%200%29%3B%0Atransform%3A%20translate3d%282260px%2C%200%2C%200%29%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%23prev%2Dslide%2Darea%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%23prev%2Dslide%2Darea%20%7B%0Amargin%2Dleft%3A%20%2D650px%3B%0A%7D%0A%0Aslides%2Elayout%2Dwidescreen%20%23next%2Dslide%2Darea%2C%0Aslides%2Elayout%2Dfaux%2Dwidescreen%20%23next%2Dslide%2Darea%20%7B%0Amargin%2Dleft%3A%20550px%3B%0A%7D%0A%0Ab%20%7B%0Afont%2Dweight%3A%20600%3B%0A%7D%0A%0Aa%20%7B%0Acolor%3A%20%232a7cdf%3B%0Atext%2Ddecoration%3A%20none%3B%0Aborder%2Dbottom%3A%201px%20solid%20rgba%2842%2C%20124%2C%20223%2C%200%2E5%29%3B%0A%7D%0A%0Aa%3Ahover%20%7B%0Acolor%3A%20black%20%21important%3B%0A%7D%0A%0Ah1%2C%20h2%2C%20h3%20%7B%0Afont%2Dweight%3A%20600%3B%0A%7D%0A%0Ah2%20%7B%0Afont%2Dsize%3A%2045px%3B%0Aline%2Dheight%3A%2065px%3B%0Aletter%2Dspacing%3A%20%2D2px%3B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0Ah3%20%7B%0Afont%2Dsize%3A%2030px%3B%0Aletter%2Dspacing%3A%20%2D1px%3B%0Aline%2Dheight%3A%202%3B%0Afont%2Dweight%3A%20inherit%3B%0Acolor%3A%20%23797979%3B%0A%7D%0A%0Aol%2C%20ul%20%7B%0Amargin%2Dleft%3A%201%2E2em%3B%0Amargin%2Dbottom%3A%201em%3B%0Aposition%3A%20relative%3B%0A%7D%0Aol%20%7B%0Amargin%2Dleft%3A%201%2E4em%3B%0A%7D%0A%0Aol%20li%2C%0Aul%20li%20%7B%0Amargin%2Dbottom%3A%200%2E5em%3B%0A%7D%0A%0Aul%20li%20ul%20%7B%0Amargin%2Dleft%3A%202em%3B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0A%0Aul%20li%20ul%20li%3Abefore%20%7B%0Acontent%3A%20%27%2D%27%3B%0Afont%2Dweight%3A%20600%3B%0A%7D%0A%0Aul%20%3E%20li%3Abefore%20%7B%0Acontent%3A%20%27%5C00B7%27%3B%0Amargin%2Dleft%3A%20%2D1em%3B%0Aposition%3A%20absolute%3B%0Afont%2Dweight%3A%20600%3B%0A%7D%0A%0Aul%20ul%2C%0Aol%20ul%20%7B%0Amargin%2Dtop%3A%20%2E5em%3B%0A%7D%0Aol%20ul%2C%0Aol%20ol%20%7B%0Amargin%2Dtop%3A%20%2E5em%3B%0A%7D%0A%0A%2Ehighlight%2Dcode%20slide%2Ecurrent%20pre%20%3E%20%2A%20%7B%0Aopacity%3A%200%2E25%3B%0A%2Dwebkit%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%3B%0A%2Dmoz%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%3B%0A%2Do%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%3B%0Atransition%3A%20opacity%200%2E5s%20ease%2Din%3B%0A%7D%0A%0A%2Ehighlight%2Dcode%20slide%2Ecurrent%20b%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0Apre%20%7B%0Afont%2Dfamily%3A%20%27Source%20Code%20Pro%27%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2020px%3B%0Aline%2Dheight%3A%2028px%3B%0Apadding%3A%2010px%200%2010px%2060px%3B%0Aletter%2Dspacing%3A%20%2D1px%3B%0Amargin%2Dbottom%3A%2020px%3B%0Awidth%3A%20106%25%3B%0Aleft%3A%20%2D60px%3B%0Aposition%3A%20relative%3B%0A%2Dwebkit%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dmoz%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%0A%7D%0A%2Eprettyprint%20%7B%0Abackground%2Dcolor%3A%20%23e6e6e6%3B%0A%7D%0A%0Apre%5Bdata%2Dlang%5D%3Aafter%20%7B%0Acontent%3A%20attr%28data%2Dlang%29%3B%0Abackground%2Dcolor%3A%20darkgrey%3B%0Aright%3A%200%3B%0Atop%3A%200%3B%0Aposition%3A%20absolute%3B%0Afont%2Dsize%3A%2016pt%3B%0Acolor%3A%20white%3B%0Apadding%3A%202px%2025px%3B%0Atext%2Dtransform%3A%20uppercase%3B%0A%7D%0A%0Apre%5Bdata%2Dlang%3D%22go%22%5D%20%7B%0Acolor%3A%20%23333%3B%0A%7D%0A%0Acode%20%7B%0Afont%2Dsize%3A%2095%25%3B%0Afont%2Dfamily%3A%20%27Source%20Code%20Pro%27%2C%20%27Courier%20New%27%2C%20monospace%3B%0Acolor%3A%20black%3B%0A%7D%0A%0Aiframe%20%7B%0Awidth%3A%20100%25%3B%0Aheight%3A%20510px%3B%0Abackground%3A%20white%3B%0Aborder%3A%201px%20solid%20%23e6e6e6%3B%0A%2Dwebkit%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dmoz%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%7D%0A%0Adt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%0Abutton%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%2840%25%2C%20%23f9f9f9%29%2C%20color%2Dstop%2870%25%2C%20%23e3e3e3%29%29%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28%23f9f9f9%2040%25%2C%20%23e3e3e3%2070%25%29%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28%23f9f9f9%2040%25%2C%20%23e3e3e3%2070%25%29%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28%23f9f9f9%2040%25%2C%20%23e3e3e3%2070%25%29%3B%0Abackground%3A%20linear%2Dgradient%28%23f9f9f9%2040%25%2C%20%23e3e3e3%2070%25%29%3B%0Aborder%3A%201px%20solid%20darkgrey%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%203px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%203px%3B%0A%2Dms%2Dborder%2Dradius%3A%203px%3B%0A%2Do%2Dborder%2Dradius%3A%203px%3B%0Aborder%2Dradius%3A%203px%3B%0Apadding%3A%205px%208px%3B%0Aoutline%3A%20none%3B%0Awhite%2Dspace%3A%20nowrap%3B%0A%2Dwebkit%2Duser%2Dselect%3A%20none%3B%0A%2Dmoz%2Duser%2Dselect%3A%20none%3B%0Auser%2Dselect%3A%20none%3B%0Acursor%3A%20pointer%3B%0Atext%2Dshadow%3A%201px%201px%20white%3B%0Afont%2Dsize%3A%2010pt%3B%0A%7D%0A%0Abutton%3Anot%28%3Adisabled%29%3Ahover%20%7B%0Aborder%2Dcolor%3A%20%23515151%3B%0A%7D%0A%0Abutton%3Anot%28%3Adisabled%29%3Aactive%20%7B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%2840%25%2C%20%23e3e3e3%29%2C%20color%2Dstop%2870%25%2C%20%23f9f9f9%29%29%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28%23e3e3e3%2040%25%2C%20%23f9f9f9%2070%25%29%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28%23e3e3e3%2040%25%2C%20%23f9f9f9%2070%25%29%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28%23e3e3e3%2040%25%2C%20%23f9f9f9%2070%25%29%3B%0Abackground%3A%20linear%2Dgradient%28%23e3e3e3%2040%25%2C%20%23f9f9f9%2070%25%29%3B%0A%7D%0A%0A%3Adisabled%20%7B%0Acolor%3A%20darkgrey%3B%0A%7D%0A%0A%2Eblue%20%7B%0Acolor%3A%20%234387fd%3B%0A%7D%0A%0A%2Eblue2%20%7B%0Acolor%3A%20%233c8ef3%3B%0A%7D%0A%0A%2Eblue3%20%7B%0Acolor%3A%20%232a7cdf%3B%0A%7D%0A%0A%2Eyellow%20%7B%0Acolor%3A%20%23ffd14d%3B%0A%7D%0A%0A%2Eyellow2%20%7B%0Acolor%3A%20%23f9cc46%3B%0A%7D%0A%0A%2Eyellow3%20%7B%0Acolor%3A%20%23f6c000%3B%0A%7D%0A%0A%2Egreen%20%7B%0Acolor%3A%20%230da861%3B%0A%7D%0A%0A%2Egreen2%20%7B%0Acolor%3A%20%2300a86d%3B%0A%7D%0A%0A%2Egreen3%20%7B%0Acolor%3A%20%23009f5d%3B%0A%7D%0A%0A%2Ered%20%7B%0Acolor%3A%20%23f44a3f%3B%0A%7D%0A%0A%2Ered2%20%7B%0Acolor%3A%20%23e0543e%3B%0A%7D%0A%0A%2Ered3%20%7B%0Acolor%3A%20%23d94d3a%3B%0A%7D%0A%0A%2Egray%20%7B%0Acolor%3A%20%23e6e6e6%3B%0A%7D%0A%0A%2Egray2%20%7B%0Acolor%3A%20darkgrey%3B%0A%7D%0A%0A%2Egray3%20%7B%0Acolor%3A%20%23797979%3B%0A%7D%0A%0A%2Egray4%20%7B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0A%2Ewhite%20%7B%0Acolor%3A%20white%20%21important%3B%0A%7D%0A%0A%2Eblack%20%7B%0Acolor%3A%20black%20%21important%3B%0A%7D%0A%0A%2Ecolumns%2D2%20%7B%0A%2Dwebkit%2Dcolumn%2Dcount%3A%202%3B%0A%2Dmoz%2Dcolumn%2Dcount%3A%202%3B%0A%2Dms%2Dcolumn%2Dcount%3A%202%3B%0A%2Do%2Dcolumn%2Dcount%3A%202%3B%0Acolumn%2Dcount%3A%202%3B%0A%7D%0A%0A%2Ecolumns%2D2%20ul%2C%20%2Ecolumns%2D2%20ol%20%7B%0A%2Dwebkit%2Dtransform%3A%20translate3d%280%2C%200%2C%200%29%3B%0A%7D%0A%0Atable%2Ermdtable%20%7B%0Awidth%3A%20100%25%3B%0Aborder%2Dcollapse%3A%20%2Dmoz%2Dinitial%3B%0Aborder%2Dcollapse%3A%20initial%3B%0Aborder%2Dspacing%3A%202px%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23797979%3B%0A%7D%0A%0Atable%2Ermdtable%20tr%20%3E%20td%3Afirst%2Dchild%2C%20table%20th%20%7B%0Afont%2Dweight%3A%20600%3B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0Atable%2Ermdtable%20tr%3Anth%2Dchild%28odd%29%20%7B%0Abackground%2Dcolor%3A%20%23e6e6e6%3B%0A%7D%0A%0Atable%2Ermdtable%20th%20%7B%0Acolor%3A%20white%3B%0Afont%2Dsize%3A%2018px%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%2840%25%2C%20%234387fd%29%2C%20color%2Dstop%2880%25%2C%20%232a7cdf%29%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28top%2C%20%234387fd%2040%25%2C%20%232a7cdf%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28top%2C%20%234387fd%2040%25%2C%20%232a7cdf%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28top%2C%20%234387fd%2040%25%2C%20%232a7cdf%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20linear%2Dgradient%28top%2C%20%234387fd%2040%25%2C%20%232a7cdf%2080%25%29%20no%2Drepeat%3B%0A%7D%0A%0Atable%2Ermdtable%20td%2C%20table%20th%20%7B%0Afont%2Dsize%3A%2018px%3B%0Apadding%3A%201em%200%2E5em%3B%0A%7D%0A%0Atable%2Ermdtable%20td%2Ehighlight%20%7B%0Acolor%3A%20%23515151%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%2840%25%2C%20%23ffd14d%29%2C%20color%2Dstop%2880%25%2C%20%23f6c000%29%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28top%2C%20%23ffd14d%2040%25%2C%20%23f6c000%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28top%2C%20%23ffd14d%2040%25%2C%20%23f6c000%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28top%2C%20%23ffd14d%2040%25%2C%20%23f6c000%2080%25%29%20no%2Drepeat%3B%0Abackground%3A%20linear%2Dgradient%28top%2C%20%23ffd14d%2040%25%2C%20%23f6c000%2080%25%29%20no%2Drepeat%3B%0A%7D%0A%0Atable%2Ermdtable%2Erows%20%7B%0Aborder%2Dbottom%3A%20none%3B%0Aborder%2Dright%3A%201px%20solid%20%23797979%3B%0A%7D%0A%0Aq%20%7B%0Afont%2Dsize%3A%2045px%3B%0Aline%2Dheight%3A%2072px%3B%0A%7D%0A%0Aq%3Abefore%20%7B%0Acontent%3A%20%27%5C201C%27%3B%0Aposition%3A%20absolute%3B%0Amargin%2Dleft%3A%20%2D0%2E5em%3B%0A%7D%0A%0Aq%3Aafter%20%7B%0Acontent%3A%20%27%5C201D%27%3B%0Aposition%3A%20absolute%3B%0Amargin%2Dleft%3A%200%2E1em%3B%0A%7D%0A%0Aslide%2Efill%20%7B%0Abackground%2Drepeat%3A%20no%2Drepeat%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%205px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%205px%3B%0A%2Dms%2Dborder%2Dradius%3A%205px%3B%0A%2Do%2Dborder%2Dradius%3A%205px%3B%0Aborder%2Dradius%3A%205px%3B%0A%2Dwebkit%2Dbackground%2Dsize%3A%20cover%3B%0A%2Dmoz%2Dbackground%2Dsize%3A%20cover%3B%0A%2Do%2Dbackground%2Dsize%3A%20cover%3B%0Abackground%2Dsize%3A%20cover%3B%0A%7D%0A%0A%0Aarticle%2Esmaller%20p%2C%20article%2Esmaller%20ul%2C%20article%2Esmaller%20ol%20%7B%0Afont%2Dsize%3A%2020px%3B%0Aline%2Dheight%3A%2024px%3B%0Aletter%2Dspacing%3A%200%3B%0A%7D%0A%0Aarticle%2Esmaller%20table%20td%2C%20article%2Esmaller%20table%20th%20%7B%0Afont%2Dsize%3A%2014px%3B%0A%7D%0A%0Aarticle%2Esmaller%20pre%20%7B%0Afont%2Dsize%3A%2015px%3B%0Aline%2Dheight%3A%2020px%3B%0Aletter%2Dspacing%3A%200%3B%0A%7D%0A%0Aarticle%2Esmaller%20q%20%7B%0Afont%2Dsize%3A%2040px%3B%0Aline%2Dheight%3A%2048px%3B%0A%7D%0A%0Aarticle%2Esmaller%20q%3Abefore%2C%20article%2Esmaller%20q%3Aafter%20%7B%0Afont%2Dsize%3A%2060px%3B%0A%7D%0A%0A%0A%2Ebuild%20%3E%20%2A%20%7B%0A%2Dwebkit%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%2Dout%3B%0A%2Dwebkit%2Dtransition%2Ddelay%3A%200%2E2s%3B%0A%2Dmoz%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%2Dout%200%2E2s%3B%0A%2Do%2Dtransition%3A%20opacity%200%2E5s%20ease%2Din%2Dout%200%2E2s%3B%0Atransition%3A%20opacity%200%2E5s%20ease%2Din%2Dout%200%2E2s%3B%0A%7D%0A%0A%2Ebuild%20%2Eto%2Dbuild%20%7B%0Aopacity%3A%200%3B%0A%7D%0A%0A%2Ebuild%20%2Ebuild%2Dfade%20%7B%0Aopacity%3A%200%2E3%3B%0A%7D%0A%0A%2Ebuild%20%2Ebuild%2Dfade%3Ahover%20%7B%0Aopacity%3A%201%2E0%3B%0A%7D%0A%0A%2Epopup%20%2Enext%20%2Ebuild%20%2Eto%2Dbuild%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0A%2Epopup%20%2Enext%20%2Ebuild%20%2Ebuild%2Dfade%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0A%0A%2Eprettyprint%20%2Estr%2C%0A%2Eprettyprint%20%2Eatv%20%7B%0A%0Acolor%3A%20%23009f5d%3B%0A%7D%0A%0A%2Eprettyprint%20%2Ekwd%2C%0A%2Eprettyprint%20%2Etag%20%7B%0A%0Acolor%3A%20%230066cc%3B%0A%7D%0A%0A%2Eprettyprint%20%2Ecom%20%7B%0A%0Acolor%3A%20%23797979%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%0A%2Eprettyprint%20%2Elit%20%7B%0A%0Acolor%3A%20%237f0000%3B%0A%7D%0A%0A%2Eprettyprint%20%2Epun%2C%0A%2Eprettyprint%20%2Eopn%2C%0A%2Eprettyprint%20%2Eclo%20%7B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0A%2Eprettyprint%20%2Etyp%2C%0A%2Eprettyprint%20%2Eatn%2C%0A%2Eprettyprint%20%2Edec%2C%0A%2Eprettyprint%20%2Evar%20%7B%0A%0Acolor%3A%20%23d94d3a%3B%0A%7D%0A%0A%2Eprettyprint%20%2Epln%20%7B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0A%2Enote%20%7B%0Aposition%3A%20absolute%3B%0Az%2Dindex%3A%20100%3B%0Awidth%3A%20100%25%3B%0Aheight%3A%20100%25%3B%0Atop%3A%200%3B%0Aleft%3A%200%3B%0Apadding%3A%201em%3B%0Abackground%3A%20rgba%280%2C%200%2C%200%2C%200%2E3%29%3B%0Aopacity%3A%200%3B%0Apointer%2Devents%3A%20none%3B%0Adisplay%3A%20%2Dwebkit%2Dbox%20%21important%3B%0Adisplay%3A%20%2Dmoz%2Dbox%20%21important%3B%0Adisplay%3A%20%2Dms%2Dbox%20%21important%3B%0Adisplay%3A%20%2Do%2Dbox%20%21important%3B%0Adisplay%3A%20box%20%21important%3B%0A%2Dwebkit%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dmoz%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dms%2Dbox%2Dorient%3A%20vertical%3B%0Abox%2Dorient%3A%20vertical%3B%0A%2Dwebkit%2Dbox%2Dalign%3A%20center%3B%0A%2Dmoz%2Dbox%2Dalign%3A%20center%3B%0A%2Dms%2Dbox%2Dalign%3A%20center%3B%0Abox%2Dalign%3A%20center%3B%0A%2Dwebkit%2Dbox%2Dpack%3A%20center%3B%0A%2Dmoz%2Dbox%2Dpack%3A%20center%3B%0A%2Dms%2Dbox%2Dpack%3A%20center%3B%0Abox%2Dpack%3A%20center%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%205px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%205px%3B%0A%2Dms%2Dborder%2Dradius%3A%205px%3B%0A%2Do%2Dborder%2Dradius%3A%205px%3B%0Aborder%2Dradius%3A%205px%3B%0A%2Dwebkit%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dmoz%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dwebkit%2Dtransform%3A%20translateY%28350px%29%3B%0A%2Dmoz%2Dtransform%3A%20translateY%28350px%29%3B%0A%2Dms%2Dtransform%3A%20translateY%28350px%29%3B%0A%2Do%2Dtransform%3A%20translateY%28350px%29%3B%0Atransform%3A%20translateY%28350px%29%3B%0A%2Dwebkit%2Dtransition%3A%20all%200%2E4s%20ease%2Din%2Dout%3B%0A%2Dmoz%2Dtransition%3A%20all%200%2E4s%20ease%2Din%2Dout%3B%0A%2Do%2Dtransition%3A%20all%200%2E4s%20ease%2Din%2Dout%3B%0Atransition%3A%20all%200%2E4s%20ease%2Din%2Dout%3B%0A%7D%0A%0A%2Enote%20%3E%20section%20%7B%0Abackground%3A%20%23fff%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%205px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%205px%3B%0A%2Dms%2Dborder%2Dradius%3A%205px%3B%0A%2Do%2Dborder%2Dradius%3A%205px%3B%0Aborder%2Dradius%3A%205px%3B%0A%2Dwebkit%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0A%2Dmoz%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0Abox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0Awidth%3A%2060%25%3B%0Apadding%3A%202em%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slides%2Elayout%2Dwidescreen%20slide%2Enext%2C%0A%2Ewith%2Dnotes%2Epopup%20slides%2Elayout%2Dfaux%2Dwidescreen%20slide%2Enext%20%7B%0A%2Dwebkit%2Dtransform%3A%20translate3d%28690px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%28690px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%28690px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Do%2Dtransform%3A%20translate3d%28690px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0Atransform%3A%20translate3d%28690px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slides%2Elayout%2Dwidescreen%20slide%20%2Enote%2C%0A%2Ewith%2Dnotes%2Epopup%20slides%2Elayout%2Dfaux%2Dwidescreen%20slide%20%2Enote%20%7B%0A%2Dwebkit%2Dtransform%3A%20translate3d%28300px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%28300px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%28300px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Do%2Dtransform%3A%20translate3d%28300px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0Atransform%3A%20translate3d%28300px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slide%20%7B%0Aoverflow%3A%20visible%3B%0Abackground%3A%20white%3B%0A%2Dwebkit%2Dtransition%3A%20none%3B%0A%2Dmoz%2Dtransition%3A%20none%3B%0A%2Do%2Dtransition%3A%20none%3B%0Atransition%3A%20none%3B%0Apointer%2Devents%3A%20none%3B%0A%2Dwebkit%2Dtransform%2Dorigin%3A%200%200%3B%0A%2Dmoz%2Dtransform%2Dorigin%3A%200%200%3B%0A%2Dms%2Dtransform%2Dorigin%3A%200%200%3B%0A%2Do%2Dtransform%2Dorigin%3A%200%200%3B%0Atransform%2Dorigin%3A%200%200%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slide%3Anot%28%2Ebackdrop%29%20%7B%0A%2Dwebkit%2Dtransform%3A%20scale%280%2E6%29%20translate3d%280%2E5em%2C%200%2E5em%2C%200%29%3B%0A%2Dmoz%2Dtransform%3A%20scale%280%2E6%29%20translate3d%280%2E5em%2C%200%2E5em%2C%200%29%3B%0A%2Dms%2Dtransform%3A%20scale%280%2E6%29%20translate3d%280%2E5em%2C%200%2E5em%2C%200%29%3B%0A%2Do%2Dtransform%3A%20scale%280%2E6%29%20translate3d%280%2E5em%2C%200%2E5em%2C%200%29%3B%0Atransform%3A%20scale%280%2E6%29%20translate3d%280%2E5em%2C%200%2E5em%2C%200%29%3B%0A%2Dwebkit%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0A%2Dmoz%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0Abox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slide%2Ebackdrop%20%7B%0Abackground%2Dimage%3A%20%2Dwebkit%2Dgradient%28radial%2C%2050%25%2050%25%2C%200%2C%2050%25%2050%25%2C%20600%2C%20color%2Dstop%280%25%2C%20%23b1dfff%29%2C%20color%2Dstop%28100%25%2C%20%234387fd%29%29%3B%0Abackground%2Dimage%3A%20%2Dwebkit%2Dradial%2Dgradient%2850%25%2050%25%2C%20%23b1dfff%200%25%2C%20%234387fd%20600px%29%3B%0Abackground%2Dimage%3A%20%2Dmoz%2Dradial%2Dgradient%2850%25%2050%25%2C%20%23b1dfff%200%25%2C%20%234387fd%20600px%29%3B%0Abackground%2Dimage%3A%20%2Do%2Dradial%2Dgradient%2850%25%2050%25%2C%20%23b1dfff%200%25%2C%20%234387fd%20600px%29%3B%0Abackground%2Dimage%3A%20radial%2Dgradient%2850%25%2050%25%2C%20%23b1dfff%200%25%2C%20%234387fd%20600px%29%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slide%2Enext%20%7B%0A%2Dwebkit%2Dtransform%3A%20translate3d%28570px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%28570px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%28570px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0A%2Do%2Dtransform%3A%20translate3d%28570px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0Atransform%3A%20translate3d%28570px%2C%2080px%2C%200%29%20scale%280%2E35%29%3B%0Aopacity%3A%201%20%21important%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20slide%2Enext%20%2Enote%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20%2Enote%20%7B%0Awidth%3A%20109%25%3B%0Aheight%3A%20260px%3B%0Abackground%3A%20%23e6e6e6%3B%0Apadding%3A%200%3B%0A%2Dwebkit%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0A%2Dmoz%2Dbox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0Abox%2Dshadow%3A%200%200%2010px%20%23797979%3B%0A%2Dwebkit%2Dtransform%3A%20translate3d%28250px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Dmoz%2Dtransform%3A%20translate3d%28250px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Dms%2Dtransform%3A%20translate3d%28250px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Do%2Dtransform%3A%20translate3d%28250px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0Atransform%3A%20translate3d%28250px%2C%20800px%2C%200%29%20scale%281%2E5%29%3B%0A%2Dwebkit%2Dtransition%3A%20opacity%20400ms%20ease%2Din%2Dout%3B%0A%2Dmoz%2Dtransition%3A%20opacity%20400ms%20ease%2Din%2Dout%3B%0A%2Do%2Dtransition%3A%20opacity%20400ms%20ease%2Din%2Dout%3B%0Atransition%3A%20opacity%20400ms%20ease%2Din%2Dout%3B%0A%7D%0A%0A%2Ewith%2Dnotes%2Epopup%20%2Enote%20%3E%20section%20%7B%0Abackground%3A%20%23fff%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%205px%3B%0A%2Dmoz%2Dborder%2Dradius%3A%205px%3B%0A%2Dms%2Dborder%2Dradius%3A%205px%3B%0A%2Do%2Dborder%2Dradius%3A%205px%3B%0Aborder%2Dradius%3A%205px%3B%0Aheight%3A%20100%25%3B%0Awidth%3A%20100%25%3B%0A%2Dwebkit%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dmoz%2Dbox%2Dsizing%3A%20border%2Dbox%3B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%2Dwebkit%2Dbox%2Dshadow%3A%20none%3B%0A%2Dmoz%2Dbox%2Dshadow%3A%20none%3B%0Abox%2Dshadow%3A%20none%3B%0Aoverflow%3A%20auto%3B%0Apadding%3A%201em%3B%0A%7D%0A%0A%2Ewith%2Dnotes%20%2Enote%20%7B%0Aopacity%3A%201%3B%0A%2Dwebkit%2Dtransform%3A%20translateY%280%29%3B%0A%2Dmoz%2Dtransform%3A%20translateY%280%29%3B%0A%2Dms%2Dtransform%3A%20translateY%280%29%3B%0A%2Do%2Dtransform%3A%20translateY%280%29%3B%0Atransform%3A%20translateY%280%29%3B%0Apointer%2Devents%3A%20auto%3B%0A%7D%0A%0A%2Esource%20%7B%0Afont%2Dsize%3A%2014px%3B%0Acolor%3A%20darkgrey%3B%0Aposition%3A%20absolute%3B%0Abottom%3A%2070px%3B%0Aleft%3A%2060px%3B%0A%7D%0A%0A%2Ecentered%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%0A%2Ereflect%20%7B%0A%2Dwebkit%2Dbox%2Dreflect%3A%20below%203px%20%2Dwebkit%2Dlinear%2Dgradient%28rgba%28255%2C%20255%2C%20255%2C%200%29%2085%25%2C%20white%20150%25%29%3B%0A%2Dmoz%2Dbox%2Dreflect%3A%20below%203px%20%2Dmoz%2Dlinear%2Dgradient%28rgba%28255%2C%20255%2C%20255%2C%200%29%2085%25%2C%20white%20150%25%29%3B%0A%2Do%2Dbox%2Dreflect%3A%20below%203px%20%2Do%2Dlinear%2Dgradient%28rgba%28255%2C%20255%2C%20255%2C%200%29%2085%25%2C%20white%20150%25%29%3B%0A%2Dms%2Dbox%2Dreflect%3A%20below%203px%20%2Dms%2Dlinear%2Dgradient%28rgba%28255%2C%20255%2C%20255%2C%200%29%2085%25%2C%20white%20150%25%29%3B%0Abox%2Dreflect%3A%20below%203px%20linear%2Dgradient%28rgba%28255%2C%20255%2C%20255%2C%200%29%2085%25%2C%20%23ffffff%20150%25%29%3B%0A%7D%0A%0A%2Eflexbox%20%7B%0Adisplay%3A%20%2Dwebkit%2Dbox%20%21important%3B%0Adisplay%3A%20%2Dmoz%2Dbox%20%21important%3B%0Adisplay%3A%20%2Dms%2Dbox%20%21important%3B%0Adisplay%3A%20%2Do%2Dbox%20%21important%3B%0Adisplay%3A%20box%20%21important%3B%0A%7D%0A%0A%2Eflexbox%2Evcenter%20%7B%0A%2Dwebkit%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dmoz%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dms%2Dbox%2Dorient%3A%20vertical%3B%0Abox%2Dorient%3A%20vertical%3B%0A%2Dwebkit%2Dbox%2Dalign%3A%20center%3B%0A%2Dmoz%2Dbox%2Dalign%3A%20center%3B%0A%2Dms%2Dbox%2Dalign%3A%20center%3B%0Abox%2Dalign%3A%20center%3B%0A%2Dwebkit%2Dbox%2Dpack%3A%20center%3B%0A%2Dmoz%2Dbox%2Dpack%3A%20center%3B%0A%2Dms%2Dbox%2Dpack%3A%20center%3B%0Abox%2Dpack%3A%20center%3B%0Aheight%3A%20100%25%3B%0Awidth%3A%20100%25%3B%0A%7D%0A%0A%2Eflexbox%2Evleft%20%7B%0A%2Dwebkit%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dmoz%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dms%2Dbox%2Dorient%3A%20vertical%3B%0Abox%2Dorient%3A%20vertical%3B%0A%2Dwebkit%2Dbox%2Dalign%3A%20left%3B%0A%2Dmoz%2Dbox%2Dalign%3A%20left%3B%0A%2Dms%2Dbox%2Dalign%3A%20left%3B%0Abox%2Dalign%3A%20left%3B%0A%2Dwebkit%2Dbox%2Dpack%3A%20center%3B%0A%2Dmoz%2Dbox%2Dpack%3A%20center%3B%0A%2Dms%2Dbox%2Dpack%3A%20center%3B%0Abox%2Dpack%3A%20center%3B%0Aheight%3A%20100%25%3B%0Awidth%3A%20100%25%3B%0A%7D%0A%0A%2Eflexbox%2Evright%20%7B%0A%2Dwebkit%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dmoz%2Dbox%2Dorient%3A%20vertical%3B%0A%2Dms%2Dbox%2Dorient%3A%20vertical%3B%0Abox%2Dorient%3A%20vertical%3B%0A%2Dwebkit%2Dbox%2Dalign%3A%20end%3B%0A%2Dmoz%2Dbox%2Dalign%3A%20end%3B%0A%2Dms%2Dbox%2Dalign%3A%20end%3B%0Abox%2Dalign%3A%20end%3B%0A%2Dwebkit%2Dbox%2Dpack%3A%20center%3B%0A%2Dmoz%2Dbox%2Dpack%3A%20center%3B%0A%2Dms%2Dbox%2Dpack%3A%20center%3B%0Abox%2Dpack%3A%20center%3B%0Aheight%3A%20100%25%3B%0Awidth%3A%20100%25%3B%0A%7D%0A%0A%2Eauto%2Dfadein%20%7B%0A%2Dwebkit%2Dtransition%3A%20opacity%200%2E6s%20ease%2Din%3B%0A%2Dwebkit%2Dtransition%2Ddelay%3A%200%2E6s%3B%0A%2Dmoz%2Dtransition%3A%20opacity%200%2E6s%20ease%2Din%200%2E6s%3B%0A%2Do%2Dtransition%3A%20opacity%200%2E6s%20ease%2Din%200%2E6s%3B%0Atransition%3A%20opacity%200%2E6s%20ease%2Din%200%2E6s%3B%0Aopacity%3A%200%3B%0A%7D%0A%0A%0A%2Eslide%2Darea%20%7B%0Az%2Dindex%3A%201000%3B%0Aposition%3A%20absolute%3B%0Aleft%3A%200%3B%0Atop%3A%200%3B%0Awidth%3A%20100px%3B%0Aheight%3A%20700px%3B%0Aleft%3A%2050%25%3B%0Atop%3A%2050%25%3B%0Acursor%3A%20pointer%3B%0Amargin%2Dtop%3A%20%2D350px%3B%0A%7D%0A%0A%23prev%2Dslide%2Darea%20%7B%0Amargin%2Dleft%3A%20%2D550px%3B%0A%7D%0A%0A%23next%2Dslide%2Darea%20%7B%0Amargin%2Dleft%3A%20450px%3B%0A%7D%0A%0A%0A%2Elogoslide%20img%20%7B%0Awidth%3A%20383px%3B%0Aheight%3A%2092px%3B%0A%7D%0A%0A%2Esegue%20%7B%0Apadding%3A%2060px%20120px%3B%0A%7D%0A%0A%2Esegue%20h2%20%7B%0Acolor%3A%20%23e6e6e6%3B%0Afont%2Dsize%3A%2060px%3B%0A%7D%0A%0A%2Esegue%20h3%20%7B%0Acolor%3A%20%23e6e6e6%3B%0Aline%2Dheight%3A%202%2E8%3B%0A%7D%0A%0A%2Esegue%20hgroup%20%7B%0Aposition%3A%20absolute%3B%0Abottom%3A%20225px%3B%0A%7D%0A%0A%2Ethank%2Dyou%2Dslide%20%7B%0Abackground%3A%20%234387fd%20%21important%3B%0Acolor%3A%20white%3B%0A%7D%0A%0A%2Ethank%2Dyou%2Dslide%20h2%20%7B%0Afont%2Dsize%3A%2060px%3B%0Acolor%3A%20inherit%3B%0A%7D%0A%0A%2Ethank%2Dyou%2Dslide%20article%20%3E%20p%20%7B%0Amargin%2Dtop%3A%202em%3B%0Afont%2Dsize%3A%2020pt%3B%0A%7D%0A%0A%2Ethank%2Dyou%2Dslide%20%3E%20p%20%7B%0Aposition%3A%20absolute%3B%0Abottom%3A%2080px%3B%0Afont%2Dsize%3A%2024pt%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%0Aaside%2Egdbar%20%7B%0Aheight%3A%2097px%3B%0Awidth%3A%20215px%3B%0Aposition%3A%20absolute%3B%0Aleft%3A%20%2D1px%3B%0Atop%3A%20125px%3B%0A%2Dwebkit%2Dborder%2Dradius%3A%200%2010px%2010px%200%3B%0A%2Dmoz%2Dborder%2Dradius%3A%200%2010px%2010px%200%3B%0A%2Dms%2Dborder%2Dradius%3A%200%2010px%2010px%200%3B%0A%2Do%2Dborder%2Dradius%3A%200%2010px%2010px%200%3B%0Aborder%2Dradius%3A%200%2010px%2010px%200%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%200%25%2050%25%2C%20100%25%2050%25%2C%20color%2Dstop%280%25%2C%20%23e6e6e6%29%2C%20color%2Dstop%28100%25%2C%20%23e6e6e6%29%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28left%2C%20%23e6e6e6%2C%20%23e6e6e6%29%20no%2Drepeat%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28left%2C%20%23e6e6e6%2C%20%23e6e6e6%29%20no%2Drepeat%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28left%2C%20%23e6e6e6%2C%20%23e6e6e6%29%20no%2Drepeat%3B%0Abackground%3A%20linear%2Dgradient%28left%2C%20%23e6e6e6%2C%20%23e6e6e6%29%20no%2Drepeat%3B%0A%2Dwebkit%2Dbackground%2Dsize%3A%200%25%20100%25%3B%0A%2Dmoz%2Dbackground%2Dsize%3A%200%25%20100%25%3B%0A%2Do%2Dbackground%2Dsize%3A%200%25%20100%25%3B%0Abackground%2Dsize%3A%200%25%20100%25%3B%0A%2Dwebkit%2Dtransition%3A%20all%200%2E5s%20ease%2Dout%3B%0A%2Dwebkit%2Dtransition%2Ddelay%3A%200%2E5s%3B%0A%2Dmoz%2Dtransition%3A%20all%200%2E5s%20ease%2Dout%200%2E5s%3B%0A%2Do%2Dtransition%3A%20all%200%2E5s%20ease%2Dout%200%2E5s%3B%0Atransition%3A%20all%200%2E5s%20ease%2Dout%200%2E5s%3B%0A%0A%7D%0A%0Aaside%2Egdbar%2Eright%20%7B%0Aright%3A%200%3B%0Aleft%3A%20%2Dmoz%2Dinitial%3B%0Aleft%3A%20initial%3B%0Atop%3A%20254px%3B%0A%0A%2Dwebkit%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Dmoz%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Dms%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Do%2Dtransform%3A%20rotateZ%28180deg%29%3B%0Atransform%3A%20rotateZ%28180deg%29%3B%0A%7D%0A%0Aaside%2Egdbar%2Eright%20img%20%7B%0A%2Dwebkit%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Dmoz%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Dms%2Dtransform%3A%20rotateZ%28180deg%29%3B%0A%2Do%2Dtransform%3A%20rotateZ%28180deg%29%3B%0Atransform%3A%20rotateZ%28180deg%29%3B%0A%7D%0A%0Aaside%2Egdbar%2Ebottom%20%7B%0Atop%3A%20%2Dmoz%2Dinitial%3B%0Atop%3A%20initial%3B%0Abottom%3A%2060px%3B%0A%7D%0A%0Aaside%2Egdbar%20img%20%7B%0Awidth%3A%2085px%3B%0Aheight%3A%2085px%3B%0Aposition%3A%20absolute%3B%0Aright%3A%200%3B%0Amargin%3A%208px%2015px%3B%0A%7D%0A%0A%2Etitle%2Dslide%20hgroup%20%7B%0Abottom%3A%20100px%3B%0A%7D%0A%0A%2Etitle%2Dslide%20hgroup%20h1%20%7B%0Afont%2Dsize%3A%2065px%3B%0Aline%2Dheight%3A%201%2E4%3B%0Aletter%2Dspacing%3A%20%2D3px%3B%0Acolor%3A%20%23515151%3B%0A%7D%0A%0A%2Etitle%2Dslide%20hgroup%20h2%20%7B%0Afont%2Dsize%3A%2034px%3B%0Acolor%3A%20darkgrey%3B%0Afont%2Dweight%3A%20inherit%3B%0A%7D%0A%0A%2Etitle%2Dslide%20hgroup%20p%20%7B%0Afont%2Dsize%3A%2020px%3B%0Acolor%3A%20%23797979%3B%0Aline%2Dheight%3A%201%2E3%3B%0Amargin%2Dtop%3A%202em%3B%0A%7D%0A%0A%2Equote%20%7B%0Acolor%3A%20%23e6e6e6%3B%0A%7D%0A%0A%2Equote%20%2Eauthor%20%7B%0Afont%2Dsize%3A%2024px%3B%0Aposition%3A%20absolute%3B%0Abottom%3A%2080px%3B%0Aline%2Dheight%3A%201%2E4%3B%0A%7D%0A%0A%5Bdata%2Dconfig%2Dcontact%5D%20a%20%7B%0Acolor%3A%20white%3B%0Aborder%2Dbottom%3A%20none%3B%0A%7D%0A%0A%5Bdata%2Dconfig%2Dcontact%5D%20span%20%7B%0Awidth%3A%20115px%3B%0Adisplay%3A%20inline%2Dblock%3B%0A%7D%0A%0A%2Eoverview%2Epopup%20%2Enote%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0A%2Eoverview%20slides%20slide%20%7B%0Adisplay%3A%20block%3B%0Acursor%3A%20pointer%3B%0Aopacity%3A%200%2E5%3B%0Apointer%2Devents%3A%20auto%20%21important%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%280%25%2C%20%23ffffff%29%2C%20color%2Dstop%2885%25%2C%20%23ffffff%29%2C%20color%2Dstop%28100%25%2C%20%23e6e6e6%29%29%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20linear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%2Dcolor%3A%20white%3B%0A%7D%0A%0A%2Eoverview%20slides%20slide%2Ebackdrop%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0A%2Eoverview%20slides%20slide%2Efar%2Dpast%2C%20%2Eoverview%20slides%20slide%2Epast%2C%20%2Eoverview%20slides%20slide%2Enext%2C%20%2Eoverview%20slides%20slide%2Efar%2Dnext%2C%20%2Eoverview%20slides%20slide%2Efar%2Dpast%20%7B%0Aopacity%3A%200%2E5%3B%0Adisplay%3A%20block%3B%0A%7D%0A%0A%2Eoverview%20slides%20slide%2Ecurrent%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0A%2Eoverview%20%2Eslide%2Darea%20%7B%0Adisplay%3A%20none%3B%0A%7D%0A%40media%20print%20%7B%0A%0Aslides%20slide%20%7B%0Adisplay%3A%20block%20%21important%3B%0Aposition%3A%20relative%3B%0Abackground%3A%20%2Dwebkit%2Dgradient%28linear%2C%2050%25%200%25%2C%2050%25%20100%25%2C%20color%2Dstop%280%25%2C%20%23ffffff%29%2C%20color%2Dstop%2885%25%2C%20%23ffffff%29%2C%20color%2Dstop%28100%25%2C%20%23e6e6e6%29%29%3B%0Abackground%3A%20%2Dwebkit%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Dmoz%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20%2Do%2Dlinear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%3A%20linear%2Dgradient%28%23ffffff%2C%20%23ffffff%2085%25%2C%20%23e6e6e6%29%3B%0Abackground%2Dcolor%3A%20white%3B%0A%2Dwebkit%2Dtransform%3A%20none%20%21important%3B%0A%2Dmoz%2Dtransform%3A%20none%20%21important%3B%0A%2Dms%2Dtransform%3A%20none%20%21important%3B%0A%2Do%2Dtransform%3A%20none%20%21important%3B%0Atransform%3A%20none%20%21important%3B%0Awidth%3A%20100%25%3B%0Aheight%3A%20100%25%3B%0Apage%2Dbreak%2Dafter%3A%20always%3B%0Atop%3A%20auto%20%21important%3B%0Aleft%3A%20auto%20%21important%3B%0Amargin%2Dtop%3A%200%20%21important%3B%0Amargin%2Dleft%3A%200%20%21important%3B%0Aopacity%3A%201%20%21important%3B%0Acolor%3A%20%23555%3B%0A%7D%0A%0Aslides%20slide%2Efar%2Dpast%2C%20slides%20slide%2Epast%2C%20slides%20slide%2Enext%2C%20slides%20slide%2Efar%2Dnext%2C%20slides%20slide%2Efar%2Dpast%2C%20slides%20slide%2Ecurrent%20%7B%0Aopacity%3A%201%20%21important%3B%0Adisplay%3A%20block%20%21important%3B%0A%7D%0A%0Aslides%20slide%20%2Ebuild%20%3E%20%2A%20%7B%0A%2Dwebkit%2Dtransition%3A%20none%3B%0A%2Dmoz%2Dtransition%3A%20none%3B%0A%2Do%2Dtransition%3A%20none%3B%0Atransition%3A%20none%3B%0A%7D%0A%0Aslides%20slide%20%2Ebuild%20%2Eto%2Dbuild%2C%0Aslides%20slide%20%2Ebuild%20%2Ebuild%2Dfade%20%7B%0Aopacity%3A%201%3B%0A%7D%0A%0Aslides%20slide%20%2Eauto%2Dfadein%20%7B%0Aopacity%3A%201%20%21important%3B%0A%7D%0A%0Aslides%20slide%2Ebackdrop%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0Aslides%20slide%20table%2Erows%20%7B%0Aborder%2Dright%3A%200%3B%0A%7D%0A%0Aslides%20slide%5Bhidden%5D%20%7B%0Adisplay%3A%20none%20%21important%3B%0A%7D%0A%0A%2Eslide%2Darea%20%7B%0Adisplay%3A%20none%3B%0A%7D%0A%0A%2Ereflect%20%7B%0A%2Dwebkit%2Dbox%2Dreflect%3A%20none%3B%0A%2Dmoz%2Dbox%2Dreflect%3A%20none%3B%0A%2Do%2Dbox%2Dreflect%3A%20none%3B%0A%2Dms%2Dbox%2Dreflect%3A%20none%3B%0Abox%2Dreflect%3A%20none%3B%0A%7D%0A%0Apre%2C%20code%20%7B%0Afont%2Dfamily%3A%20monospace%20%21important%3B%0A%7D%0A%7D%0A%0Alabel%20%7B%0Adisplay%3A%20block%3B%0Amargin%2Dbottom%3A%204px%3B%0A%7D%0Alabel%2C%20input%20%7B%0Afont%2Dsize%3A%2016px%3B%0Acolor%3A%20%23333%3B%0A%7D%0Ainput%20%7B%0Awidth%3A%20220px%3B%0A%7D%0A%2Ejslider%20%7B%0Amargin%2Dtop%3A%208px%3B%0A%7D%0A%0A%2EdataTables%5Finfo%2C%20%2EdataTables%5Fpaginate%20%7B%0Afont%2Dsize%3A%2014px%3B%0A%7D%0A" rel="stylesheet" /> + <link href="data:text/css;charset=utf-8,%0A%40media%20only%20screen%20and%20%28max%2Ddevice%2Dwidth%3A%20480px%29%20%7B%0Aslides%3Eslide%7B%2Dwebkit%2Dtransition%3Anone%20%21important%3B%2Dwebkit%2Dtransition%3Anone%20%21important%3B%2Dmoz%2Dtransition%3Anone%20%21important%3B%2Do%2Dtransition%3Anone%20%21important%3Btransition%3Anone%20%21important%7D%0A%7D%0A" rel="stylesheet" /> + <script src="data:application/x-javascript;base64,LyogTW9kZXJuaXpyIDIuNS4zIChDdXN0b20gQnVpbGQpIHwgTUlUICYgQlNECiAqIEJ1aWxkOiBodHRwOi8vd3d3Lm1vZGVybml6ci5jb20vZG93bmxvYWQvIy1mb250ZmFjZS1iYWNrZ3JvdW5kc2l6ZS1ib3JkZXJpbWFnZS1ib3JkZXJyYWRpdXMtYm94c2hhZG93LWZsZXhib3gtZmxleGJveF9sZWdhY3ktaHNsYS1tdWx0aXBsZWJncy1vcGFjaXR5LXJnYmEtdGV4dHNoYWRvdy1jc3NhbmltYXRpb25zLWNzc2NvbHVtbnMtZ2VuZXJhdGVkY29udGVudC1jc3NncmFkaWVudHMtY3NzcmVmbGVjdGlvbnMtY3NzdHJhbnNmb3Jtcy1jc3N0cmFuc2Zvcm1zM2QtY3NzdHJhbnNpdGlvbnMtYXBwbGljYXRpb25jYWNoZS1jYW52YXMtY2FudmFzdGV4dC1kcmFnYW5kZHJvcC1oYXNoY2hhbmdlLWhpc3RvcnktYXVkaW8tdmlkZW8taW5kZXhlZGRiLWlucHV0LWlucHV0dHlwZXMtbG9jYWxzdG9yYWdlLXBvc3RtZXNzYWdlLXNlc3Npb25zdG9yYWdlLXdlYnNvY2tldHMtd2Vic3FsZGF0YWJhc2Utd2Vid29ya2Vycy1nZW9sb2NhdGlvbi1pbmxpbmVzdmctc21pbC1zdmctc3ZnY2xpcHBhdGhzLXRvdWNoLXdlYmdsLW1xLXByZWZpeGVkLXRlc3RzdHlsZXMtdGVzdHByb3AtdGVzdGFsbHByb3BzLWhhc2V2ZW50LXByZWZpeGVzLWRvbXByZWZpeGVzLWxvYWQKICovCjt3aW5kb3cuTW9kZXJuaXpyPWZ1bmN0aW9uKGEsYixjKXtmdW5jdGlvbiBDKGEpe2kuY3NzVGV4dD1hfWZ1bmN0aW9uIEQoYSxiKXtyZXR1cm4gQyhtLmpvaW4oYSsiOyIpKyhifHwiIikpfWZ1bmN0aW9uIEUoYSxiKXtyZXR1cm4gdHlwZW9mIGE9PT1ifWZ1bmN0aW9uIEYoYSxiKXtyZXR1cm4hIX4oIiIrYSkuaW5kZXhPZihiKX1mdW5jdGlvbiBHKGEsYil7Zm9yKHZhciBkIGluIGEpaWYoaVthW2RdXSE9PWMpcmV0dXJuIGI9PSJwZngiP2FbZF06ITA7cmV0dXJuITF9ZnVuY3Rpb24gSChhLGIsZCl7Zm9yKHZhciBlIGluIGEpe3ZhciBmPWJbYVtlXV07aWYoZiE9PWMpcmV0dXJuIGQ9PT0hMT9hW2VdOkUoZiwiZnVuY3Rpb24iKT9mLmJpbmQoZHx8Yik6Zn1yZXR1cm4hMX1mdW5jdGlvbiBJKGEsYixjKXt2YXIgZD1hLmNoYXJBdCgwKS50b1VwcGVyQ2FzZSgpK2Euc3Vic3RyKDEpLGU9KGErIiAiK28uam9pbihkKyIgIikrZCkuc3BsaXQoIiAiKTtyZXR1cm4gRShiLCJzdHJpbmciKXx8RShiLCJ1bmRlZmluZWQiKT9HKGUsYik6KGU9KGErIiAiK3Auam9pbihkKyIgIikrZCkuc3BsaXQoIiAiKSxIKGUsYixjKSl9ZnVuY3Rpb24gSygpe2UuaW5wdXQ9ZnVuY3Rpb24oYyl7Zm9yKHZhciBkPTAsZT1jLmxlbmd0aDtkPGU7ZCsrKXRbY1tkXV09Y1tkXWluIGo7cmV0dXJuIHQubGlzdCYmKHQubGlzdD0hIWIuY3JlYXRlRWxlbWVudCgiZGF0YWxpc3QiKSYmISFhLkhUTUxEYXRhTGlzdEVsZW1lbnQpLHR9KCJhdXRvY29tcGxldGUgYXV0b2ZvY3VzIGxpc3QgcGxhY2Vob2xkZXIgbWF4IG1pbiBtdWx0aXBsZSBwYXR0ZXJuIHJlcXVpcmVkIHN0ZXAiLnNwbGl0KCIgIikpLGUuaW5wdXR0eXBlcz1mdW5jdGlvbihhKXtmb3IodmFyIGQ9MCxlLGcsaCxpPWEubGVuZ3RoO2Q8aTtkKyspai5zZXRBdHRyaWJ1dGUoInR5cGUiLGc9YVtkXSksZT1qLnR5cGUhPT0idGV4dCIsZSYmKGoudmFsdWU9ayxqLnN0eWxlLmNzc1RleHQ9InBvc2l0aW9uOmFic29sdXRlO3Zpc2liaWxpdHk6aGlkZGVuOyIsL15yYW5nZSQvLnRlc3QoZykmJmouc3R5bGUuV2Via2l0QXBwZWFyYW5jZSE9PWM/KGYuYXBwZW5kQ2hpbGQoaiksaD1iLmRlZmF1bHRWaWV3LGU9aC5nZXRDb21wdXRlZFN0eWxlJiZoLmdldENvbXB1dGVkU3R5bGUoaixudWxsKS5XZWJraXRBcHBlYXJhbmNlIT09InRleHRmaWVsZCImJmoub2Zmc2V0SGVpZ2h0IT09MCxmLnJlbW92ZUNoaWxkKGopKTovXihzZWFyY2h8dGVsKSQvLnRlc3QoZyl8fCgvXih1cmx8ZW1haWwpJC8udGVzdChnKT9lPWouY2hlY2tWYWxpZGl0eSYmai5jaGVja1ZhbGlkaXR5KCk9PT0hMTovXmNvbG9yJC8udGVzdChnKT8oZi5hcHBlbmRDaGlsZChqKSxmLm9mZnNldFdpZHRoLGU9ai52YWx1ZSE9ayxmLnJlbW92ZUNoaWxkKGopKTplPWoudmFsdWUhPWspKSxzW2FbZF1dPSEhZTtyZXR1cm4gc30oInNlYXJjaCB0ZWwgdXJsIGVtYWlsIGRhdGV0aW1lIGRhdGUgbW9udGggd2VlayB0aW1lIGRhdGV0aW1lLWxvY2FsIG51bWJlciByYW5nZSBjb2xvciIuc3BsaXQoIiAiKSl9dmFyIGQ9IjIuNS4zIixlPXt9LGY9Yi5kb2N1bWVudEVsZW1lbnQsZz0ibW9kZXJuaXpyIixoPWIuY3JlYXRlRWxlbWVudChnKSxpPWguc3R5bGUsaj1iLmNyZWF0ZUVsZW1lbnQoImlucHV0Iiksaz0iOikiLGw9e30udG9TdHJpbmcsbT0iIC13ZWJraXQtIC1tb3otIC1vLSAtbXMtICIuc3BsaXQoIiAiKSxuPSJXZWJraXQgTW96IE8gbXMiLG89bi5zcGxpdCgiICIpLHA9bi50b0xvd2VyQ2FzZSgpLnNwbGl0KCIgIikscT17c3ZnOiJodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZyJ9LHI9e30scz17fSx0PXt9LHU9W10sdj11LnNsaWNlLHcseD1mdW5jdGlvbihhLGMsZCxlKXt2YXIgaCxpLGosaz1iLmNyZWF0ZUVsZW1lbnQoImRpdiIpLGw9Yi5ib2R5LG09bD9sOmIuY3JlYXRlRWxlbWVudCgiYm9keSIpO2lmKHBhcnNlSW50KGQsMTApKXdoaWxlKGQtLSlqPWIuY3JlYXRlRWxlbWVudCgiZGl2Iiksai5pZD1lP2VbZF06ZysoZCsxKSxrLmFwcGVuZENoaWxkKGopO3JldHVybiBoPVsiJiMxNzM7IiwiPHN0eWxlPiIsYSwiPC9zdHlsZT4iXS5qb2luKCIiKSxrLmlkPWcsKGw/azptKS5pbm5lckhUTUwrPWgsbS5hcHBlbmRDaGlsZChrKSxsfHwobS5zdHlsZS5iYWNrZ3JvdW5kPSIiLGYuYXBwZW5kQ2hpbGQobSkpLGk9YyhrLGEpLGw/ay5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGspOm0ucGFyZW50Tm9kZS5yZW1vdmVDaGlsZChtKSwhIWl9LHk9ZnVuY3Rpb24oYil7dmFyIGM9YS5tYXRjaE1lZGlhfHxhLm1zTWF0Y2hNZWRpYTtpZihjKXJldHVybiBjKGIpLm1hdGNoZXM7dmFyIGQ7cmV0dXJuIHgoIkBtZWRpYSAiK2IrIiB7ICMiK2crIiB7IHBvc2l0aW9uOiBhYnNvbHV0ZTsgfSB9IixmdW5jdGlvbihiKXtkPShhLmdldENvbXB1dGVkU3R5bGU/Z2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpOmIuY3VycmVudFN0eWxlKVsicG9zaXRpb24iXT09ImFic29sdXRlIn0pLGR9LHo9ZnVuY3Rpb24oKXtmdW5jdGlvbiBkKGQsZSl7ZT1lfHxiLmNyZWF0ZUVsZW1lbnQoYVtkXXx8ImRpdiIpLGQ9Im9uIitkO3ZhciBmPWQgaW4gZTtyZXR1cm4gZnx8KGUuc2V0QXR0cmlidXRlfHwoZT1iLmNyZWF0ZUVsZW1lbnQoImRpdiIpKSxlLnNldEF0dHJpYnV0ZSYmZS5yZW1vdmVBdHRyaWJ1dGUmJihlLnNldEF0dHJpYnV0ZShkLCIiKSxmPUUoZVtkXSwiZnVuY3Rpb24iKSxFKGVbZF0sInVuZGVmaW5lZCIpfHwoZVtkXT1jKSxlLnJlbW92ZUF0dHJpYnV0ZShkKSkpLGU9bnVsbCxmfXZhciBhPXtzZWxlY3Q6ImlucHV0IixjaGFuZ2U6ImlucHV0IixzdWJtaXQ6ImZvcm0iLHJlc2V0OiJmb3JtIixlcnJvcjoiaW1nIixsb2FkOiJpbWciLGFib3J0OiJpbWcifTtyZXR1cm4gZH0oKSxBPXt9Lmhhc093blByb3BlcnR5LEI7IUUoQSwidW5kZWZpbmVkIikmJiFFKEEuY2FsbCwidW5kZWZpbmVkIik/Qj1mdW5jdGlvbihhLGIpe3JldHVybiBBLmNhbGwoYSxiKX06Qj1mdW5jdGlvbihhLGIpe3JldHVybiBiIGluIGEmJkUoYS5jb25zdHJ1Y3Rvci5wcm90b3R5cGVbYl0sInVuZGVmaW5lZCIpfSxGdW5jdGlvbi5wcm90b3R5cGUuYmluZHx8KEZ1bmN0aW9uLnByb3RvdHlwZS5iaW5kPWZ1bmN0aW9uKGIpe3ZhciBjPXRoaXM7aWYodHlwZW9mIGMhPSJmdW5jdGlvbiIpdGhyb3cgbmV3IFR5cGVFcnJvcjt2YXIgZD12LmNhbGwoYXJndW1lbnRzLDEpLGU9ZnVuY3Rpb24oKXtpZih0aGlzIGluc3RhbmNlb2YgZSl7dmFyIGE9ZnVuY3Rpb24oKXt9O2EucHJvdG90eXBlPWMucHJvdG90eXBlO3ZhciBmPW5ldyBhLGc9Yy5hcHBseShmLGQuY29uY2F0KHYuY2FsbChhcmd1bWVudHMpKSk7cmV0dXJuIE9iamVjdChnKT09PWc/ZzpmfXJldHVybiBjLmFwcGx5KGIsZC5jb25jYXQodi5jYWxsKGFyZ3VtZW50cykpKX07cmV0dXJuIGV9KTt2YXIgSj1mdW5jdGlvbihjLGQpe3ZhciBmPWMuam9pbigiIiksZz1kLmxlbmd0aDt4KGYsZnVuY3Rpb24oYyxkKXt2YXIgZj1iLnN0eWxlU2hlZXRzW2Iuc3R5bGVTaGVldHMubGVuZ3RoLTFdLGg9Zj9mLmNzc1J1bGVzJiZmLmNzc1J1bGVzWzBdP2YuY3NzUnVsZXNbMF0uY3NzVGV4dDpmLmNzc1RleHR8fCIiOiIiLGk9Yy5jaGlsZE5vZGVzLGo9e307d2hpbGUoZy0tKWpbaVtnXS5pZF09aVtnXTtlLnRvdWNoPSJvbnRvdWNoc3RhcnQiaW4gYXx8YS5Eb2N1bWVudFRvdWNoJiZiIGluc3RhbmNlb2YgRG9jdW1lbnRUb3VjaHx8KGoudG91Y2gmJmoudG91Y2gub2Zmc2V0VG9wKT09PTksZS5jc3N0cmFuc2Zvcm1zM2Q9KGouY3NzdHJhbnNmb3JtczNkJiZqLmNzc3RyYW5zZm9ybXMzZC5vZmZzZXRMZWZ0KT09PTkmJmouY3NzdHJhbnNmb3JtczNkLm9mZnNldEhlaWdodD09PTMsZS5nZW5lcmF0ZWRjb250ZW50PShqLmdlbmVyYXRlZGNvbnRlbnQmJmouZ2VuZXJhdGVkY29udGVudC5vZmZzZXRIZWlnaHQpPj0xLGUuZm9udGZhY2U9L3NyYy9pLnRlc3QoaCkmJmguaW5kZXhPZihkLnNwbGl0KCIgIilbMF0pPT09MH0sZyxkKX0oWydAZm9udC1mYWNlIHtmb250LWZhbWlseToiZm9udCI7c3JjOnVybCgiaHR0cHM6Ly8iKX0nLFsiQG1lZGlhICgiLG0uam9pbigidG91Y2gtZW5hYmxlZCksKCIpLGcsIikiLCJ7I3RvdWNoe3RvcDo5cHg7cG9zaXRpb246YWJzb2x1dGV9fSJdLmpvaW4oIiIpLFsiQG1lZGlhICgiLG0uam9pbigidHJhbnNmb3JtLTNkKSwoIiksZywiKSIsInsjY3NzdHJhbnNmb3JtczNke2xlZnQ6OXB4O3Bvc2l0aW9uOmFic29sdXRlO2hlaWdodDozcHg7fX0iXS5qb2luKCIiKSxbJyNnZW5lcmF0ZWRjb250ZW50OmFmdGVye2NvbnRlbnQ6IicsaywnIjt2aXNpYmlsaXR5OmhpZGRlbn0nXS5qb2luKCIiKV0sWyJmb250ZmFjZSIsInRvdWNoIiwiY3NzdHJhbnNmb3JtczNkIiwiZ2VuZXJhdGVkY29udGVudCJdKTtyLmZsZXhib3g9ZnVuY3Rpb24oKXtyZXR1cm4gSSgiZmxleE9yZGVyIil9LHJbImZsZXhib3gtbGVnYWN5Il09ZnVuY3Rpb24oKXtyZXR1cm4gSSgiYm94RGlyZWN0aW9uIil9LHIuY2FudmFzPWZ1bmN0aW9uKCl7dmFyIGE9Yi5jcmVhdGVFbGVtZW50KCJjYW52YXMiKTtyZXR1cm4hIWEuZ2V0Q29udGV4dCYmISFhLmdldENvbnRleHQoIjJkIil9LHIuY2FudmFzdGV4dD1mdW5jdGlvbigpe3JldHVybiEhZS5jYW52YXMmJiEhRShiLmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpLmdldENvbnRleHQoIjJkIikuZmlsbFRleHQsImZ1bmN0aW9uIil9LHIud2ViZ2w9ZnVuY3Rpb24oKXt0cnl7dmFyIGQ9Yi5jcmVhdGVFbGVtZW50KCJjYW52YXMiKSxlO2U9ISghYS5XZWJHTFJlbmRlcmluZ0NvbnRleHR8fCFkLmdldENvbnRleHQoImV4cGVyaW1lbnRhbC13ZWJnbCIpJiYhZC5nZXRDb250ZXh0KCJ3ZWJnbCIpKSxkPWN9Y2F0Y2goZil7ZT0hMX1yZXR1cm4gZX0sci50b3VjaD1mdW5jdGlvbigpe3JldHVybiBlLnRvdWNofSxyLmdlb2xvY2F0aW9uPWZ1bmN0aW9uKCl7cmV0dXJuISFuYXZpZ2F0b3IuZ2VvbG9jYXRpb259LHIucG9zdG1lc3NhZ2U9ZnVuY3Rpb24oKXtyZXR1cm4hIWEucG9zdE1lc3NhZ2V9LHIud2Vic3FsZGF0YWJhc2U9ZnVuY3Rpb24oKXtyZXR1cm4hIWEub3BlbkRhdGFiYXNlfSxyLmluZGV4ZWREQj1mdW5jdGlvbigpe3JldHVybiEhSSgiaW5kZXhlZERCIixhKX0sci5oYXNoY2hhbmdlPWZ1bmN0aW9uKCl7cmV0dXJuIHooImhhc2hjaGFuZ2UiLGEpJiYoYi5kb2N1bWVudE1vZGU9PT1jfHxiLmRvY3VtZW50TW9kZT43KX0sci5oaXN0b3J5PWZ1bmN0aW9uKCl7cmV0dXJuISFhLmhpc3RvcnkmJiEhaGlzdG9yeS5wdXNoU3RhdGV9LHIuZHJhZ2FuZGRyb3A9ZnVuY3Rpb24oKXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiJkcmFnZ2FibGUiaW4gYXx8Im9uZHJhZ3N0YXJ0ImluIGEmJiJvbmRyb3AiaW4gYX0sci53ZWJzb2NrZXRzPWZ1bmN0aW9uKCl7Zm9yKHZhciBiPS0xLGM9by5sZW5ndGg7KytiPGM7KWlmKGFbb1tiXSsiV2ViU29ja2V0Il0pcmV0dXJuITA7cmV0dXJuIldlYlNvY2tldCJpbiBhfSxyLnJnYmE9ZnVuY3Rpb24oKXtyZXR1cm4gQygiYmFja2dyb3VuZC1jb2xvcjpyZ2JhKDE1MCwyNTUsMTUwLC41KSIpLEYoaS5iYWNrZ3JvdW5kQ29sb3IsInJnYmEiKX0sci5oc2xhPWZ1bmN0aW9uKCl7cmV0dXJuIEMoImJhY2tncm91bmQtY29sb3I6aHNsYSgxMjAsNDAlLDEwMCUsLjUpIiksRihpLmJhY2tncm91bmRDb2xvciwicmdiYSIpfHxGKGkuYmFja2dyb3VuZENvbG9yLCJoc2xhIil9LHIubXVsdGlwbGViZ3M9ZnVuY3Rpb24oKXtyZXR1cm4gQygiYmFja2dyb3VuZDp1cmwoaHR0cHM6Ly8pLHVybChodHRwczovLykscmVkIHVybChodHRwczovLykiKSwvKHVybFxzKlwoLio/KXszfS8udGVzdChpLmJhY2tncm91bmQpfSxyLmJhY2tncm91bmRzaXplPWZ1bmN0aW9uKCl7cmV0dXJuIEkoImJhY2tncm91bmRTaXplIil9LHIuYm9yZGVyaW1hZ2U9ZnVuY3Rpb24oKXtyZXR1cm4gSSgiYm9yZGVySW1hZ2UiKX0sci5ib3JkZXJyYWRpdXM9ZnVuY3Rpb24oKXtyZXR1cm4gSSgiYm9yZGVyUmFkaXVzIil9LHIuYm94c2hhZG93PWZ1bmN0aW9uKCl7cmV0dXJuIEkoImJveFNoYWRvdyIpfSxyLnRleHRzaGFkb3c9ZnVuY3Rpb24oKXtyZXR1cm4gYi5jcmVhdGVFbGVtZW50KCJkaXYiKS5zdHlsZS50ZXh0U2hhZG93PT09IiJ9LHIub3BhY2l0eT1mdW5jdGlvbigpe3JldHVybiBEKCJvcGFjaXR5Oi41NSIpLC9eMC41NSQvLnRlc3QoaS5vcGFjaXR5KX0sci5jc3NhbmltYXRpb25zPWZ1bmN0aW9uKCl7cmV0dXJuIEkoImFuaW1hdGlvbk5hbWUiKX0sci5jc3Njb2x1bW5zPWZ1bmN0aW9uKCl7cmV0dXJuIEkoImNvbHVtbkNvdW50Iil9LHIuY3NzZ3JhZGllbnRzPWZ1bmN0aW9uKCl7dmFyIGE9ImJhY2tncm91bmQtaW1hZ2U6IixiPSJncmFkaWVudChsaW5lYXIsbGVmdCB0b3AscmlnaHQgYm90dG9tLGZyb20oIzlmOSksdG8od2hpdGUpKTsiLGM9ImxpbmVhci1ncmFkaWVudChsZWZ0IHRvcCwjOWY5LCB3aGl0ZSk7IjtyZXR1cm4gQygoYSsiLXdlYmtpdC0gIi5zcGxpdCgiICIpLmpvaW4oYithKSttLmpvaW4oYythKSkuc2xpY2UoMCwtYS5sZW5ndGgpKSxGKGkuYmFja2dyb3VuZEltYWdlLCJncmFkaWVudCIpfSxyLmNzc3JlZmxlY3Rpb25zPWZ1bmN0aW9uKCl7cmV0dXJuIEkoImJveFJlZmxlY3QiKX0sci5jc3N0cmFuc2Zvcm1zPWZ1bmN0aW9uKCl7cmV0dXJuISFJKCJ0cmFuc2Zvcm0iKX0sci5jc3N0cmFuc2Zvcm1zM2Q9ZnVuY3Rpb24oKXt2YXIgYT0hIUkoInBlcnNwZWN0aXZlIik7cmV0dXJuIGEmJiJ3ZWJraXRQZXJzcGVjdGl2ZSJpbiBmLnN0eWxlJiYoYT1lLmNzc3RyYW5zZm9ybXMzZCksYX0sci5jc3N0cmFuc2l0aW9ucz1mdW5jdGlvbigpe3JldHVybiBJKCJ0cmFuc2l0aW9uIil9LHIuZm9udGZhY2U9ZnVuY3Rpb24oKXtyZXR1cm4gZS5mb250ZmFjZX0sci5nZW5lcmF0ZWRjb250ZW50PWZ1bmN0aW9uKCl7cmV0dXJuIGUuZ2VuZXJhdGVkY29udGVudH0sci52aWRlbz1mdW5jdGlvbigpe3ZhciBhPWIuY3JlYXRlRWxlbWVudCgidmlkZW8iKSxjPSExO3RyeXtpZihjPSEhYS5jYW5QbGF5VHlwZSljPW5ldyBCb29sZWFuKGMpLGMub2dnPWEuY2FuUGxheVR5cGUoJ3ZpZGVvL29nZzsgY29kZWNzPSJ0aGVvcmEiJykucmVwbGFjZSgvXm5vJC8sIiIpLGMuaDI2ND1hLmNhblBsYXlUeXBlKCd2aWRlby9tcDQ7IGNvZGVjcz0iYXZjMS40MkUwMUUiJykucmVwbGFjZSgvXm5vJC8sIiIpLGMud2VibT1hLmNhblBsYXlUeXBlKCd2aWRlby93ZWJtOyBjb2RlY3M9InZwOCwgdm9yYmlzIicpLnJlcGxhY2UoL15ubyQvLCIiKX1jYXRjaChkKXt9cmV0dXJuIGN9LHIuYXVkaW89ZnVuY3Rpb24oKXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImF1ZGlvIiksYz0hMTt0cnl7aWYoYz0hIWEuY2FuUGxheVR5cGUpYz1uZXcgQm9vbGVhbihjKSxjLm9nZz1hLmNhblBsYXlUeXBlKCdhdWRpby9vZ2c7IGNvZGVjcz0idm9yYmlzIicpLnJlcGxhY2UoL15ubyQvLCIiKSxjLm1wMz1hLmNhblBsYXlUeXBlKCJhdWRpby9tcGVnOyIpLnJlcGxhY2UoL15ubyQvLCIiKSxjLndhdj1hLmNhblBsYXlUeXBlKCdhdWRpby93YXY7IGNvZGVjcz0iMSInKS5yZXBsYWNlKC9ebm8kLywiIiksYy5tNGE9KGEuY2FuUGxheVR5cGUoImF1ZGlvL3gtbTRhOyIpfHxhLmNhblBsYXlUeXBlKCJhdWRpby9hYWM7IikpLnJlcGxhY2UoL15ubyQvLCIiKX1jYXRjaChkKXt9cmV0dXJuIGN9LHIubG9jYWxzdG9yYWdlPWZ1bmN0aW9uKCl7dHJ5e3JldHVybiBsb2NhbFN0b3JhZ2Uuc2V0SXRlbShnLGcpLGxvY2FsU3RvcmFnZS5yZW1vdmVJdGVtKGcpLCEwfWNhdGNoKGEpe3JldHVybiExfX0sci5zZXNzaW9uc3RvcmFnZT1mdW5jdGlvbigpe3RyeXtyZXR1cm4gc2Vzc2lvblN0b3JhZ2Uuc2V0SXRlbShnLGcpLHNlc3Npb25TdG9yYWdlLnJlbW92ZUl0ZW0oZyksITB9Y2F0Y2goYSl7cmV0dXJuITF9fSxyLndlYndvcmtlcnM9ZnVuY3Rpb24oKXtyZXR1cm4hIWEuV29ya2VyfSxyLmFwcGxpY2F0aW9uY2FjaGU9ZnVuY3Rpb24oKXtyZXR1cm4hIWEuYXBwbGljYXRpb25DYWNoZX0sci5zdmc9ZnVuY3Rpb24oKXtyZXR1cm4hIWIuY3JlYXRlRWxlbWVudE5TJiYhIWIuY3JlYXRlRWxlbWVudE5TKHEuc3ZnLCJzdmciKS5jcmVhdGVTVkdSZWN0fSxyLmlubGluZXN2Zz1mdW5jdGlvbigpe3ZhciBhPWIuY3JlYXRlRWxlbWVudCgiZGl2Iik7cmV0dXJuIGEuaW5uZXJIVE1MPSI8c3ZnLz4iLChhLmZpcnN0Q2hpbGQmJmEuZmlyc3RDaGlsZC5uYW1lc3BhY2VVUkkpPT1xLnN2Z30sci5zbWlsPWZ1bmN0aW9uKCl7cmV0dXJuISFiLmNyZWF0ZUVsZW1lbnROUyYmL1NWR0FuaW1hdGUvLnRlc3QobC5jYWxsKGIuY3JlYXRlRWxlbWVudE5TKHEuc3ZnLCJhbmltYXRlIikpKX0sci5zdmdjbGlwcGF0aHM9ZnVuY3Rpb24oKXtyZXR1cm4hIWIuY3JlYXRlRWxlbWVudE5TJiYvU1ZHQ2xpcFBhdGgvLnRlc3QobC5jYWxsKGIuY3JlYXRlRWxlbWVudE5TKHEuc3ZnLCJjbGlwUGF0aCIpKSl9O2Zvcih2YXIgTCBpbiByKUIocixMKSYmKHc9TC50b0xvd2VyQ2FzZSgpLGVbd109cltMXSgpLHUucHVzaCgoZVt3XT8iIjoibm8tIikrdykpO3JldHVybiBlLmlucHV0fHxLKCksQygiIiksaD1qPW51bGwsZS5fdmVyc2lvbj1kLGUuX3ByZWZpeGVzPW0sZS5fZG9tUHJlZml4ZXM9cCxlLl9jc3NvbVByZWZpeGVzPW8sZS5tcT15LGUuaGFzRXZlbnQ9eixlLnRlc3RQcm9wPWZ1bmN0aW9uKGEpe3JldHVybiBHKFthXSl9LGUudGVzdEFsbFByb3BzPUksZS50ZXN0U3R5bGVzPXgsZS5wcmVmaXhlZD1mdW5jdGlvbihhLGIsYyl7cmV0dXJuIGI/SShhLGIsYyk6SShhLCJwZngiKX0sZX0odGhpcyx0aGlzLmRvY3VtZW50KSxmdW5jdGlvbihhLGIsYyl7ZnVuY3Rpb24gZChhKXtyZXR1cm4gby5jYWxsKGEpPT0iW29iamVjdCBGdW5jdGlvbl0ifWZ1bmN0aW9uIGUoYSl7cmV0dXJuIHR5cGVvZiBhPT0ic3RyaW5nIn1mdW5jdGlvbiBmKCl7fWZ1bmN0aW9uIGcoYSl7cmV0dXJuIWF8fGE9PSJsb2FkZWQifHxhPT0iY29tcGxldGUifHxhPT0idW5pbml0aWFsaXplZCJ9ZnVuY3Rpb24gaCgpe3ZhciBhPXAuc2hpZnQoKTtxPTEsYT9hLnQ/bShmdW5jdGlvbigpeyhhLnQ9PSJjIj9CLmluamVjdENzczpCLmluamVjdEpzKShhLnMsMCxhLmEsYS54LGEuZSwxKX0sMCk6KGEoKSxoKCkpOnE9MH1mdW5jdGlvbiBpKGEsYyxkLGUsZixpLGope2Z1bmN0aW9uIGsoYil7aWYoIW8mJmcobC5yZWFkeVN0YXRlKSYmKHUucj1vPTEsIXEmJmgoKSxsLm9ubG9hZD1sLm9ucmVhZHlzdGF0ZWNoYW5nZT1udWxsLGIpKXthIT0iaW1nIiYmbShmdW5jdGlvbigpe3QucmVtb3ZlQ2hpbGQobCl9LDUwKTtmb3IodmFyIGQgaW4geVtjXSl5W2NdLmhhc093blByb3BlcnR5KGQpJiZ5W2NdW2RdLm9ubG9hZCgpfX12YXIgaj1qfHxCLmVycm9yVGltZW91dCxsPXt9LG89MCxyPTAsdT17dDpkLHM6YyxlOmYsYTppLHg6an07eVtjXT09PTEmJihyPTEseVtjXT1bXSxsPWIuY3JlYXRlRWxlbWVudChhKSksYT09Im9iamVjdCI/bC5kYXRhPWM6KGwuc3JjPWMsbC50eXBlPWEpLGwud2lkdGg9bC5oZWlnaHQ9IjAiLGwub25lcnJvcj1sLm9ubG9hZD1sLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpe2suY2FsbCh0aGlzLHIpfSxwLnNwbGljZShlLDAsdSksYSE9ImltZyImJihyfHx5W2NdPT09Mj8odC5pbnNlcnRCZWZvcmUobCxzP251bGw6biksbShrLGopKTp5W2NdLnB1c2gobCkpfWZ1bmN0aW9uIGooYSxiLGMsZCxmKXtyZXR1cm4gcT0wLGI9Ynx8ImoiLGUoYSk/aShiPT0iYyI/djp1LGEsYix0aGlzLmkrKyxjLGQsZik6KHAuc3BsaWNlKHRoaXMuaSsrLDAsYSkscC5sZW5ndGg9PTEmJmgoKSksdGhpc31mdW5jdGlvbiBrKCl7dmFyIGE9QjtyZXR1cm4gYS5sb2FkZXI9e2xvYWQ6aixpOjB9LGF9dmFyIGw9Yi5kb2N1bWVudEVsZW1lbnQsbT1hLnNldFRpbWVvdXQsbj1iLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJzY3JpcHQiKVswXSxvPXt9LnRvU3RyaW5nLHA9W10scT0wLHI9Ik1vekFwcGVhcmFuY2UiaW4gbC5zdHlsZSxzPXImJiEhYi5jcmVhdGVSYW5nZSgpLmNvbXBhcmVOb2RlLHQ9cz9sOm4ucGFyZW50Tm9kZSxsPWEub3BlcmEmJm8uY2FsbChhLm9wZXJhKT09IltvYmplY3QgT3BlcmFdIixsPSEhYi5hdHRhY2hFdmVudCYmIWwsdT1yPyJvYmplY3QiOmw/InNjcmlwdCI6ImltZyIsdj1sPyJzY3JpcHQiOnUsdz1BcnJheS5pc0FycmF5fHxmdW5jdGlvbihhKXtyZXR1cm4gby5jYWxsKGEpPT0iW29iamVjdCBBcnJheV0ifSx4PVtdLHk9e30sej17dGltZW91dDpmdW5jdGlvbihhLGIpe3JldHVybiBiLmxlbmd0aCYmKGEudGltZW91dD1iWzBdKSxhfX0sQSxCO0I9ZnVuY3Rpb24oYSl7ZnVuY3Rpb24gYihhKXt2YXIgYT1hLnNwbGl0KCIhIiksYj14Lmxlbmd0aCxjPWEucG9wKCksZD1hLmxlbmd0aCxjPXt1cmw6YyxvcmlnVXJsOmMscHJlZml4ZXM6YX0sZSxmLGc7Zm9yKGY9MDtmPGQ7ZisrKWc9YVtmXS5zcGxpdCgiPSIpLChlPXpbZy5zaGlmdCgpXSkmJihjPWUoYyxnKSk7Zm9yKGY9MDtmPGI7ZisrKWM9eFtmXShjKTtyZXR1cm4gY31mdW5jdGlvbiBnKGEsZSxmLGcsaSl7dmFyIGo9YihhKSxsPWouYXV0b0NhbGxiYWNrO2oudXJsLnNwbGl0KCIuIikucG9wKCkuc3BsaXQoIj8iKS5zaGlmdCgpLGouYnlwYXNzfHwoZSYmKGU9ZChlKT9lOmVbYV18fGVbZ118fGVbYS5zcGxpdCgiLyIpLnBvcCgpLnNwbGl0KCI/IilbMF1dfHxoKSxqLmluc3RlYWQ/ai5pbnN0ZWFkKGEsZSxmLGcsaSk6KHlbai51cmxdP2oubm9leGVjPSEwOnlbai51cmxdPTEsZi5sb2FkKGoudXJsLGouZm9yY2VDU1N8fCFqLmZvcmNlSlMmJiJjc3MiPT1qLnVybC5zcGxpdCgiLiIpLnBvcCgpLnNwbGl0KCI/Iikuc2hpZnQoKT8iYyI6YyxqLm5vZXhlYyxqLmF0dHJzLGoudGltZW91dCksKGQoZSl8fGQobCkpJiZmLmxvYWQoZnVuY3Rpb24oKXtrKCksZSYmZShqLm9yaWdVcmwsaSxnKSxsJiZsKGoub3JpZ1VybCxpLGcpLHlbai51cmxdPTJ9KSkpfWZ1bmN0aW9uIGkoYSxiKXtmdW5jdGlvbiBjKGEsYyl7aWYoYSl7aWYoZShhKSljfHwoaj1mdW5jdGlvbigpe3ZhciBhPVtdLnNsaWNlLmNhbGwoYXJndW1lbnRzKTtrLmFwcGx5KHRoaXMsYSksbCgpfSksZyhhLGosYiwwLGgpO2Vsc2UgaWYoT2JqZWN0KGEpPT09YSlmb3IobiBpbiBtPWZ1bmN0aW9uKCl7dmFyIGI9MCxjO2ZvcihjIGluIGEpYS5oYXNPd25Qcm9wZXJ0eShjKSYmYisrO3JldHVybiBifSgpLGEpYS5oYXNPd25Qcm9wZXJ0eShuKSYmKCFjJiYhLS1tJiYoZChqKT9qPWZ1bmN0aW9uKCl7dmFyIGE9W10uc2xpY2UuY2FsbChhcmd1bWVudHMpO2suYXBwbHkodGhpcyxhKSxsKCl9Ompbbl09ZnVuY3Rpb24oYSl7cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIGI9W10uc2xpY2UuY2FsbChhcmd1bWVudHMpO2EmJmEuYXBwbHkodGhpcyxiKSxsKCl9fShrW25dKSksZyhhW25dLGosYixuLGgpKX1lbHNlIWMmJmwoKX12YXIgaD0hIWEudGVzdCxpPWEubG9hZHx8YS5ib3RoLGo9YS5jYWxsYmFja3x8ZixrPWosbD1hLmNvbXBsZXRlfHxmLG0sbjtjKGg/YS55ZXA6YS5ub3BlLCEhaSksaSYmYyhpKX12YXIgaixsLG09dGhpcy55ZXBub3BlLmxvYWRlcjtpZihlKGEpKWcoYSwwLG0sMCk7ZWxzZSBpZih3KGEpKWZvcihqPTA7ajxhLmxlbmd0aDtqKyspbD1hW2pdLGUobCk/ZyhsLDAsbSwwKTp3KGwpP0IobCk6T2JqZWN0KGwpPT09bCYmaShsLG0pO2Vsc2UgT2JqZWN0KGEpPT09YSYmaShhLG0pfSxCLmFkZFByZWZpeD1mdW5jdGlvbihhLGIpe3pbYV09Yn0sQi5hZGRGaWx0ZXI9ZnVuY3Rpb24oYSl7eC5wdXNoKGEpfSxCLmVycm9yVGltZW91dD0xZTQsYi5yZWFkeVN0YXRlPT1udWxsJiZiLmFkZEV2ZW50TGlzdGVuZXImJihiLnJlYWR5U3RhdGU9ImxvYWRpbmciLGIuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsQT1mdW5jdGlvbigpe2IucmVtb3ZlRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsQSwwKSxiLnJlYWR5U3RhdGU9ImNvbXBsZXRlIn0sMCkpLGEueWVwbm9wZT1rKCksYS55ZXBub3BlLmV4ZWN1dGVTdGFjaz1oLGEueWVwbm9wZS5pbmplY3RKcz1mdW5jdGlvbihhLGMsZCxlLGksail7dmFyIGs9Yi5jcmVhdGVFbGVtZW50KCJzY3JpcHQiKSxsLG8sZT1lfHxCLmVycm9yVGltZW91dDtrLnNyYz1hO2ZvcihvIGluIGQpay5zZXRBdHRyaWJ1dGUobyxkW29dKTtjPWo/aDpjfHxmLGsub25yZWFkeXN0YXRlY2hhbmdlPWsub25sb2FkPWZ1bmN0aW9uKCl7IWwmJmcoay5yZWFkeVN0YXRlKSYmKGw9MSxjKCksay5vbmxvYWQ9ay5vbnJlYWR5c3RhdGVjaGFuZ2U9bnVsbCl9LG0oZnVuY3Rpb24oKXtsfHwobD0xLGMoMSkpfSxlKSxpP2sub25sb2FkKCk6bi5wYXJlbnROb2RlLmluc2VydEJlZm9yZShrLG4pfSxhLnllcG5vcGUuaW5qZWN0Q3NzPWZ1bmN0aW9uKGEsYyxkLGUsZyxpKXt2YXIgZT1iLmNyZWF0ZUVsZW1lbnQoImxpbmsiKSxqLGM9aT9oOmN8fGY7ZS5ocmVmPWEsZS5yZWw9InN0eWxlc2hlZXQiLGUudHlwZT0idGV4dC9jc3MiO2ZvcihqIGluIGQpZS5zZXRBdHRyaWJ1dGUoaixkW2pdKTtnfHwobi5wYXJlbnROb2RlLmluc2VydEJlZm9yZShlLG4pLG0oYywwKSl9fSh0aGlzLGRvY3VtZW50KSxNb2Rlcm5penIubG9hZD1mdW5jdGlvbigpe3llcG5vcGUuYXBwbHkod2luZG93LFtdLnNsaWNlLmNhbGwoYXJndW1lbnRzLDApKX07"></script> + <script src="data:application/x-javascript;base64,dmFyIHE9bnVsbDt3aW5kb3cuUFJfU0hPVUxEX1VTRV9DT05USU5VQVRJT049ITA7CihmdW5jdGlvbigpe2Z1bmN0aW9uIEwoYSl7ZnVuY3Rpb24gbShhKXt2YXIgZj1hLmNoYXJDb2RlQXQoMCk7aWYoZiE9PTkyKXJldHVybiBmO3ZhciBiPWEuY2hhckF0KDEpO3JldHVybihmPXJbYl0pP2Y6IjAiPD1iJiZiPD0iNyI/cGFyc2VJbnQoYS5zdWJzdHJpbmcoMSksOCk6Yj09PSJ1Inx8Yj09PSJ4Ij9wYXJzZUludChhLnN1YnN0cmluZygyKSwxNik6YS5jaGFyQ29kZUF0KDEpfWZ1bmN0aW9uIGUoYSl7aWYoYTwzMilyZXR1cm4oYTwxNj8iXFx4MCI6IlxceCIpK2EudG9TdHJpbmcoMTYpO2E9U3RyaW5nLmZyb21DaGFyQ29kZShhKTtpZihhPT09IlxcInx8YT09PSItInx8YT09PSJbInx8YT09PSJdIilhPSJcXCIrYTtyZXR1cm4gYX1mdW5jdGlvbiBoKGEpe2Zvcih2YXIgZj1hLnN1YnN0cmluZygxLGEubGVuZ3RoLTEpLm1hdGNoKC9cXHVbXGRBLUZhLWZdezR9fFxceFtcZEEtRmEtZl17Mn18XFxbMC0zXVswLTddezAsMn18XFxbMC03XXsxLDJ9fFxcW1xTXHNdfFteXFxdL2cpLGE9CltdLGI9W10sbz1mWzBdPT09Il4iLGM9bz8xOjAsaT1mLmxlbmd0aDtjPGk7KytjKXt2YXIgaj1mW2NdO2lmKC9cXFtiZHN3XS9pLnRlc3QoaikpYS5wdXNoKGopO2Vsc2V7dmFyIGo9bShqKSxkO2MrMjxpJiYiLSI9PT1mW2MrMV0/KGQ9bShmW2MrMl0pLGMrPTIpOmQ9ajtiLnB1c2goW2osZF0pO2Q8NjV8fGo+MTIyfHwoZDw2NXx8aj45MHx8Yi5wdXNoKFtNYXRoLm1heCg2NSxqKXwzMixNYXRoLm1pbihkLDkwKXwzMl0pLGQ8OTd8fGo+MTIyfHxiLnB1c2goW01hdGgubWF4KDk3LGopJi0zMyxNYXRoLm1pbihkLDEyMikmLTMzXSkpfX1iLnNvcnQoZnVuY3Rpb24oYSxmKXtyZXR1cm4gYVswXS1mWzBdfHxmWzFdLWFbMV19KTtmPVtdO2o9W05hTixOYU5dO2ZvcihjPTA7YzxiLmxlbmd0aDsrK2MpaT1iW2NdLGlbMF08PWpbMV0rMT9qWzFdPU1hdGgubWF4KGpbMV0saVsxXSk6Zi5wdXNoKGo9aSk7Yj1bIlsiXTtvJiZiLnB1c2goIl4iKTtiLnB1c2guYXBwbHkoYixhKTtmb3IoYz0wO2M8CmYubGVuZ3RoOysrYylpPWZbY10sYi5wdXNoKGUoaVswXSkpLGlbMV0+aVswXSYmKGlbMV0rMT5pWzBdJiZiLnB1c2goIi0iKSxiLnB1c2goZShpWzFdKSkpO2IucHVzaCgiXSIpO3JldHVybiBiLmpvaW4oIiIpfWZ1bmN0aW9uIHkoYSl7Zm9yKHZhciBmPWEuc291cmNlLm1hdGNoKC9cWyg/OlteXFxcXV18XFxbXFNcc10pKl18XFx1W1xkQS1GYS1mXXs0fXxcXHhbXGRBLUZhLWZdezJ9fFxcXGQrfFxcW15cZHV4XXxcKFw/WyE6PV18WygpXl18W14oKVtcXF5dKy9nKSxiPWYubGVuZ3RoLGQ9W10sYz0wLGk9MDtjPGI7KytjKXt2YXIgaj1mW2NdO2o9PT0iKCI/KytpOiJcXCI9PT1qLmNoYXJBdCgwKSYmKGo9K2ouc3Vic3RyaW5nKDEpKSYmajw9aSYmKGRbal09LTEpfWZvcihjPTE7YzxkLmxlbmd0aDsrK2MpLTE9PT1kW2NdJiYoZFtjXT0rK3QpO2ZvcihpPWM9MDtjPGI7KytjKWo9ZltjXSxqPT09IigiPygrK2ksZFtpXT09PXZvaWQgMCYmKGZbY109Iig/OiIpKToiXFwiPT09ai5jaGFyQXQoMCkmJgooaj0rai5zdWJzdHJpbmcoMSkpJiZqPD1pJiYoZltjXT0iXFwiK2RbaV0pO2ZvcihpPWM9MDtjPGI7KytjKSJeIj09PWZbY10mJiJeIiE9PWZbYysxXSYmKGZbY109IiIpO2lmKGEuaWdub3JlQ2FzZSYmcylmb3IoYz0wO2M8YjsrK2Mpaj1mW2NdLGE9ai5jaGFyQXQoMCksai5sZW5ndGg+PTImJmE9PT0iWyI/ZltjXT1oKGopOmEhPT0iXFwiJiYoZltjXT1qLnJlcGxhY2UoL1tBLVphLXpdL2csZnVuY3Rpb24oYSl7YT1hLmNoYXJDb2RlQXQoMCk7cmV0dXJuIlsiK1N0cmluZy5mcm9tQ2hhckNvZGUoYSYtMzMsYXwzMikrIl0ifSkpO3JldHVybiBmLmpvaW4oIiIpfWZvcih2YXIgdD0wLHM9ITEsbD0hMSxwPTAsZD1hLmxlbmd0aDtwPGQ7KytwKXt2YXIgZz1hW3BdO2lmKGcuaWdub3JlQ2FzZSlsPSEwO2Vsc2UgaWYoL1thLXpdL2kudGVzdChnLnNvdXJjZS5yZXBsYWNlKC9cXHVbXGRhLWZdezR9fFxceFtcZGEtZl17Mn18XFxbXlVYdXhdL2dpLCIiKSkpe3M9ITA7bD0hMTticmVha319Zm9yKHZhciByPQp7Yjo4LHQ6OSxuOjEwLHY6MTEsZjoxMixyOjEzfSxuPVtdLHA9MCxkPWEubGVuZ3RoO3A8ZDsrK3Ape2c9YVtwXTtpZihnLmdsb2JhbHx8Zy5tdWx0aWxpbmUpdGhyb3cgRXJyb3IoIiIrZyk7bi5wdXNoKCIoPzoiK3koZykrIikiKX1yZXR1cm4gUmVnRXhwKG4uam9pbigifCIpLGw/ImdpIjoiZyIpfWZ1bmN0aW9uIE0oYSl7ZnVuY3Rpb24gbShhKXtzd2l0Y2goYS5ub2RlVHlwZSl7Y2FzZSAxOmlmKGUudGVzdChhLmNsYXNzTmFtZSkpYnJlYWs7Zm9yKHZhciBnPWEuZmlyc3RDaGlsZDtnO2c9Zy5uZXh0U2libGluZyltKGcpO2c9YS5ub2RlTmFtZTtpZigiQlIiPT09Z3x8IkxJIj09PWcpaFtzXT0iXG4iLHRbczw8MV09eSsrLHRbcysrPDwxfDFdPWE7YnJlYWs7Y2FzZSAzOmNhc2UgNDpnPWEubm9kZVZhbHVlLGcubGVuZ3RoJiYoZz1wP2cucmVwbGFjZSgvXHJcbj8vZywiXG4iKTpnLnJlcGxhY2UoL1tcdFxuXHIgXSsvZywiICIpLGhbc109Zyx0W3M8PDFdPXkseSs9Zy5sZW5ndGgsCnRbcysrPDwxfDFdPWEpfX12YXIgZT0vKD86Xnxccylub2NvZGUoPzpcc3wkKS8saD1bXSx5PTAsdD1bXSxzPTAsbDthLmN1cnJlbnRTdHlsZT9sPWEuY3VycmVudFN0eWxlLndoaXRlU3BhY2U6d2luZG93LmdldENvbXB1dGVkU3R5bGUmJihsPWRvY3VtZW50LmRlZmF1bHRWaWV3LmdldENvbXB1dGVkU3R5bGUoYSxxKS5nZXRQcm9wZXJ0eVZhbHVlKCJ3aGl0ZS1zcGFjZSIpKTt2YXIgcD1sJiYicHJlIj09PWwuc3Vic3RyaW5nKDAsMyk7bShhKTtyZXR1cm57YTpoLmpvaW4oIiIpLnJlcGxhY2UoL1xuJC8sIiIpLGM6dH19ZnVuY3Rpb24gQihhLG0sZSxoKXttJiYoYT17YTptLGQ6YX0sZShhKSxoLnB1c2guYXBwbHkoaCxhLmUpKX1mdW5jdGlvbiB4KGEsbSl7ZnVuY3Rpb24gZShhKXtmb3IodmFyIGw9YS5kLHA9W2wsInBsbiJdLGQ9MCxnPWEuYS5tYXRjaCh5KXx8W10scj17fSxuPTAsej1nLmxlbmd0aDtuPHo7KytuKXt2YXIgZj1nW25dLGI9cltmXSxvPXZvaWQgMCxjO2lmKHR5cGVvZiBiPT09CiJzdHJpbmciKWM9ITE7ZWxzZXt2YXIgaT1oW2YuY2hhckF0KDApXTtpZihpKW89Zi5tYXRjaChpWzFdKSxiPWlbMF07ZWxzZXtmb3IoYz0wO2M8dDsrK2MpaWYoaT1tW2NdLG89Zi5tYXRjaChpWzFdKSl7Yj1pWzBdO2JyZWFrfW98fChiPSJwbG4iKX1pZigoYz1iLmxlbmd0aD49NSYmImxhbmctIj09PWIuc3Vic3RyaW5nKDAsNSkpJiYhKG8mJnR5cGVvZiBvWzFdPT09InN0cmluZyIpKWM9ITEsYj0ic3JjIjtjfHwocltmXT1iKX1pPWQ7ZCs9Zi5sZW5ndGg7aWYoYyl7Yz1vWzFdO3ZhciBqPWYuaW5kZXhPZihjKSxrPWorYy5sZW5ndGg7b1syXSYmKGs9Zi5sZW5ndGgtb1syXS5sZW5ndGgsaj1rLWMubGVuZ3RoKTtiPWIuc3Vic3RyaW5nKDUpO0IobCtpLGYuc3Vic3RyaW5nKDAsaiksZSxwKTtCKGwraStqLGMsQyhiLGMpLHApO0IobCtpK2ssZi5zdWJzdHJpbmcoayksZSxwKX1lbHNlIHAucHVzaChsK2ksYil9YS5lPXB9dmFyIGg9e30seTsoZnVuY3Rpb24oKXtmb3IodmFyIGU9YS5jb25jYXQobSksCmw9W10scD17fSxkPTAsZz1lLmxlbmd0aDtkPGc7KytkKXt2YXIgcj1lW2RdLG49clszXTtpZihuKWZvcih2YXIgaz1uLmxlbmd0aDstLWs+PTA7KWhbbi5jaGFyQXQoayldPXI7cj1yWzFdO249IiIrcjtwLmhhc093blByb3BlcnR5KG4pfHwobC5wdXNoKHIpLHBbbl09cSl9bC5wdXNoKC9bXFNcc10vKTt5PUwobCl9KSgpO3ZhciB0PW0ubGVuZ3RoO3JldHVybiBlfWZ1bmN0aW9uIHUoYSl7dmFyIG09W10sZT1bXTthLnRyaXBsZVF1b3RlZFN0cmluZ3M/bS5wdXNoKFsic3RyIiwvXig/OicnJyg/OlteJ1xcXXxcXFtcU1xzXXwnJz8oPz1bXiddKSkqKD86JycnfCQpfCIiIig/OlteIlxcXXxcXFtcU1xzXXwiIj8oPz1bXiJdKSkqKD86IiIifCQpfCcoPzpbXidcXF18XFxbXFNcc10pKig/Oid8JCl8Iig/OlteIlxcXXxcXFtcU1xzXSkqKD86InwkKSkvLHEsIidcIiJdKTphLm11bHRpTGluZVN0cmluZ3M/bS5wdXNoKFsic3RyIiwvXig/OicoPzpbXidcXF18XFxbXFNcc10pKig/Oid8JCl8Iig/OlteIlxcXXxcXFtcU1xzXSkqKD86InwkKXxgKD86W15cXGBdfFxcW1xTXHNdKSooPzpgfCQpKS8sCnEsIidcImAiXSk6bS5wdXNoKFsic3RyIiwvXig/OicoPzpbXlxuXHInXFxdfFxcLikqKD86J3wkKXwiKD86W15cblxyIlxcXXxcXC4pKig/OiJ8JCkpLyxxLCJcIiciXSk7YS52ZXJiYXRpbVN0cmluZ3MmJmUucHVzaChbInN0ciIsL15AIig/OlteIl18IiIpKig/OiJ8JCkvLHFdKTt2YXIgaD1hLmhhc2hDb21tZW50cztoJiYoYS5jU3R5bGVDb21tZW50cz8oaD4xP20ucHVzaChbImNvbSIsL14jKD86IyMoPzpbXiNdfCMoPyEjIykpKig/OiMjI3wkKXwuKikvLHEsIiMiXSk6bS5wdXNoKFsiY29tIiwvXiMoPzooPzpkZWZpbmV8ZWxpZnxlbHNlfGVuZGlmfGVycm9yfGlmZGVmfGluY2x1ZGV8aWZuZGVmfGxpbmV8cHJhZ21hfHVuZGVmfHdhcm5pbmcpXGJ8W15cblxyXSopLyxxLCIjIl0pLGUucHVzaChbInN0ciIsL148KD86KD86KD86XC5cLlwvKSp8XC8/KSg/Oltcdy1dKyg/OlwvW1x3LV0rKSspP1tcdy1dK1wuaHxbYS16XVx3Kik+LyxxXSkpOm0ucHVzaChbImNvbSIsL14jW15cblxyXSovLApxLCIjIl0pKTthLmNTdHlsZUNvbW1lbnRzJiYoZS5wdXNoKFsiY29tIiwvXlwvXC9bXlxuXHJdKi8scV0pLGUucHVzaChbImNvbSIsL15cL1wqW1xTXHNdKj8oPzpcKlwvfCQpLyxxXSkpO2EucmVnZXhMaXRlcmFscyYmZS5wdXNoKFsibGFuZy1yZWdleCIsL14oPzpeXlwuP3xbISstXXwhPXwhPT18I3wlfCU9fCZ8JiZ8JiY9fCY9fFwofFwqfFwqPXxcKz18LHwtPXwtPnxcL3xcLz18Onw6Onw7fDx8PDx8PDw9fDw9fD18PT18PT09fD58Pj18Pj58Pj49fD4+Pnw+Pj49fFs/QFteXXxcXj18XF5cXnxcXlxePXx7fFx8fFx8PXxcfFx8fFx8XHw9fH58YnJlYWt8Y2FzZXxjb250aW51ZXxkZWxldGV8ZG98ZWxzZXxmaW5hbGx5fGluc3RhbmNlb2Z8cmV0dXJufHRocm93fHRyeXx0eXBlb2YpXHMqKFwvKD89W14qL10pKD86W14vW1xcXXxcXFtcU1xzXXxcWyg/OlteXFxcXV18XFxbXFNcc10pKig/Ol18JCkpK1wvKS9dKTsoaD1hLnR5cGVzKSYmZS5wdXNoKFsidHlwIixoXSk7YT0oIiIrYS5rZXl3b3JkcykucmVwbGFjZSgvXiB8ICQvZywKIiIpO2EubGVuZ3RoJiZlLnB1c2goWyJrd2QiLFJlZ0V4cCgiXig/OiIrYS5yZXBsYWNlKC9bXHMsXSsvZywifCIpKyIpXFxiIikscV0pO20ucHVzaChbInBsbiIsL15ccysvLHEsIiBcclxuXHRceGEwIl0pO2UucHVzaChbImxpdCIsL15AWyRfYS16XVtcdyRAXSovaSxxXSxbInR5cCIsL14oPzpbQF9dP1tBLVpdK1thLXpdW1x3JEBdKnxcdytfdFxiKS8scV0sWyJwbG4iLC9eWyRfYS16XVtcdyRAXSovaSxxXSxbImxpdCIsL14oPzoweFtcZGEtZl0rfCg/OlxkKD86X1xkKykqXGQqKD86XC5cZCopP3xcLlxkXCspKD86ZVsrLV0/XGQrKT8pW2Etel0qL2kscSwiMDEyMzQ1Njc4OSJdLFsicGxuIiwvXlxcW1xTXHNdPy8scV0sWyJwdW4iLC9eLlteXHNcdyItJCcuL0BcXGBdKi8scV0pO3JldHVybiB4KG0sZSl9ZnVuY3Rpb24gRChhLG0pe2Z1bmN0aW9uIGUoYSl7c3dpdGNoKGEubm9kZVR5cGUpe2Nhc2UgMTppZihrLnRlc3QoYS5jbGFzc05hbWUpKWJyZWFrO2lmKCJCUiI9PT1hLm5vZGVOYW1lKWgoYSksCmEucGFyZW50Tm9kZSYmYS5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGEpO2Vsc2UgZm9yKGE9YS5maXJzdENoaWxkO2E7YT1hLm5leHRTaWJsaW5nKWUoYSk7YnJlYWs7Y2FzZSAzOmNhc2UgNDppZihwKXt2YXIgYj1hLm5vZGVWYWx1ZSxkPWIubWF0Y2godCk7aWYoZCl7dmFyIGM9Yi5zdWJzdHJpbmcoMCxkLmluZGV4KTthLm5vZGVWYWx1ZT1jOyhiPWIuc3Vic3RyaW5nKGQuaW5kZXgrZFswXS5sZW5ndGgpKSYmYS5wYXJlbnROb2RlLmluc2VydEJlZm9yZShzLmNyZWF0ZVRleHROb2RlKGIpLGEubmV4dFNpYmxpbmcpO2goYSk7Y3x8YS5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGEpfX19fWZ1bmN0aW9uIGgoYSl7ZnVuY3Rpb24gYihhLGQpe3ZhciBlPWQ/YS5jbG9uZU5vZGUoITEpOmEsZj1hLnBhcmVudE5vZGU7aWYoZil7dmFyIGY9YihmLDEpLGc9YS5uZXh0U2libGluZztmLmFwcGVuZENoaWxkKGUpO2Zvcih2YXIgaD1nO2g7aD1nKWc9aC5uZXh0U2libGluZyxmLmFwcGVuZENoaWxkKGgpfXJldHVybiBlfQpmb3IoOyFhLm5leHRTaWJsaW5nOylpZihhPWEucGFyZW50Tm9kZSwhYSlyZXR1cm47Zm9yKHZhciBhPWIoYS5uZXh0U2libGluZywwKSxlOyhlPWEucGFyZW50Tm9kZSkmJmUubm9kZVR5cGU9PT0xOylhPWU7ZC5wdXNoKGEpfXZhciBrPS8oPzpefFxzKW5vY29kZSg/OlxzfCQpLyx0PS9cclxuP3xcbi8scz1hLm93bmVyRG9jdW1lbnQsbDthLmN1cnJlbnRTdHlsZT9sPWEuY3VycmVudFN0eWxlLndoaXRlU3BhY2U6d2luZG93LmdldENvbXB1dGVkU3R5bGUmJihsPXMuZGVmYXVsdFZpZXcuZ2V0Q29tcHV0ZWRTdHlsZShhLHEpLmdldFByb3BlcnR5VmFsdWUoIndoaXRlLXNwYWNlIikpO3ZhciBwPWwmJiJwcmUiPT09bC5zdWJzdHJpbmcoMCwzKTtmb3IobD1zLmNyZWF0ZUVsZW1lbnQoIkxJIik7YS5maXJzdENoaWxkOylsLmFwcGVuZENoaWxkKGEuZmlyc3RDaGlsZCk7Zm9yKHZhciBkPVtsXSxnPTA7ZzxkLmxlbmd0aDsrK2cpZShkW2ddKTttPT09KG18MCkmJmRbMF0uc2V0QXR0cmlidXRlKCJ2YWx1ZSIsCm0pO3ZhciByPXMuY3JlYXRlRWxlbWVudCgiT0wiKTtyLmNsYXNzTmFtZT0ibGluZW51bXMiO2Zvcih2YXIgbj1NYXRoLm1heCgwLG0tMXwwKXx8MCxnPTAsej1kLmxlbmd0aDtnPHo7KytnKWw9ZFtnXSxsLmNsYXNzTmFtZT0iTCIrKGcrbiklMTAsbC5maXJzdENoaWxkfHxsLmFwcGVuZENoaWxkKHMuY3JlYXRlVGV4dE5vZGUoIlx4YTAiKSksci5hcHBlbmRDaGlsZChsKTthLmFwcGVuZENoaWxkKHIpfWZ1bmN0aW9uIGsoYSxtKXtmb3IodmFyIGU9bS5sZW5ndGg7LS1lPj0wOyl7dmFyIGg9bVtlXTtBLmhhc093blByb3BlcnR5KGgpP3dpbmRvdy5jb25zb2xlJiZjb25zb2xlLndhcm4oImNhbm5vdCBvdmVycmlkZSBsYW5ndWFnZSBoYW5kbGVyICVzIixoKTpBW2hdPWF9fWZ1bmN0aW9uIEMoYSxtKXtpZighYXx8IUEuaGFzT3duUHJvcGVydHkoYSkpYT0vXlxzKjwvLnRlc3QobSk/ImRlZmF1bHQtbWFya3VwIjoiZGVmYXVsdC1jb2RlIjtyZXR1cm4gQVthXX1mdW5jdGlvbiBFKGEpe3ZhciBtPQphLmc7dHJ5e3ZhciBlPU0oYS5oKSxoPWUuYTthLmE9aDthLmM9ZS5jO2EuZD0wO0MobSxoKShhKTt2YXIgaz0vXGJNU0lFXGIvLnRlc3QobmF2aWdhdG9yLnVzZXJBZ2VudCksbT0vXG4vZyx0PWEuYSxzPXQubGVuZ3RoLGU9MCxsPWEuYyxwPWwubGVuZ3RoLGg9MCxkPWEuZSxnPWQubGVuZ3RoLGE9MDtkW2ddPXM7dmFyIHIsbjtmb3Iobj1yPTA7bjxnOylkW25dIT09ZFtuKzJdPyhkW3IrK109ZFtuKytdLGRbcisrXT1kW24rK10pOm4rPTI7Zz1yO2ZvcihuPXI9MDtuPGc7KXtmb3IodmFyIHo9ZFtuXSxmPWRbbisxXSxiPW4rMjtiKzI8PWcmJmRbYisxXT09PWY7KWIrPTI7ZFtyKytdPXo7ZFtyKytdPWY7bj1ifWZvcihkLmxlbmd0aD1yO2g8cDspe3ZhciBvPWxbaCsyXXx8cyxjPWRbYSsyXXx8cyxiPU1hdGgubWluKG8sYyksaT1sW2grMV0sajtpZihpLm5vZGVUeXBlIT09MSYmKGo9dC5zdWJzdHJpbmcoZSxiKSkpe2smJihqPWoucmVwbGFjZShtLCJcciIpKTtpLm5vZGVWYWx1ZT0Kajt2YXIgdT1pLm93bmVyRG9jdW1lbnQsdj11LmNyZWF0ZUVsZW1lbnQoIlNQQU4iKTt2LmNsYXNzTmFtZT1kW2ErMV07dmFyIHg9aS5wYXJlbnROb2RlO3gucmVwbGFjZUNoaWxkKHYsaSk7di5hcHBlbmRDaGlsZChpKTtlPG8mJihsW2grMV09aT11LmNyZWF0ZVRleHROb2RlKHQuc3Vic3RyaW5nKGIsbykpLHguaW5zZXJ0QmVmb3JlKGksdi5uZXh0U2libGluZykpfWU9YjtlPj1vJiYoaCs9Mik7ZT49YyYmKGErPTIpfX1jYXRjaCh3KXsiY29uc29sZSJpbiB3aW5kb3cmJmNvbnNvbGUubG9nKHcmJncuc3RhY2s/dy5zdGFjazp3KX19dmFyIHY9WyJicmVhayxjb250aW51ZSxkbyxlbHNlLGZvcixpZixyZXR1cm4sd2hpbGUiXSx3PVtbdiwiYXV0byxjYXNlLGNoYXIsY29uc3QsZGVmYXVsdCxkb3VibGUsZW51bSxleHRlcm4sZmxvYXQsZ290byxpbnQsbG9uZyxyZWdpc3RlcixzaG9ydCxzaWduZWQsc2l6ZW9mLHN0YXRpYyxzdHJ1Y3Qsc3dpdGNoLHR5cGVkZWYsdW5pb24sdW5zaWduZWQsdm9pZCx2b2xhdGlsZSJdLAoiY2F0Y2gsY2xhc3MsZGVsZXRlLGZhbHNlLGltcG9ydCxuZXcsb3BlcmF0b3IscHJpdmF0ZSxwcm90ZWN0ZWQscHVibGljLHRoaXMsdGhyb3csdHJ1ZSx0cnksdHlwZW9mIl0sRj1bdywiYWxpZ25vZixhbGlnbl91bmlvbixhc20sYXhpb20sYm9vbCxjb25jZXB0LGNvbmNlcHRfbWFwLGNvbnN0X2Nhc3QsY29uc3RleHByLGRlY2x0eXBlLGR5bmFtaWNfY2FzdCxleHBsaWNpdCxleHBvcnQsZnJpZW5kLGlubGluZSxsYXRlX2NoZWNrLG11dGFibGUsbmFtZXNwYWNlLG51bGxwdHIscmVpbnRlcnByZXRfY2FzdCxzdGF0aWNfYXNzZXJ0LHN0YXRpY19jYXN0LHRlbXBsYXRlLHR5cGVpZCx0eXBlbmFtZSx1c2luZyx2aXJ0dWFsLHdoZXJlIl0sRz1bdywiYWJzdHJhY3QsYm9vbGVhbixieXRlLGV4dGVuZHMsZmluYWwsZmluYWxseSxpbXBsZW1lbnRzLGltcG9ydCxpbnN0YW5jZW9mLG51bGwsbmF0aXZlLHBhY2thZ2Usc3RyaWN0ZnAsc3VwZXIsc3luY2hyb25pemVkLHRocm93cyx0cmFuc2llbnQiXSwKSD1bRywiYXMsYmFzZSxieSxjaGVja2VkLGRlY2ltYWwsZGVsZWdhdGUsZGVzY2VuZGluZyxkeW5hbWljLGV2ZW50LGZpeGVkLGZvcmVhY2gsZnJvbSxncm91cCxpbXBsaWNpdCxpbixpbnRlcmZhY2UsaW50ZXJuYWwsaW50byxpcyxsb2NrLG9iamVjdCxvdXQsb3ZlcnJpZGUsb3JkZXJieSxwYXJhbXMscGFydGlhbCxyZWFkb25seSxyZWYsc2J5dGUsc2VhbGVkLHN0YWNrYWxsb2Msc3RyaW5nLHNlbGVjdCx1aW50LHVsb25nLHVuY2hlY2tlZCx1bnNhZmUsdXNob3J0LHZhciJdLHc9W3csImRlYnVnZ2VyLGV2YWwsZXhwb3J0LGZ1bmN0aW9uLGdldCxudWxsLHNldCx1bmRlZmluZWQsdmFyLHdpdGgsSW5maW5pdHksTmFOIl0sST1bdiwiYW5kLGFzLGFzc2VydCxjbGFzcyxkZWYsZGVsLGVsaWYsZXhjZXB0LGV4ZWMsZmluYWxseSxmcm9tLGdsb2JhbCxpbXBvcnQsaW4saXMsbGFtYmRhLG5vbmxvY2FsLG5vdCxvcixwYXNzLHByaW50LHJhaXNlLHRyeSx3aXRoLHlpZWxkLEZhbHNlLFRydWUsTm9uZSJdLApKPVt2LCJhbGlhcyxhbmQsYmVnaW4sY2FzZSxjbGFzcyxkZWYsZGVmaW5lZCxlbHNpZixlbmQsZW5zdXJlLGZhbHNlLGluLG1vZHVsZSxuZXh0LG5pbCxub3Qsb3IscmVkbyxyZXNjdWUscmV0cnksc2VsZixzdXBlcix0aGVuLHRydWUsdW5kZWYsdW5sZXNzLHVudGlsLHdoZW4seWllbGQsQkVHSU4sRU5EIl0sdj1bdiwiY2FzZSxkb25lLGVsaWYsZXNhYyxldmFsLGZpLGZ1bmN0aW9uLGluLGxvY2FsLHNldCx0aGVuLHVudGlsIl0sSz0vXihESVJ8RklMRXx2ZWN0b3J8KGRlfHByaW9yaXR5Xyk/cXVldWV8bGlzdHxzdGFja3woY29uc3RfKT9pdGVyYXRvcnwobXVsdGkpPyhzZXR8bWFwKXxiaXRzZXR8dT8oaW50fGZsb2F0KVxkKikvLE49L1xTLyxPPXUoe2tleXdvcmRzOltGLEgsdywiY2FsbGVyLGRlbGV0ZSxkaWUsZG8sZHVtcCxlbHNpZixldmFsLGV4aXQsZm9yZWFjaCxmb3IsZ290byxpZixpbXBvcnQsbGFzdCxsb2NhbCxteSxuZXh0LG5vLG91cixwcmludCxwYWNrYWdlLHJlZG8scmVxdWlyZSxzdWIsdW5kZWYsdW5sZXNzLHVudGlsLHVzZSx3YW50YXJyYXksd2hpbGUsQkVHSU4sRU5EIisKSSxKLHZdLGhhc2hDb21tZW50czohMCxjU3R5bGVDb21tZW50czohMCxtdWx0aUxpbmVTdHJpbmdzOiEwLHJlZ2V4TGl0ZXJhbHM6ITB9KSxBPXt9O2soTyxbImRlZmF1bHQtY29kZSJdKTtrKHgoW10sW1sicGxuIiwvXltePD9dKy9dLFsiZGVjIiwvXjwhXHdbXj5dKig/Oj58JCkvXSxbImNvbSIsL148XCEtLVtcU1xzXSo/KD86LS1cPnwkKS9dLFsibGFuZy0iLC9ePFw/KFtcU1xzXSs/KSg/Olw/PnwkKS9dLFsibGFuZy0iLC9ePCUoW1xTXHNdKz8pKD86JT58JCkvXSxbInB1biIsL14oPzo8WyU/XXxbJT9dPikvXSxbImxhbmctIiwvXjx4bXBcYltePl0qPihbXFNcc10rPyk8XC94bXBcYltePl0qPi9pXSxbImxhbmctanMiLC9ePHNjcmlwdFxiW14+XSo+KFtcU1xzXSo/KSg8XC9zY3JpcHRcYltePl0qPikvaV0sWyJsYW5nLWNzcyIsL148c3R5bGVcYltePl0qPihbXFNcc10qPykoPFwvc3R5bGVcYltePl0qPikvaV0sWyJsYW5nLWluLnRhZyIsL14oPFwvP1thLXpdW148Pl0qPikvaV1dKSwKWyJkZWZhdWx0LW1hcmt1cCIsImh0bSIsImh0bWwiLCJteG1sIiwieGh0bWwiLCJ4bWwiLCJ4c2wiXSk7ayh4KFtbInBsbiIsL15ccysvLHEsIiBcdFxyXG4iXSxbImF0diIsL14oPzoiW14iXSoiP3wnW14nXSonPykvLHEsIlwiJyJdXSxbWyJ0YWciLC9eXjxcLz9bYS16XSg/Oltcdy0uOl0qXHcpP3xcLz8+JC9pXSxbImF0biIsL14oPyFzdHlsZVtccz1dfG9uKVthLXpdKD86W1x3Oi1dKlx3KT8vaV0sWyJsYW5nLXVxLnZhbCIsL149XHMqKFteXHMiJz5dKig/OlteXHMiJy8+XXxcLyg/PVxzKSkpL10sWyJwdW4iLC9eWy88LT5dKy9dLFsibGFuZy1qcyIsL15vblx3K1xzKj1ccyoiKFteIl0rKSIvaV0sWyJsYW5nLWpzIiwvXm9uXHcrXHMqPVxzKicoW14nXSspJy9pXSxbImxhbmctanMiLC9eb25cdytccyo9XHMqKFteXHMiJz5dKykvaV0sWyJsYW5nLWNzcyIsL15zdHlsZVxzKj1ccyoiKFteIl0rKSIvaV0sWyJsYW5nLWNzcyIsL15zdHlsZVxzKj1ccyonKFteJ10rKScvaV0sWyJsYW5nLWNzcyIsCi9ec3R5bGVccyo9XHMqKFteXHMiJz5dKykvaV1dKSxbImluLnRhZyJdKTtrKHgoW10sW1siYXR2IiwvXltcU1xzXSsvXV0pLFsidXEudmFsIl0pO2sodSh7a2V5d29yZHM6RixoYXNoQ29tbWVudHM6ITAsY1N0eWxlQ29tbWVudHM6ITAsdHlwZXM6S30pLFsiYyIsImNjIiwiY3BwIiwiY3h4IiwiY3ljIiwibSJdKTtrKHUoe2tleXdvcmRzOiJudWxsLHRydWUsZmFsc2UifSksWyJqc29uIl0pO2sodSh7a2V5d29yZHM6SCxoYXNoQ29tbWVudHM6ITAsY1N0eWxlQ29tbWVudHM6ITAsdmVyYmF0aW1TdHJpbmdzOiEwLHR5cGVzOkt9KSxbImNzIl0pO2sodSh7a2V5d29yZHM6RyxjU3R5bGVDb21tZW50czohMH0pLFsiamF2YSJdKTtrKHUoe2tleXdvcmRzOnYsaGFzaENvbW1lbnRzOiEwLG11bHRpTGluZVN0cmluZ3M6ITB9KSxbImJzaCIsImNzaCIsInNoIl0pO2sodSh7a2V5d29yZHM6SSxoYXNoQ29tbWVudHM6ITAsbXVsdGlMaW5lU3RyaW5nczohMCx0cmlwbGVRdW90ZWRTdHJpbmdzOiEwfSksClsiY3YiLCJweSJdKTtrKHUoe2tleXdvcmRzOiJjYWxsZXIsZGVsZXRlLGRpZSxkbyxkdW1wLGVsc2lmLGV2YWwsZXhpdCxmb3JlYWNoLGZvcixnb3RvLGlmLGltcG9ydCxsYXN0LGxvY2FsLG15LG5leHQsbm8sb3VyLHByaW50LHBhY2thZ2UscmVkbyxyZXF1aXJlLHN1Yix1bmRlZix1bmxlc3MsdW50aWwsdXNlLHdhbnRhcnJheSx3aGlsZSxCRUdJTixFTkQiLGhhc2hDb21tZW50czohMCxtdWx0aUxpbmVTdHJpbmdzOiEwLHJlZ2V4TGl0ZXJhbHM6ITB9KSxbInBlcmwiLCJwbCIsInBtIl0pO2sodSh7a2V5d29yZHM6SixoYXNoQ29tbWVudHM6ITAsbXVsdGlMaW5lU3RyaW5nczohMCxyZWdleExpdGVyYWxzOiEwfSksWyJyYiJdKTtrKHUoe2tleXdvcmRzOncsY1N0eWxlQ29tbWVudHM6ITAscmVnZXhMaXRlcmFsczohMH0pLFsianMiXSk7ayh1KHtrZXl3b3JkczoiYWxsLGFuZCxieSxjYXRjaCxjbGFzcyxlbHNlLGV4dGVuZHMsZmFsc2UsZmluYWxseSxmb3IsaWYsaW4saXMsaXNudCxsb29wLG5ldyxubyxub3QsbnVsbCxvZixvZmYsb24sb3IscmV0dXJuLHN1cGVyLHRoZW4sdHJ1ZSx0cnksdW5sZXNzLHVudGlsLHdoZW4sd2hpbGUseWVzIiwKaGFzaENvbW1lbnRzOjMsY1N0eWxlQ29tbWVudHM6ITAsbXVsdGlsaW5lU3RyaW5nczohMCx0cmlwbGVRdW90ZWRTdHJpbmdzOiEwLHJlZ2V4TGl0ZXJhbHM6ITB9KSxbImNvZmZlZSJdKTtrKHgoW10sW1sic3RyIiwvXltcU1xzXSsvXV0pLFsicmVnZXgiXSk7d2luZG93LnByZXR0eVByaW50T25lPWZ1bmN0aW9uKGEsbSxlKXt2YXIgaD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJQUkUiKTtoLmlubmVySFRNTD1hO2UmJkQoaCxlKTtFKHtnOm0saTplLGg6aH0pO3JldHVybiBoLmlubmVySFRNTH07d2luZG93LnByZXR0eVByaW50PWZ1bmN0aW9uKGEpe2Z1bmN0aW9uIG0oKXtmb3IodmFyIGU9d2luZG93LlBSX1NIT1VMRF9VU0VfQ09OVElOVUFUSU9OP2wubm93KCkrMjUwOkluZmluaXR5O3A8aC5sZW5ndGgmJmwubm93KCk8ZTtwKyspe3ZhciBuPWhbcF0saz1uLmNsYXNzTmFtZTtpZihrLmluZGV4T2YoInByZXR0eXByaW50Iik+PTApe3ZhciBrPWsubWF0Y2goZyksZixiO2lmKGI9CiFrKXtiPW47Zm9yKHZhciBvPXZvaWQgMCxjPWIuZmlyc3RDaGlsZDtjO2M9Yy5uZXh0U2libGluZyl2YXIgaT1jLm5vZGVUeXBlLG89aT09PTE/bz9iOmM6aT09PTM/Ti50ZXN0KGMubm9kZVZhbHVlKT9iOm86bztiPShmPW89PT1iP3ZvaWQgMDpvKSYmIkNPREUiPT09Zi50YWdOYW1lfWImJihrPWYuY2xhc3NOYW1lLm1hdGNoKGcpKTtrJiYoaz1rWzFdKTtiPSExO2ZvcihvPW4ucGFyZW50Tm9kZTtvO289by5wYXJlbnROb2RlKWlmKChvLnRhZ05hbWU9PT0icHJlInx8by50YWdOYW1lPT09ImNvZGUifHxvLnRhZ05hbWU9PT0ieG1wIikmJm8uY2xhc3NOYW1lJiZvLmNsYXNzTmFtZS5pbmRleE9mKCJwcmV0dHlwcmludCIpPj0wKXtiPSEwO2JyZWFrfWJ8fCgoYj0oYj1uLmNsYXNzTmFtZS5tYXRjaCgvXGJsaW5lbnVtc1xiKD86OihcZCspKT8vKSk/YlsxXSYmYlsxXS5sZW5ndGg/K2JbMV06ITA6ITEpJiZEKG4sYiksZD17ZzprLGg6bixpOmJ9LEUoZCkpfX1wPGgubGVuZ3RoP3NldFRpbWVvdXQobSwKMjUwKTphJiZhKCl9Zm9yKHZhciBlPVtkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgicHJlIiksZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImNvZGUiKSxkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgieG1wIildLGg9W10saz0wO2s8ZS5sZW5ndGg7KytrKWZvcih2YXIgdD0wLHM9ZVtrXS5sZW5ndGg7dDxzOysrdCloLnB1c2goZVtrXVt0XSk7dmFyIGU9cSxsPURhdGU7bC5ub3d8fChsPXtub3c6ZnVuY3Rpb24oKXtyZXR1cm4rbmV3IERhdGV9fSk7dmFyIHA9MCxkLGc9L1xibGFuZyg/OnVhZ2UpPy0oW1x3Ll0rKSg/IVxTKS87bSgpfTt3aW5kb3cuUFI9e2NyZWF0ZVNpbXBsZUxleGVyOngscmVnaXN0ZXJMYW5nSGFuZGxlcjprLHNvdXJjZURlY29yYXRvcjp1LFBSX0FUVFJJQl9OQU1FOiJhdG4iLFBSX0FUVFJJQl9WQUxVRToiYXR2IixQUl9DT01NRU5UOiJjb20iLFBSX0RFQ0xBUkFUSU9OOiJkZWMiLFBSX0tFWVdPUkQ6Imt3ZCIsUFJfTElURVJBTDoibGl0IiwKUFJfTk9DT0RFOiJub2NvZGUiLFBSX1BMQUlOOiJwbG4iLFBSX1BVTkNUVUFUSU9OOiJwdW4iLFBSX1NPVVJDRToic3JjIixQUl9TVFJJTkc6InN0ciIsUFJfVEFHOiJ0YWciLFBSX1RZUEU6InR5cCJ9fSkoKTsK"></script> + <script src="data:application/x-javascript;base64,Ly8gQ29weXJpZ2h0IChDKSAyMDEyIEplZmZyZXkgQi4gQXJub2xkCi8vCi8vIExpY2Vuc2VkIHVuZGVyIHRoZSBBcGFjaGUgTGljZW5zZSwgVmVyc2lvbiAyLjAgKHRoZSAiTGljZW5zZSIpOwovLyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCi8vIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdAovLwovLyAgICAgIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMAovLwovLyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCi8vIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuICJBUyBJUyIgQkFTSVMsCi8vIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLgovLyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCi8vIGxpbWl0YXRpb25zIHVuZGVyIHRoZSBMaWNlbnNlLgoKCi8qKgogKiBAZmlsZW92ZXJ2aWV3CiAqIFJlZ2lzdGVycyBhIGxhbmd1YWdlIGhhbmRsZXIgZm9yIFMsIFMtcGx1cywgYW5kIFIgc291cmNlIGNvZGUuCiAqCiAqCiAqIFRvIHVzZSwgaW5jbHVkZSBwcmV0dGlmeS5qcyBhbmQgdGhpcyBmaWxlIGluIHlvdXIgSFRNTCBwYWdlLgogKiBUaGVuIHB1dCB5b3VyIGNvZGUgaW4gYW4gSFRNTCB0YWcgbGlrZQogKiAgICAgIDxwcmUgY2xhc3M9InByZXR0eXByaW50IGxhbmctciI+IGNvZGUgPC9wcmU+CiAqCiAqIExhbmd1YWdlIGRlZmluaXRpb24gZnJvbQogKiBodHRwOi8vY3Jhbi5yLXByb2plY3Qub3JnL2RvYy9tYW51YWxzL1ItbGFuZy5odG1sLgogKiBNYW55IG9mIHRoZSByZWdleGVzIGFyZSBzaGFyZWQgIHdpdGggdGhlIHB5Z21lbnRzIFNMZXhlciwKICogaHR0cDovL3B5Z21lbnRzLm9yZy8uCiAqCiAqIE9yaWdpbmFsOiBodHRwczovL3Jhdy5naXRodWIuY29tL2pybm9sZC9wcmV0dGlmeS1sYW5nLXItYnVncy9tYXN0ZXIvbGFuZy1yLmpzCiAqCiAqIEBhdXRob3IgamVmZnJleS5hcm5vbGRAZ21haWwuY29tCiAqLwpQUlsncmVnaXN0ZXJMYW5nSGFuZGxlciddKAogICAgUFJbJ2NyZWF0ZVNpbXBsZUxleGVyJ10oCiAgICAgICAgWwogICAgICAgICAgICBbUFJbJ1BSX1BMQUlOJ10sICAgICAgIC9eW1x0XG5cciBceEEwXSsvLCBudWxsLCAnXHRcblxyIFx4QTAnXSwKCSAgICBbUFJbJ1BSX1NUUklORyddLCAgICAgIC9eXCIoPzpbXlwiXFxdfFxcW1xzXFNdKSooPzpcInwkKS8sIG51bGwsICciJ10sCgkgICAgW1BSWydQUl9TVFJJTkcnXSwgICAgICAvXlwnKD86W15cJ1xcXXxcXFtcc1xTXSkqKD86XCd8JCkvLCBudWxsLCAiJyJdCiAgICAgICAgXSwKICAgICAgICBbCiAgICAgICAgICAgIFtQUlsnUFJfQ09NTUVOVCddLCAgICAgL14jLiovXSwKCSAgICBbUFJbJ1BSX0tFWVdPUkQnXSwgICAgIC9eKD86aWZ8ZWxzZXxmb3J8d2hpbGV8cmVwZWF0fGlufG5leHR8YnJlYWt8cmV0dXJufHN3aXRjaHxmdW5jdGlvbikoPyFbQS1aYS16MC05Xy5dKS9dLAoJICAgIC8vIGhleCBudW1iZXMKCSAgICBbUFJbJ1BSX0xJVEVSQUwnXSwgL14wW3hYXVthLWZBLUYwLTldKyhbcFBdWzAtOV0rKT9bTGldPy9dLAoJICAgIC8vIERlY2ltYWwgbnVtYmVycwogICAgICAgICAgICBbUFJbJ1BSX0xJVEVSQUwnXSwgL15bKy1dPyhbMC05XSsoXC5bMC05XSspP3xcLlswLTldKykoW2VFXVsrLV0/WzAtOV0rKT9bTGldPy9dLAoJICAgIC8vIGJ1aWx0aW4gc3ltYm9scwoJICAgIFtQUlsnUFJfTElURVJBTCddLCAvXig/Ok5VTEx8TkEoPzpfKD86aW50ZWdlcnxyZWFsfGNvbXBsZXh8Y2hhcmFjdGVyKV8pP3xJbmZ8VFJVRXxGQUxTRXxOYU58XC5cLig/OlwufFswLTldKykpKD8hW0EtWmEtejAtOV8uXSkvXSwKCSAgICAvLyBhc3NpZ25tZW50LCBvcGVyYXRvcnMsIGFuZCBwYXJlbnMsIGV0Yy4KCSAgICBbUFJbJ1BSX1BVTkNUVUFUSU9OJ10sIC9eKD86PDw/LXwtPj4/fC18PT18PD18Pj18PHw+fCYmP3whPXxcfFx8P3xcKnxcK3xcXnxcL3whfCUuKj8lfD18fnxcJHxAfDp7MSwzfXxbXFtcXSgpe307LD9dKS9dLAoJICAgIC8vIHZhbGlkIHZhcmlhYmxlIG5hbWVzCgkgICAgW1BSWydQUl9QTEFJTiddLCAvXig/OltBLVphLXpdK1tBLVphLXowLTlfLl0qfFwuW2EtekEtWl9dWzAtOWEtekEtWlwuX10qKSg/IVtBLVphLXowLTlfLl0pL10sCgkgICAgLy8gc3RyaW5nIGJhY2t0aWNrCgkgICAgW1BSWydQUl9TVFJJTkcnXSwgL15gLitgL10KICAgICAgICBdKSwKICAgIFsncicsICdzJywgJ1InLCAnUycsICdTcGx1cyddKTsK"></script> + <script src="data:application/x-javascript;base64,dmFyIGE9bnVsbDsKUFIucmVnaXN0ZXJMYW5nSGFuZGxlcihQUi5jcmVhdGVTaW1wbGVMZXhlcihbWyJwdW4iLC9eWzo+P3xdKy8sYSwiOnw+PyJdLFsiZGVjIiwvXiUoPzpZQU1MfFRBRylbXlxuXHIjXSsvLGEsIiUiXSxbInR5cCIsL14mXFMrLyxhLCImIl0sWyJ0eXAiLC9eIVxTKi8sYSwiISJdLFsic3RyIiwvXiIoPzpbXiJcXF18XFwuKSooPzoifCQpLyxhLCciJ10sWyJzdHIiLC9eJyg/OlteJ118JycpKig/Oid8JCkvLGEsIiciXSxbImNvbSIsL14jW15cblxyXSovLGEsIiMiXSxbInBsbiIsL15ccysvLGEsIiBcdFxyXG4iXV0sW1siZGVjIiwvXig/Oi0tLXxcLlwuXC4pKD86W1xuXHJdfCQpL10sWyJwdW4iLC9eLS9dLFsia3dkIiwvXlx3KzpbXG5cciBdL10sWyJwbG4iLC9eXHcrL11dKSxbInlhbWwiLCJ5bWwiXSk7Cg=="></script> + <script src="data:application/x-javascript;base64,LyoKICogSGFtbWVyLkpTCiAqIHZlcnNpb24gMC40CiAqIGF1dGhvcjogRWlnaHQgTWVkaWEKICogaHR0cHM6Ly9naXRodWIuY29tL0VpZ2h0TWVkaWEvaGFtbWVyLmpzCiAqLwpmdW5jdGlvbiBIYW1tZXIoZWxlbWVudCwgb3B0aW9ucywgdW5kZWZpbmVkKQp7CiAgICB2YXIgc2VsZiA9IHRoaXM7CgogICAgdmFyIGRlZmF1bHRzID0gewogICAgICAgIC8vIHByZXZlbnQgdGhlIGRlZmF1bHQgZXZlbnQgb3Igbm90Li4uIG1pZ2h0IGJlIGJ1Z2d5IHdoZW4gZmFsc2UKICAgICAgICBwcmV2ZW50X2RlZmF1bHQgICAgOiBmYWxzZSwKICAgICAgICBjc3NfaGFja3MgICAgICAgICAgOiB0cnVlLAoKICAgICAgICBkcmFnICAgICAgICAgICAgICAgOiB0cnVlLAogICAgICAgIGRyYWdfdmVydGljYWwgICAgICA6IHRydWUsCiAgICAgICAgZHJhZ19ob3Jpem9udGFsICAgIDogdHJ1ZSwKICAgICAgICAvLyBtaW5pbXVtIGRpc3RhbmNlIGJlZm9yZSB0aGUgZHJhZyBldmVudCBzdGFydHMKICAgICAgICBkcmFnX21pbl9kaXN0YW5jZSAgOiAyMCwgLy8gcGl4ZWxzCgogICAgICAgIC8vIHBpbmNoIHpvb20gYW5kIHJvdGF0aW9uCiAgICAgICAgdHJhbnNmb3JtICAgICAgICAgIDogdHJ1ZSwKICAgICAgICBzY2FsZV90cmVzaG9sZCAgICAgOiAwLjEsCiAgICAgICAgcm90YXRpb25fdHJlc2hvbGQgIDogMTUsIC8vIGRlZ3JlZXMKCiAgICAgICAgdGFwICAgICAgICAgICAgICAgIDogdHJ1ZSwKICAgICAgICB0YXBfZG91YmxlICAgICAgICAgOiB0cnVlLAogICAgICAgIHRhcF9tYXhfaW50ZXJ2YWwgICA6IDMwMCwKICAgICAgICB0YXBfZG91YmxlX2Rpc3RhbmNlOiAyMCwKCiAgICAgICAgaG9sZCAgICAgICAgICAgICAgIDogdHJ1ZSwKICAgICAgICBob2xkX3RpbWVvdXQgICAgICAgOiA1MDAKICAgIH07CiAgICBvcHRpb25zID0gbWVyZ2VPYmplY3QoZGVmYXVsdHMsIG9wdGlvbnMpOwoKICAgIC8vIHNvbWUgY3NzIGhhY2tzCiAgICAoZnVuY3Rpb24oKSB7CiAgICAgICAgaWYoIW9wdGlvbnMuY3NzX2hhY2tzKSB7CiAgICAgICAgICAgIHJldHVybiBmYWxzZTsKICAgICAgICB9CgogICAgICAgIHZhciB2ZW5kb3JzID0gWyd3ZWJraXQnLCdtb3onLCdtcycsJ28nLCcnXTsKICAgICAgICB2YXIgY3NzX3Byb3BzID0gewogICAgICAgICAgICAidXNlclNlbGVjdCI6ICJub25lIiwKICAgICAgICAgICAgInRvdWNoQ2FsbG91dCI6ICJub25lIiwKICAgICAgICAgICAgInVzZXJEcmFnIjogIm5vbmUiLAogICAgICAgICAgICAidGFwSGlnaGxpZ2h0Q29sb3IiOiAicmdiYSgwLDAsMCwwKSIKICAgICAgICB9OwoKICAgICAgICB2YXIgcHJvcCA9ICcnOwogICAgICAgIGZvcih2YXIgaSA9IDA7IGkgPCB2ZW5kb3JzLmxlbmd0aDsgaSsrKSB7CiAgICAgICAgICAgIGZvcih2YXIgcCBpbiBjc3NfcHJvcHMpIHsKICAgICAgICAgICAgICAgIHByb3AgPSBwOwogICAgICAgICAgICAgICAgaWYodmVuZG9yc1tpXSkgewogICAgICAgICAgICAgICAgICAgIHByb3AgPSB2ZW5kb3JzW2ldICsgcHJvcC5zdWJzdHJpbmcoMCwgMSkudG9VcHBlckNhc2UoKSArIHByb3Auc3Vic3RyaW5nKDEpOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgZWxlbWVudC5zdHlsZVsgcHJvcCBdID0gY3NzX3Byb3BzW3BdOwogICAgICAgICAgICB9CiAgICAgICAgfQogICAgfSkoKTsKCiAgICAvLyBob2xkcyB0aGUgZGlzdGFuY2UgdGhhdCBoYXMgYmVlbiBtb3ZlZAogICAgdmFyIF9kaXN0YW5jZSA9IDA7CgogICAgLy8gaG9sZHMgdGhlIGV4YWN0IGFuZ2xlIHRoYXQgaGFzIGJlZW4gbW92ZWQKICAgIHZhciBfYW5nbGUgPSAwOwoKICAgIC8vIGhvbGRzIHRoZSBkaXJhY3Rpb24gdGhhdCBoYXMgYmVlbiBtb3ZlZAogICAgdmFyIF9kaXJlY3Rpb24gPSAwOwoKICAgIC8vIGhvbGRzIHBvc2l0aW9uIG1vdmVtZW50IGZvciBzbGlkaW5nCiAgICB2YXIgX3BvcyA9IHsgfTsKCiAgICAvLyBob3cgbWFueSBmaW5nZXJzIGFyZSBvbiB0aGUgc2NyZWVuCiAgICB2YXIgX2ZpbmdlcnMgPSAwOwoKICAgIHZhciBfZmlyc3QgPSBmYWxzZTsKCiAgICB2YXIgX2dlc3R1cmUgPSBudWxsOwogICAgdmFyIF9wcmV2X2dlc3R1cmUgPSBudWxsOwoKICAgIHZhciBfdG91Y2hfc3RhcnRfdGltZSA9IG51bGw7CiAgICB2YXIgX3ByZXZfdGFwX3BvcyA9IHt4OiAwLCB5OiAwfTsKICAgIHZhciBfcHJldl90YXBfZW5kX3RpbWUgPSBudWxsOwoKICAgIHZhciBfaG9sZF90aW1lciA9IG51bGw7CgogICAgdmFyIF9vZmZzZXQgPSB7fTsKCiAgICAvLyBrZWVwIHRyYWNrIG9mIHRoZSBtb3VzZSBzdGF0dXMKICAgIHZhciBfbW91c2Vkb3duID0gZmFsc2U7CgogICAgdmFyIF9ldmVudF9zdGFydDsKICAgIHZhciBfZXZlbnRfbW92ZTsKICAgIHZhciBfZXZlbnRfZW5kOwoKCiAgICAvKioKICAgICAqIGFuZ2xlIHRvIGRpcmVjdGlvbiBkZWZpbmUKICAgICAqIEBwYXJhbSAgZmxvYXQgICAgYW5nbGUKICAgICAqIEByZXR1cm4gc3RyaW5nICAgZGlyZWN0aW9uCiAgICAgKi8KICAgIHRoaXMuZ2V0RGlyZWN0aW9uRnJvbUFuZ2xlID0gZnVuY3Rpb24oIGFuZ2xlICkKICAgIHsKICAgICAgICB2YXIgZGlyZWN0aW9ucyA9IHsKICAgICAgICAgICAgZG93bjogYW5nbGUgPj0gNDUgJiYgYW5nbGUgPCAxMzUsIC8vOTAKICAgICAgICAgICAgbGVmdDogYW5nbGUgPj0gMTM1IHx8IGFuZ2xlIDw9IC0xMzUsIC8vMTgwCiAgICAgICAgICAgIHVwOiBhbmdsZSA8IC00NSAmJiBhbmdsZSA+IC0xMzUsIC8vMjcwCiAgICAgICAgICAgIHJpZ2h0OiBhbmdsZSA+PSAtNDUgJiYgYW5nbGUgPD0gNDUgLy8wCiAgICAgICAgfTsKCiAgICAgICAgdmFyIGRpcmVjdGlvbiwga2V5OwogICAgICAgIGZvcihrZXkgaW4gZGlyZWN0aW9ucyl7CiAgICAgICAgICAgIGlmKGRpcmVjdGlvbnNba2V5XSl7CiAgICAgICAgICAgICAgICBkaXJlY3Rpb24gPSBrZXk7CiAgICAgICAgICAgICAgICBicmVhazsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgICAgICByZXR1cm4gZGlyZWN0aW9uOwogICAgfTsKCgogICAgLyoqCiAgICAgKiBjb3VudCB0aGUgbnVtYmVyIG9mIGZpbmdlcnMgaW4gdGhlIGV2ZW50CiAgICAgKiB3aGVuIG5vIGZpbmdlcnMgYXJlIGRldGVjdGVkLCBvbmUgZmluZ2VyIGlzIHJldHVybmVkIChtb3VzZSBwb2ludGVyKQogICAgICogQHBhcmFtICBldmVudAogICAgICogQHJldHVybiBpbnQgIGZpbmdlcnMKICAgICAqLwogICAgZnVuY3Rpb24gY291bnRGaW5nZXJzKCBldmVudCApCiAgICB7CiAgICAgICAgLy8gdGhlcmUgaXMgYSBidWcgb24gYW5kcm9pZCAodW50aWwgdjQ/KSB0aGF0IHRvdWNoZXMgaXMgYWx3YXlzIDEsCiAgICAgICAgLy8gc28gbm8gbXVsdGl0b3VjaCBpcyBzdXBwb3J0ZWQsIGUuZy4gbm8sIHpvb20gYW5kIHJvdGF0aW9uLi4uCiAgICAgICAgcmV0dXJuIGV2ZW50LnRvdWNoZXMgPyBldmVudC50b3VjaGVzLmxlbmd0aCA6IDE7CiAgICB9CgoKICAgIC8qKgogICAgICogZ2V0IHRoZSB4IGFuZCB5IHBvc2l0aW9ucyBmcm9tIHRoZSBldmVudCBvYmplY3QKICAgICAqIEBwYXJhbSAgZXZlbnQKICAgICAqIEByZXR1cm4gYXJyYXkgIFt7IHg6IGludCwgeTogaW50IH1dCiAgICAgKi8KICAgIGZ1bmN0aW9uIGdldFhZZnJvbUV2ZW50KCBldmVudCApCiAgICB7CiAgICAgICAgZXZlbnQgPSBldmVudCB8fCB3aW5kb3cuZXZlbnQ7CgogICAgICAgIC8vIG5vIHRvdWNoZXMsIHVzZSB0aGUgZXZlbnQgcGFnZVggYW5kIHBhZ2VZCiAgICAgICAgaWYoIWV2ZW50LnRvdWNoZXMpIHsKICAgICAgICAgICAgdmFyIGRvYyA9IGRvY3VtZW50LAogICAgICAgICAgICAgICAgYm9keSA9IGRvYy5ib2R5OwoKICAgICAgICAgICAgcmV0dXJuIFt7CiAgICAgICAgICAgICAgICB4OiBldmVudC5wYWdlWCB8fCBldmVudC5jbGllbnRYICsgKCBkb2MgJiYgZG9jLnNjcm9sbExlZnQgfHwgYm9keSAmJiBib2R5LnNjcm9sbExlZnQgfHwgMCApIC0gKCBkb2MgJiYgZG9jLmNsaWVudExlZnQgfHwgYm9keSAmJiBkb2MuY2xpZW50TGVmdCB8fCAwICksCiAgICAgICAgICAgICAgICB5OiBldmVudC5wYWdlWSB8fCBldmVudC5jbGllbnRZICsgKCBkb2MgJiYgZG9jLnNjcm9sbFRvcCB8fCBib2R5ICYmIGJvZHkuc2Nyb2xsVG9wIHx8IDAgKSAtICggZG9jICYmIGRvYy5jbGllbnRUb3AgfHwgYm9keSAmJiBkb2MuY2xpZW50VG9wIHx8IDAgKQogICAgICAgICAgICB9XTsKICAgICAgICB9CiAgICAgICAgLy8gbXVsdGl0b3VjaCwgcmV0dXJuIGFycmF5IHdpdGggcG9zaXRpb25zCiAgICAgICAgZWxzZSB7CiAgICAgICAgICAgIHZhciBwb3MgPSBbXSwgc3JjOwogICAgICAgICAgICBmb3IodmFyIHQ9MCwgbGVuPWV2ZW50LnRvdWNoZXMubGVuZ3RoOyB0PGxlbjsgdCsrKSB7CiAgICAgICAgICAgICAgICBzcmMgPSBldmVudC50b3VjaGVzW3RdOwogICAgICAgICAgICAgICAgcG9zLnB1c2goeyB4OiBzcmMucGFnZVgsIHk6IHNyYy5wYWdlWSB9KTsKICAgICAgICAgICAgfQogICAgICAgICAgICByZXR1cm4gcG9zOwogICAgICAgIH0KICAgIH0KCgogICAgLyoqCiAgICAgKiBjYWxjdWxhdGUgdGhlIGFuZ2xlIGJldHdlZW4gdHdvIHBvaW50cwogICAgICogQHBhcmFtIG9iamVjdCBwb3MxIHsgeDogaW50LCB5OiBpbnQgfQogICAgICogQHBhcmFtIG9iamVjdCBwb3MyIHsgeDogaW50LCB5OiBpbnQgfQogICAgICovCiAgICBmdW5jdGlvbiBnZXRBbmdsZSggcG9zMSwgcG9zMiApCiAgICB7CiAgICAgICAgcmV0dXJuIE1hdGguYXRhbjIocG9zMi55IC0gcG9zMS55LCBwb3MyLnggLSBwb3MxLngpICogMTgwIC8gTWF0aC5QSTsKICAgIH0KCiAgICAvKioKICAgICAqIHRyaWdnZXIgYW4gZXZlbnQvY2FsbGJhY2sgYnkgbmFtZSB3aXRoIHBhcmFtcwogICAgICogQHBhcmFtIHN0cmluZyBuYW1lCiAgICAgKiBAcGFyYW0gYXJyYXkgIHBhcmFtcwogICAgICovCiAgICBmdW5jdGlvbiB0cmlnZ2VyRXZlbnQoIGV2ZW50TmFtZSwgcGFyYW1zICkKICAgIHsKICAgICAgICAvLyByZXR1cm4gdG91Y2hlcyBvYmplY3QKICAgICAgICBwYXJhbXMudG91Y2hlcyA9IGdldFhZZnJvbUV2ZW50KHBhcmFtcy5vcmlnaW5hbEV2ZW50KTsKICAgICAgICBwYXJhbXMudHlwZSA9IGV2ZW50TmFtZTsKCiAgICAgICAgLy8gdHJpZ2dlciBjYWxsYmFjawogICAgICAgIGlmKGlzRnVuY3Rpb24oc2VsZlsib24iKyBldmVudE5hbWVdKSkgewogICAgICAgICAgICBzZWxmWyJvbiIrIGV2ZW50TmFtZV0uY2FsbChzZWxmLCBwYXJhbXMpOwogICAgICAgIH0KICAgIH0KCgogICAgLyoqCiAgICAgKiBjYW5jZWwgZXZlbnQKICAgICAqIEBwYXJhbSAgIG9iamVjdCAgZXZlbnQKICAgICAqIEByZXR1cm4gIHZvaWQKICAgICAqLwoKICAgIGZ1bmN0aW9uIGNhbmNlbEV2ZW50KGV2ZW50KXsKICAgICAgICBldmVudCA9IGV2ZW50IHx8IHdpbmRvdy5ldmVudDsKICAgICAgICBpZihldmVudC5wcmV2ZW50RGVmYXVsdCl7CiAgICAgICAgICAgIGV2ZW50LnByZXZlbnREZWZhdWx0KCk7CiAgICAgICAgfWVsc2V7CiAgICAgICAgICAgIGV2ZW50LnJldHVyblZhbHVlID0gZmFsc2U7CiAgICAgICAgICAgIGV2ZW50LmNhbmNlbEJ1YmJsZSA9IHRydWU7CiAgICAgICAgfQogICAgfQoKCiAgICAvKioKICAgICAqIHJlc2V0IHRoZSBpbnRlcm5hbCB2YXJzIHRvIHRoZSBzdGFydCB2YWx1ZXMKICAgICAqLwogICAgZnVuY3Rpb24gcmVzZXQoKQogICAgewogICAgICAgIF9wb3MgPSB7fTsKICAgICAgICBfZmlyc3QgPSBmYWxzZTsKICAgICAgICBfZmluZ2VycyA9IDA7CiAgICAgICAgX2Rpc3RhbmNlID0gMDsKICAgICAgICBfYW5nbGUgPSAwOwogICAgICAgIF9nZXN0dXJlID0gbnVsbDsKICAgIH0KCgogICAgdmFyIGdlc3R1cmVzID0gewogICAgICAgIC8vIGhvbGQgZ2VzdHVyZQogICAgICAgIC8vIGZpcmVkIG9uIHRvdWNoc3RhcnQKICAgICAgICBob2xkIDogZnVuY3Rpb24oZXZlbnQpCiAgICAgICAgewogICAgICAgICAgICAvLyBvbmx5IHdoZW4gb25lIGZpbmdlciBpcyBvbiB0aGUgc2NyZWVuCiAgICAgICAgICAgIGlmKG9wdGlvbnMuaG9sZCkgewogICAgICAgICAgICAgICAgX2dlc3R1cmUgPSAnaG9sZCc7CiAgICAgICAgICAgICAgICBjbGVhclRpbWVvdXQoX2hvbGRfdGltZXIpOwoKICAgICAgICAgICAgICAgIF9ob2xkX3RpbWVyID0gc2V0VGltZW91dChmdW5jdGlvbigpIHsKICAgICAgICAgICAgICAgICAgICBpZihfZ2VzdHVyZSA9PSAnaG9sZCcpIHsKICAgICAgICAgICAgICAgICAgICAgICAgdHJpZ2dlckV2ZW50KCJob2xkIiwgewogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3JpZ2luYWxFdmVudCAgIDogZXZlbnQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwb3NpdGlvbiAgICAgICAgOiBfcG9zLnN0YXJ0CiAgICAgICAgICAgICAgICAgICAgICAgIH0pOwogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgIH0sIG9wdGlvbnMuaG9sZF90aW1lb3V0KTsKICAgICAgICAgICAgfQogICAgICAgIH0sCgoKICAgICAgICAvLyBkcmFnIGdlc3R1cmUKICAgICAgICAvLyBmaXJlZCBvbiBtb3VzZW1vdmUKICAgICAgICBkcmFnIDogZnVuY3Rpb24oZXZlbnQpCiAgICAgICAgewogICAgICAgICAgICAvLyBnZXQgdGhlIGRpc3RhbmNlIHdlIG1vdmVkCiAgICAgICAgICAgIHZhciBfZGlzdGFuY2VfeCA9IF9wb3MubW92ZVswXS54IC0gX3Bvcy5zdGFydFswXS54OwogICAgICAgICAgICB2YXIgX2Rpc3RhbmNlX3kgPSBfcG9zLm1vdmVbMF0ueSAtIF9wb3Muc3RhcnRbMF0ueTsKICAgICAgICAgICAgX2Rpc3RhbmNlID0gTWF0aC5zcXJ0KF9kaXN0YW5jZV94ICogX2Rpc3RhbmNlX3ggKyBfZGlzdGFuY2VfeSAqIF9kaXN0YW5jZV95KTsKCiAgICAgICAgICAgIC8vIGRyYWcKICAgICAgICAgICAgLy8gbWluaW1hbCBtb3ZlbWVudCByZXF1aXJlZAogICAgICAgICAgICBpZihvcHRpb25zLmRyYWcgJiYgKF9kaXN0YW5jZSA+IG9wdGlvbnMuZHJhZ19taW5fZGlzdGFuY2UpIHx8IF9nZXN0dXJlID09ICdkcmFnJykgewogICAgICAgICAgICAgICAgLy8gY2FsY3VsYXRlIHRoZSBhbmdsZQogICAgICAgICAgICAgICAgX2FuZ2xlID0gZ2V0QW5nbGUoX3Bvcy5zdGFydFswXSwgX3Bvcy5tb3ZlWzBdKTsKICAgICAgICAgICAgICAgIF9kaXJlY3Rpb24gPSBzZWxmLmdldERpcmVjdGlvbkZyb21BbmdsZShfYW5nbGUpOwoKICAgICAgICAgICAgICAgIC8vIGNoZWNrIHRoZSBtb3ZlbWVudCBhbmQgc3RvcCBpZiB3ZSBnbyBpbiB0aGUgd3JvbmcgZGlyZWN0aW9uCiAgICAgICAgICAgICAgICB2YXIgaXNfdmVydGljYWwgPSAoX2RpcmVjdGlvbiA9PSAndXAnIHx8IF9kaXJlY3Rpb24gPT0gJ2Rvd24nKTsKICAgICAgICAgICAgICAgIGlmKCgoaXNfdmVydGljYWwgJiYgIW9wdGlvbnMuZHJhZ192ZXJ0aWNhbCkgfHwgKCFpc192ZXJ0aWNhbCAmJiAhb3B0aW9ucy5kcmFnX2hvcml6b250YWwpKQogICAgICAgICAgICAgICAgICAgICYmIChfZGlzdGFuY2UgPiBvcHRpb25zLmRyYWdfbWluX2Rpc3RhbmNlKSkgewogICAgICAgICAgICAgICAgICAgIHJldHVybjsKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICBfZ2VzdHVyZSA9ICdkcmFnJzsKCiAgICAgICAgICAgICAgICB2YXIgcG9zaXRpb24gPSB7IHg6IF9wb3MubW92ZVswXS54IC0gX29mZnNldC5sZWZ0LAogICAgICAgICAgICAgICAgICAgIHk6IF9wb3MubW92ZVswXS55IC0gX29mZnNldC50b3AgfTsKCiAgICAgICAgICAgICAgICB2YXIgZXZlbnRfb2JqID0gewogICAgICAgICAgICAgICAgICAgIG9yaWdpbmFsRXZlbnQgICA6IGV2ZW50LAogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uICAgICAgICA6IHBvc2l0aW9uLAogICAgICAgICAgICAgICAgICAgIGRpcmVjdGlvbiAgICAgICA6IF9kaXJlY3Rpb24sCiAgICAgICAgICAgICAgICAgICAgZGlzdGFuY2UgICAgICAgIDogX2Rpc3RhbmNlLAogICAgICAgICAgICAgICAgICAgIGRpc3RhbmNlWCAgICAgICA6IF9kaXN0YW5jZV94LAogICAgICAgICAgICAgICAgICAgIGRpc3RhbmNlWSAgICAgICA6IF9kaXN0YW5jZV95LAogICAgICAgICAgICAgICAgICAgIGFuZ2xlICAgICAgICAgICA6IF9hbmdsZQogICAgICAgICAgICAgICAgfTsKCiAgICAgICAgICAgICAgICAvLyBvbiB0aGUgZmlyc3QgdGltZSB0cmlnZ2VyIHRoZSBzdGFydCBldmVudAogICAgICAgICAgICAgICAgaWYoX2ZpcnN0KSB7CiAgICAgICAgICAgICAgICAgICAgdHJpZ2dlckV2ZW50KCJkcmFnc3RhcnQiLCBldmVudF9vYmopOwoKICAgICAgICAgICAgICAgICAgICBfZmlyc3QgPSBmYWxzZTsKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAvLyBub3JtYWwgc2xpZGUgZXZlbnQKICAgICAgICAgICAgICAgIHRyaWdnZXJFdmVudCgiZHJhZyIsIGV2ZW50X29iaik7CgogICAgICAgICAgICAgICAgY2FuY2VsRXZlbnQoZXZlbnQpOwogICAgICAgICAgICB9CiAgICAgICAgfSwKCgogICAgICAgIC8vIHRyYW5zZm9ybSBnZXN0dXJlCiAgICAgICAgLy8gZmlyZWQgb24gdG91Y2htb3ZlCiAgICAgICAgdHJhbnNmb3JtIDogZnVuY3Rpb24oZXZlbnQpCiAgICAgICAgewogICAgICAgICAgICBpZihvcHRpb25zLnRyYW5zZm9ybSkgewogICAgICAgICAgICAgICAgdmFyIHNjYWxlID0gZXZlbnQuc2NhbGUgfHwgMTsKICAgICAgICAgICAgICAgIHZhciByb3RhdGlvbiA9IGV2ZW50LnJvdGF0aW9uIHx8IDA7CgogICAgICAgICAgICAgICAgaWYoY291bnRGaW5nZXJzKGV2ZW50KSAhPSAyKSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIGlmKF9nZXN0dXJlICE9ICdkcmFnJyAmJgogICAgICAgICAgICAgICAgICAgIChfZ2VzdHVyZSA9PSAndHJhbnNmb3JtJyB8fCBNYXRoLmFicygxLXNjYWxlKSA+IG9wdGlvbnMuc2NhbGVfdHJlc2hvbGQKICAgICAgICAgICAgICAgICAgICAgICAgfHwgTWF0aC5hYnMocm90YXRpb24pID4gb3B0aW9ucy5yb3RhdGlvbl90cmVzaG9sZCkpIHsKICAgICAgICAgICAgICAgICAgICBfZ2VzdHVyZSA9ICd0cmFuc2Zvcm0nOwoKICAgICAgICAgICAgICAgICAgICBfcG9zLmNlbnRlciA9IHsgIHg6ICgoX3Bvcy5tb3ZlWzBdLnggKyBfcG9zLm1vdmVbMV0ueCkgLyAyKSAtIF9vZmZzZXQubGVmdCwKICAgICAgICAgICAgICAgICAgICAgICAgeTogKChfcG9zLm1vdmVbMF0ueSArIF9wb3MubW92ZVsxXS55KSAvIDIpIC0gX29mZnNldC50b3AgfTsKCiAgICAgICAgICAgICAgICAgICAgdmFyIGV2ZW50X29iaiA9IHsKICAgICAgICAgICAgICAgICAgICAgICAgb3JpZ2luYWxFdmVudCAgIDogZXZlbnQsCiAgICAgICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uICAgICAgICA6IF9wb3MuY2VudGVyLAogICAgICAgICAgICAgICAgICAgICAgICBzY2FsZSAgICAgICAgICAgOiBzY2FsZSwKICAgICAgICAgICAgICAgICAgICAgICAgcm90YXRpb24gICAgICAgIDogcm90YXRpb24KICAgICAgICAgICAgICAgICAgICB9OwoKICAgICAgICAgICAgICAgICAgICAvLyBvbiB0aGUgZmlyc3QgdGltZSB0cmlnZ2VyIHRoZSBzdGFydCBldmVudAogICAgICAgICAgICAgICAgICAgIGlmKF9maXJzdCkgewogICAgICAgICAgICAgICAgICAgICAgICB0cmlnZ2VyRXZlbnQoInRyYW5zZm9ybXN0YXJ0IiwgZXZlbnRfb2JqKTsKICAgICAgICAgICAgICAgICAgICAgICAgX2ZpcnN0ID0gZmFsc2U7CiAgICAgICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgICAgICB0cmlnZ2VyRXZlbnQoInRyYW5zZm9ybSIsIGV2ZW50X29iaik7CgogICAgICAgICAgICAgICAgICAgIGNhbmNlbEV2ZW50KGV2ZW50KTsKCiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIHRydWU7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIHJldHVybiBmYWxzZTsKICAgICAgICB9LAoKCiAgICAgICAgLy8gdGFwIGFuZCBkb3VibGUgdGFwIGdlc3R1cmUKICAgICAgICAvLyBmaXJlZCBvbiB0b3VjaGVuZAogICAgICAgIHRhcCA6IGZ1bmN0aW9uKGV2ZW50KQogICAgICAgIHsKICAgICAgICAgICAgLy8gY29tcGFyZSB0aGUga2luZCBvZiBnZXN0dXJlIGJ5IHRpbWUKICAgICAgICAgICAgdmFyIG5vdyA9IG5ldyBEYXRlKCkuZ2V0VGltZSgpOwogICAgICAgICAgICB2YXIgdG91Y2hfdGltZSA9IG5vdyAtIF90b3VjaF9zdGFydF90aW1lOwoKICAgICAgICAgICAgLy8gZG9udCBmaXJlIHdoZW4gaG9sZCBpcyBmaXJlZAogICAgICAgICAgICBpZihvcHRpb25zLmhvbGQgJiYgIShvcHRpb25zLmhvbGQgJiYgb3B0aW9ucy5ob2xkX3RpbWVvdXQgPiB0b3VjaF90aW1lKSkgewogICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyB3aGVuIHByZXZpb3VzIGV2ZW50IHdhcyB0YXAgYW5kIHRoZSB0YXAgd2FzIG1heF9pbnRlcnZhbCBtcyBhZ28KICAgICAgICAgICAgdmFyIGlzX2RvdWJsZV90YXAgPSAoZnVuY3Rpb24oKXsKICAgICAgICAgICAgICAgIGlmIChfcHJldl90YXBfcG9zICYmIG9wdGlvbnMudGFwX2RvdWJsZSAmJiBfcHJldl9nZXN0dXJlID09ICd0YXAnICYmIChfdG91Y2hfc3RhcnRfdGltZSAtIF9wcmV2X3RhcF9lbmRfdGltZSkgPCBvcHRpb25zLnRhcF9tYXhfaW50ZXJ2YWwpIHsKICAgICAgICAgICAgICAgICAgICB2YXIgeF9kaXN0YW5jZSA9IE1hdGguYWJzKF9wcmV2X3RhcF9wb3NbMF0ueCAtIF9wb3Muc3RhcnRbMF0ueCk7CiAgICAgICAgICAgICAgICAgICAgdmFyIHlfZGlzdGFuY2UgPSBNYXRoLmFicyhfcHJldl90YXBfcG9zWzBdLnkgLSBfcG9zLnN0YXJ0WzBdLnkpOwogICAgICAgICAgICAgICAgICAgIHJldHVybiAoX3ByZXZfdGFwX3BvcyAmJiBfcG9zLnN0YXJ0ICYmIE1hdGgubWF4KHhfZGlzdGFuY2UsIHlfZGlzdGFuY2UpIDwgb3B0aW9ucy50YXBfZG91YmxlX2Rpc3RhbmNlKTsKCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICByZXR1cm4gZmFsc2U7CiAgICAgICAgICAgIH0pKCk7CgogICAgICAgICAgICBpZihpc19kb3VibGVfdGFwKSB7CiAgICAgICAgICAgICAgICBfZ2VzdHVyZSA9ICdkb3VibGVfdGFwJzsKICAgICAgICAgICAgICAgIF9wcmV2X3RhcF9lbmRfdGltZSA9IG51bGw7CgogICAgICAgICAgICAgICAgdHJpZ2dlckV2ZW50KCJkb3VibGV0YXAiLCB7CiAgICAgICAgICAgICAgICAgICAgb3JpZ2luYWxFdmVudCAgIDogZXZlbnQsCiAgICAgICAgICAgICAgICAgICAgcG9zaXRpb24gICAgICAgIDogX3Bvcy5zdGFydAogICAgICAgICAgICAgICAgfSk7CiAgICAgICAgICAgICAgICBjYW5jZWxFdmVudChldmVudCk7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC8vIHNpbmdsZSB0YXAgaXMgc2luZ2xlIHRvdWNoCiAgICAgICAgICAgIGVsc2UgewogICAgICAgICAgICAgICAgX2dlc3R1cmUgPSAndGFwJzsKICAgICAgICAgICAgICAgIF9wcmV2X3RhcF9lbmRfdGltZSA9IG5vdzsKICAgICAgICAgICAgICAgIF9wcmV2X3RhcF9wb3MgPSBfcG9zLnN0YXJ0OwoKICAgICAgICAgICAgICAgIGlmKG9wdGlvbnMudGFwKSB7CiAgICAgICAgICAgICAgICAgICAgdHJpZ2dlckV2ZW50KCJ0YXAiLCB7CiAgICAgICAgICAgICAgICAgICAgICAgIG9yaWdpbmFsRXZlbnQgICA6IGV2ZW50LAogICAgICAgICAgICAgICAgICAgICAgICBwb3NpdGlvbiAgICAgICAgOiBfcG9zLnN0YXJ0CiAgICAgICAgICAgICAgICAgICAgfSk7CiAgICAgICAgICAgICAgICAgICAgY2FuY2VsRXZlbnQoZXZlbnQpOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICB9CgogICAgICAgIH0KCiAgICB9OwoKCiAgICBmdW5jdGlvbiBoYW5kbGVFdmVudHMoZXZlbnQpCiAgICB7CiAgICAgICAgc3dpdGNoKGV2ZW50LnR5cGUpCiAgICAgICAgewogICAgICAgICAgICBjYXNlICdtb3VzZWRvd24nOgogICAgICAgICAgICBjYXNlICd0b3VjaHN0YXJ0JzoKICAgICAgICAgICAgICAgIF9wb3Muc3RhcnQgPSBnZXRYWWZyb21FdmVudChldmVudCk7CiAgICAgICAgICAgICAgICBfdG91Y2hfc3RhcnRfdGltZSA9IG5ldyBEYXRlKCkuZ2V0VGltZSgpOwogICAgICAgICAgICAgICAgX2ZpbmdlcnMgPSBjb3VudEZpbmdlcnMoZXZlbnQpOwogICAgICAgICAgICAgICAgX2ZpcnN0ID0gdHJ1ZTsKICAgICAgICAgICAgICAgIF9ldmVudF9zdGFydCA9IGV2ZW50OwoKICAgICAgICAgICAgICAgIC8vIGJvcnJvd2VkIGZyb20ganF1ZXJ5IG9mZnNldCBodHRwczovL2dpdGh1Yi5jb20vanF1ZXJ5L2pxdWVyeS9ibG9iL21hc3Rlci9zcmMvb2Zmc2V0LmpzCiAgICAgICAgICAgICAgICB2YXIgYm94ID0gZWxlbWVudC5nZXRCb3VuZGluZ0NsaWVudFJlY3QoKTsKICAgICAgICAgICAgICAgIHZhciBjbGllbnRUb3AgID0gZWxlbWVudC5jbGllbnRUb3AgIHx8IGRvY3VtZW50LmJvZHkuY2xpZW50VG9wICB8fCAwOwogICAgICAgICAgICAgICAgdmFyIGNsaWVudExlZnQgPSBlbGVtZW50LmNsaWVudExlZnQgfHwgZG9jdW1lbnQuYm9keS5jbGllbnRMZWZ0IHx8IDA7CiAgICAgICAgICAgICAgICB2YXIgc2Nyb2xsVG9wICA9IHdpbmRvdy5wYWdlWU9mZnNldCB8fCBlbGVtZW50LnNjcm9sbFRvcCAgfHwgZG9jdW1lbnQuYm9keS5zY3JvbGxUb3A7CiAgICAgICAgICAgICAgICB2YXIgc2Nyb2xsTGVmdCA9IHdpbmRvdy5wYWdlWE9mZnNldCB8fCBlbGVtZW50LnNjcm9sbExlZnQgfHwgZG9jdW1lbnQuYm9keS5zY3JvbGxMZWZ0OwoKICAgICAgICAgICAgICAgIF9vZmZzZXQgPSB7CiAgICAgICAgICAgICAgICAgICAgdG9wOiBib3gudG9wICsgc2Nyb2xsVG9wIC0gY2xpZW50VG9wLAogICAgICAgICAgICAgICAgICAgIGxlZnQ6IGJveC5sZWZ0ICsgc2Nyb2xsTGVmdCAtIGNsaWVudExlZnQKICAgICAgICAgICAgICAgIH07CgogICAgICAgICAgICAgICAgX21vdXNlZG93biA9IHRydWU7CgogICAgICAgICAgICAgICAgLy8gaG9sZCBnZXN0dXJlCiAgICAgICAgICAgICAgICBnZXN0dXJlcy5ob2xkKGV2ZW50KTsKCiAgICAgICAgICAgICAgICBpZihvcHRpb25zLnByZXZlbnRfZGVmYXVsdCkgewogICAgICAgICAgICAgICAgICAgIGNhbmNlbEV2ZW50KGV2ZW50KTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgY2FzZSAnbW91c2Vtb3ZlJzoKICAgICAgICAgICAgY2FzZSAndG91Y2htb3ZlJzoKICAgICAgICAgICAgICAgIGlmKCFfbW91c2Vkb3duKSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgX2V2ZW50X21vdmUgPSBldmVudDsKICAgICAgICAgICAgICAgIF9wb3MubW92ZSA9IGdldFhZZnJvbUV2ZW50KGV2ZW50KTsKCiAgICAgICAgICAgICAgICBpZighZ2VzdHVyZXMudHJhbnNmb3JtKGV2ZW50KSkgewogICAgICAgICAgICAgICAgICAgIGdlc3R1cmVzLmRyYWcoZXZlbnQpOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICBjYXNlICdtb3VzZXVwJzoKICAgICAgICAgICAgY2FzZSAnbW91c2VvdXQnOgogICAgICAgICAgICBjYXNlICd0b3VjaGNhbmNlbCc6CiAgICAgICAgICAgIGNhc2UgJ3RvdWNoZW5kJzoKICAgICAgICAgICAgICAgIGlmKCFfbW91c2Vkb3duIHx8IChfZ2VzdHVyZSAhPSAndHJhbnNmb3JtJyAmJiBldmVudC50b3VjaGVzICYmIGV2ZW50LnRvdWNoZXMubGVuZ3RoID4gMCkpIHsKICAgICAgICAgICAgICAgICAgICByZXR1cm4gZmFsc2U7CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgX21vdXNlZG93biA9IGZhbHNlOwogICAgICAgICAgICAgICAgX2V2ZW50X2VuZCA9IGV2ZW50OwoKICAgICAgICAgICAgICAgIC8vIGRyYWcgZ2VzdHVyZQogICAgICAgICAgICAgICAgLy8gZHJhZ3N0YXJ0IGlzIHRyaWdnZXJlZCwgc28gZHJhZ2VuZCBpcyBwb3NzaWJsZQogICAgICAgICAgICAgICAgaWYoX2dlc3R1cmUgPT0gJ2RyYWcnKSB7CiAgICAgICAgICAgICAgICAgICAgdHJpZ2dlckV2ZW50KCJkcmFnZW5kIiwgewogICAgICAgICAgICAgICAgICAgICAgICBvcmlnaW5hbEV2ZW50ICAgOiBldmVudCwKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0aW9uICAgICAgIDogX2RpcmVjdGlvbiwKICAgICAgICAgICAgICAgICAgICAgICAgZGlzdGFuY2UgICAgICAgIDogX2Rpc3RhbmNlLAogICAgICAgICAgICAgICAgICAgICAgICBhbmdsZSAgICAgICAgICAgOiBfYW5nbGUKICAgICAgICAgICAgICAgICAgICB9KTsKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAvLyB0cmFuc2Zvcm0KICAgICAgICAgICAgICAgIC8vIHRyYW5zZm9ybXN0YXJ0IGlzIHRyaWdnZXJlZCwgc28gdHJhbnNmb3JtZWQgaXMgcG9zc2libGUKICAgICAgICAgICAgICAgIGVsc2UgaWYoX2dlc3R1cmUgPT0gJ3RyYW5zZm9ybScpIHsKICAgICAgICAgICAgICAgICAgICB0cmlnZ2VyRXZlbnQoInRyYW5zZm9ybWVuZCIsIHsKICAgICAgICAgICAgICAgICAgICAgICAgb3JpZ2luYWxFdmVudCAgIDogZXZlbnQsCiAgICAgICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uICAgICAgICA6IF9wb3MuY2VudGVyLAogICAgICAgICAgICAgICAgICAgICAgICBzY2FsZSAgICAgICAgICAgOiBldmVudC5zY2FsZSwKICAgICAgICAgICAgICAgICAgICAgICAgcm90YXRpb24gICAgICAgIDogZXZlbnQucm90YXRpb24KICAgICAgICAgICAgICAgICAgICB9KTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgIGVsc2UgewogICAgICAgICAgICAgICAgICAgIGdlc3R1cmVzLnRhcChfZXZlbnRfc3RhcnQpOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIF9wcmV2X2dlc3R1cmUgPSBfZ2VzdHVyZTsKCiAgICAgICAgICAgICAgICAvLyByZXNldCB2YXJzCiAgICAgICAgICAgICAgICByZXNldCgpOwogICAgICAgICAgICAgICAgYnJlYWs7CiAgICAgICAgfQogICAgfQoKCiAgICAvLyBiaW5kIGV2ZW50cyBmb3IgdG91Y2ggZGV2aWNlcwogICAgLy8gZXhjZXB0IGZvciB3aW5kb3dzIHBob25lIDcuNSwgaXQgZG9lc250IHN1cHBvcnQgdG91Y2ggZXZlbnRzLi4hCiAgICBpZignb250b3VjaHN0YXJ0JyBpbiB3aW5kb3cpIHsKICAgICAgICBlbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoInRvdWNoc3RhcnQiLCBoYW5kbGVFdmVudHMsIGZhbHNlKTsKICAgICAgICBlbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoInRvdWNobW92ZSIsIGhhbmRsZUV2ZW50cywgZmFsc2UpOwogICAgICAgIGVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcigidG91Y2hlbmQiLCBoYW5kbGVFdmVudHMsIGZhbHNlKTsKICAgICAgICBlbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoInRvdWNoY2FuY2VsIiwgaGFuZGxlRXZlbnRzLCBmYWxzZSk7CiAgICB9CiAgICAvLyBmb3Igbm9uLXRvdWNoCiAgICBlbHNlIHsKCiAgICAgICAgaWYoZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKXsgLy8gcHJldmVudCBvbGQgSUUgZXJyb3JzCiAgICAgICAgICAgIGVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcigibW91c2VvdXQiLCBmdW5jdGlvbihldmVudCkgewogICAgICAgICAgICAgICAgaWYoIWlzSW5zaWRlSGFtbWVyKGVsZW1lbnQsIGV2ZW50LnJlbGF0ZWRUYXJnZXQpKSB7CiAgICAgICAgICAgICAgICAgICAgaGFuZGxlRXZlbnRzKGV2ZW50KTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgfSwgZmFsc2UpOwogICAgICAgICAgICBlbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNldXAiLCBoYW5kbGVFdmVudHMsIGZhbHNlKTsKICAgICAgICAgICAgZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZWRvd24iLCBoYW5kbGVFdmVudHMsIGZhbHNlKTsKICAgICAgICAgICAgZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLCBoYW5kbGVFdmVudHMsIGZhbHNlKTsKCiAgICAgICAgICAgIC8vIGV2ZW50cyBmb3Igb2xkZXIgSUUKICAgICAgICB9ZWxzZSBpZihkb2N1bWVudC5hdHRhY2hFdmVudCl7CiAgICAgICAgICAgIGVsZW1lbnQuYXR0YWNoRXZlbnQoIm9ubW91c2VvdXQiLCBmdW5jdGlvbihldmVudCkgewogICAgICAgICAgICAgICAgaWYoIWlzSW5zaWRlSGFtbWVyKGVsZW1lbnQsIGV2ZW50LnJlbGF0ZWRUYXJnZXQpKSB7CiAgICAgICAgICAgICAgICAgICAgaGFuZGxlRXZlbnRzKGV2ZW50KTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgfSwgZmFsc2UpOwogICAgICAgICAgICBlbGVtZW50LmF0dGFjaEV2ZW50KCJvbm1vdXNldXAiLCBoYW5kbGVFdmVudHMpOwogICAgICAgICAgICBlbGVtZW50LmF0dGFjaEV2ZW50KCJvbm1vdXNlZG93biIsIGhhbmRsZUV2ZW50cyk7CiAgICAgICAgICAgIGVsZW1lbnQuYXR0YWNoRXZlbnQoIm9ubW91c2Vtb3ZlIiwgaGFuZGxlRXZlbnRzKTsKICAgICAgICB9CiAgICB9CgoKICAgIC8qKgogICAgICogZmluZCBpZiBlbGVtZW50IGlzIChpbnNpZGUpIGdpdmVuIHBhcmVudCBlbGVtZW50CiAgICAgKiBAcGFyYW0gICBvYmplY3QgIGVsZW1lbnQKICAgICAqIEBwYXJhbSAgIG9iamVjdCAgcGFyZW50CiAgICAgKiBAcmV0dXJuICBib29sICAgIGluc2lkZQogICAgICovCiAgICBmdW5jdGlvbiBpc0luc2lkZUhhbW1lcihwYXJlbnQsIGNoaWxkKSB7CiAgICAgICAgLy8gZ2V0IHJlbGF0ZWQgdGFyZ2V0IGZvciBJRQogICAgICAgIGlmKCFjaGlsZCAmJiB3aW5kb3cuZXZlbnQgJiYgd2luZG93LmV2ZW50LnRvRWxlbWVudCl7CiAgICAgICAgICAgIGNoaWxkID0gd2luZG93LmV2ZW50LnRvRWxlbWVudDsKICAgICAgICB9CgogICAgICAgIGlmKHBhcmVudCA9PT0gY2hpbGQpewogICAgICAgICAgICByZXR1cm4gdHJ1ZTsKICAgICAgICB9CgogICAgICAgIC8vIGxvb3Agb3ZlciBwYXJlbnROb2RlcyBvZiBjaGlsZCB1bnRpbCB3ZSBmaW5kIGhhbW1lciBlbGVtZW50CiAgICAgICAgaWYoY2hpbGQpewogICAgICAgICAgICB2YXIgbm9kZSA9IGNoaWxkLnBhcmVudE5vZGU7CiAgICAgICAgICAgIHdoaWxlKG5vZGUgIT09IG51bGwpewogICAgICAgICAgICAgICAgaWYobm9kZSA9PT0gcGFyZW50KXsKICAgICAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsKICAgICAgICAgICAgICAgIH07CiAgICAgICAgICAgICAgICBub2RlID0gbm9kZS5wYXJlbnROb2RlOwogICAgICAgICAgICB9CiAgICAgICAgfQogICAgICAgIHJldHVybiBmYWxzZTsKICAgIH0KCgogICAgLyoqCiAgICAgKiBtZXJnZSAyIG9iamVjdHMgaW50byBhIG5ldyBvYmplY3QKICAgICAqIEBwYXJhbSAgIG9iamVjdCAgb2JqMQogICAgICogQHBhcmFtICAgb2JqZWN0ICBvYmoyCiAgICAgKiBAcmV0dXJuICBvYmplY3QgIG1lcmdlZCBvYmplY3QKICAgICAqLwogICAgZnVuY3Rpb24gbWVyZ2VPYmplY3Qob2JqMSwgb2JqMikgewogICAgICAgIHZhciBvdXRwdXQgPSB7fTsKCiAgICAgICAgaWYoIW9iajIpIHsKICAgICAgICAgICAgcmV0dXJuIG9iajE7CiAgICAgICAgfQoKICAgICAgICBmb3IgKHZhciBwcm9wIGluIG9iajEpIHsKICAgICAgICAgICAgaWYgKHByb3AgaW4gb2JqMikgewogICAgICAgICAgICAgICAgb3V0cHV0W3Byb3BdID0gb2JqMltwcm9wXTsKICAgICAgICAgICAgfSBlbHNlIHsKICAgICAgICAgICAgICAgIG91dHB1dFtwcm9wXSA9IG9iajFbcHJvcF07CiAgICAgICAgICAgIH0KICAgICAgICB9CiAgICAgICAgcmV0dXJuIG91dHB1dDsKICAgIH0KCiAgICBmdW5jdGlvbiBpc0Z1bmN0aW9uKCBvYmogKXsKICAgICAgICByZXR1cm4gT2JqZWN0LnByb3RvdHlwZS50b1N0cmluZy5jYWxsKCBvYmogKSA9PSAiW29iamVjdCBGdW5jdGlvbl0iOwogICAgfQp9"></script> + <script src="data:application/x-javascript;base64,KGZ1bmN0aW9uKHdpbmRvdykgewoKdmFyIE9SSUdJTl8gPSBsb2NhdGlvbi5wcm90b2NvbCArICcvLycgKyBsb2NhdGlvbi5ob3N0OwoKLy8gY2hlY2sgZm9yIGxvY2FsIHN0b3JhZ2UKdmFyIGhhdmVMb2NhbFN0b3JhZ2UgPSAoZnVuY3Rpb24oKSB7CiAgdmFyIG1vZCA9ICdtb2QnOwogIHRyeSB7CiAgICBsb2NhbFN0b3JhZ2Uuc2V0SXRlbShtb2QsIG1vZCk7CiAgICBsb2NhbFN0b3JhZ2UucmVtb3ZlSXRlbShtb2QpOwogICAgcmV0dXJuIHRydWU7CiAgfSBjYXRjaChlKSB7CiAgICByZXR1cm4gZmFsc2U7CiAgfQp9KCkpOwoKZnVuY3Rpb24gU2xpZGVDb250cm9sbGVyKCkgewogIHRoaXMucG9wdXAgPSBudWxsOwogIHRoaXMuaXNQb3B1cCA9IHdpbmRvdy5vcGVuZXI7CgogIGlmICh0aGlzLnNldHVwRG9uZSgpKSB7CiAgICB3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcignbWVzc2FnZScsIHRoaXMub25NZXNzYWdlXy5iaW5kKHRoaXMpLCBmYWxzZSk7CgogICAgLy8gQ2xvc2UgcG9wdXBzIGlmIHdlIHJlbG9hZCB0aGUgbWFpbiB3aW5kb3cuCiAgICB3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcignYmVmb3JldW5sb2FkJywgZnVuY3Rpb24oZSkgewogICAgICBpZiAodGhpcy5wb3B1cCkgewogICAgICAgIHRoaXMucG9wdXAuY2xvc2UoKTsKICAgICAgfQogICAgfS5iaW5kKHRoaXMpLCBmYWxzZSk7CiAgfQp9CgpTbGlkZUNvbnRyb2xsZXIuUFJFU0VOVEVSX01PREVfUEFSQU0gPSAncHJlc2VudG1lJzsKClNsaWRlQ29udHJvbGxlci5wcm90b3R5cGUuc2V0dXBEb25lID0gZnVuY3Rpb24oKSB7CiAgdmFyIHBhcmFtcyA9IGxvY2F0aW9uLnNlYXJjaC5zdWJzdHJpbmcoMSkuc3BsaXQoJyYnKS5tYXAoZnVuY3Rpb24oZWwpIHsKICAgIHJldHVybiBlbC5zcGxpdCgnPScpOwogIH0pOwoKICB2YXIgcHJlc2VudE1lID0gbnVsbDsKICBmb3IgKHZhciBpID0gMCwgcGFyYW07IHBhcmFtID0gcGFyYW1zW2ldOyArK2kpIHsKICAgIGlmIChwYXJhbVswXS50b0xvd2VyQ2FzZSgpID09IFNsaWRlQ29udHJvbGxlci5QUkVTRU5URVJfTU9ERV9QQVJBTSkgewogICAgICBwcmVzZW50TWUgPSBwYXJhbVsxXSA9PSAndHJ1ZSc7CiAgICAgIGJyZWFrOwogICAgfQogIH0KCiAgaWYgKHByZXNlbnRNZSAhPT0gbnVsbCkgewogICAgaWYgKGhhdmVMb2NhbFN0b3JhZ2UpCiAgICAgIGxvY2FsU3RvcmFnZS5FTkFCTEVfUFJFU0VOVE9SX01PREUgPSBwcmVzZW50TWU7CiAgICAvLyBUT0RPOiB1c2Ugd2luZG93Lmhpc3RvcnkucHVzaFN0YXRlIHRvIHVwZGF0ZSBVUkwgaW5zdGVhZCBvZiB0aGUgcmVkaXJlY3QuCiAgICBpZiAod2luZG93Lmhpc3RvcnkucmVwbGFjZVN0YXRlKSB7CiAgICAgIHdpbmRvdy5oaXN0b3J5LnJlcGxhY2VTdGF0ZSh7fSwgJycsIGxvY2F0aW9uLnBhdGhuYW1lKTsKICAgIH0gZWxzZSB7CiAgICAgIGxvY2F0aW9uLnJlcGxhY2UobG9jYXRpb24ucGF0aG5hbWUpOwogICAgICByZXR1cm4gZmFsc2U7CiAgICB9CiAgfQoKICB2YXIgZW5hYmxlUHJlc2VudGVyTW9kZSA9IGhhdmVMb2NhbFN0b3JhZ2UgJiYgbG9jYWxTdG9yYWdlLmdldEl0ZW0oJ0VOQUJMRV9QUkVTRU5UT1JfTU9ERScpOwogIGlmIChlbmFibGVQcmVzZW50ZXJNb2RlICYmIEpTT04ucGFyc2UoZW5hYmxlUHJlc2VudGVyTW9kZSkpIHsKICAgIC8vIE9ubHkgb3BlbiBwb3B1cCBmcm9tIG1haW4gZGVjay4gRG9uJ3Qgd2FudCByZWN1cnNpdmUgcG9wdXAgb3BlbmluZyEKICAgIGlmICghdGhpcy5pc1BvcHVwKSB7CiAgICAgIHZhciBvcHRzID0gJ21lbnViYXI9bm8sbG9jYXRpb249eWVzLHJlc2l6YWJsZT15ZXMsc2Nyb2xsYmFycz1ubyxzdGF0dXM9bm8nOwogICAgICB0aGlzLnBvcHVwID0gd2luZG93Lm9wZW4obG9jYXRpb24uaHJlZiwgJ215d2luZG93Jywgb3B0cyk7CgogICAgICAvLyBMb2FkaW5nIGluIHRoZSBwb3B1cD8gVHJpZ2dlciB0aGUgaG90a2V5IGZvciB0dXJuaW5nIHByZXNlbnRlciBtb2RlIG9uLgogICAgICB0aGlzLnBvcHVwLmFkZEV2ZW50TGlzdGVuZXIoJ2xvYWQnLCBmdW5jdGlvbihlKSB7CiAgICAgICAgdmFyIGV2dCA9IHRoaXMucG9wdXAuZG9jdW1lbnQuY3JlYXRlRXZlbnQoJ0V2ZW50Jyk7CiAgICAgICAgZXZ0LmluaXRFdmVudCgna2V5ZG93bicsIHRydWUsIHRydWUpOwogICAgICAgIGV2dC5rZXlDb2RlID0gJ1AnLmNoYXJDb2RlQXQoMCk7CiAgICAgICAgdGhpcy5wb3B1cC5kb2N1bWVudC5kaXNwYXRjaEV2ZW50KGV2dCk7CiAgICAgICAgLy8gdGhpcy5wb3B1cC5kb2N1bWVudC5ib2R5LmNsYXNzTGlzdC5hZGQoJ3dpdGgtbm90ZXMnKTsKICAgICAgICAvLyBkb2N1bWVudC5ib2R5LmNsYXNzTGlzdC5hZGQoJ3BvcHVwJyk7CiAgICAgIH0uYmluZCh0aGlzKSwgZmFsc2UpOwogICAgfQogIH0KCiAgcmV0dXJuIHRydWU7Cn0KClNsaWRlQ29udHJvbGxlci5wcm90b3R5cGUub25NZXNzYWdlXyA9IGZ1bmN0aW9uKGUpIHsKICB2YXIgZGF0YSA9IGUuZGF0YTsKCiAgLy8gUmVzdHJpY3QgbWVzc2FnZXMgdG8gYmVpbmcgZnJvbSB0aGlzIG9yaWdpbi4gQWxsb3cgbG9jYWwgZGV2ZWxvcG1ldAogIC8vIGZyb20gZmlsZTovLyB0aG91Z2guCiAgLy8gVE9ETzogSXQgd291bGQgYmUgZG9wZSBpZiBGRiBpbXBsZW1lbnRlZCBsb2NhdGlvbi5vcmlnaW4hCiAgaWYgKGUub3JpZ2luICE9IE9SSUdJTl8gJiYgT1JJR0lOXy5pbmRleE9mKCdmaWxlOi8vJykgIT0gMCkgewogICAgLy8gSWdub3JlIG1lc3NhZ2VzIGZyb20gdW5yZWNvZ25pemVkIG9yaWdpbnMKICAgIHJldHVybjsKICB9CgogIC8vIGlmIChlLnNvdXJjZS5sb2NhdGlvbi5ob3N0bmFtZSAhPSAnbG9jYWxob3N0JykgewogIC8vICAgYWxlcnQoJ1NvbWVvbmUgdHJpZWQgdG8gcG9zdE1lc3NhZ2UgZnJvbSBhbiB1bmtub3duIG9yaWdpbicpOwogIC8vICAgcmV0dXJuOwogIC8vIH0KCiAgaWYgKCdrZXlDb2RlJyBpbiBkYXRhKSB7CiAgICB2YXIgZXZ0ID0gZG9jdW1lbnQuY3JlYXRlRXZlbnQoJ0V2ZW50Jyk7CiAgICBldnQuaW5pdEV2ZW50KCdrZXlkb3duJywgdHJ1ZSwgdHJ1ZSk7CiAgICBldnQua2V5Q29kZSA9IGRhdGEua2V5Q29kZTsKICAgIGRvY3VtZW50LmRpc3BhdGNoRXZlbnQoZXZ0KTsKICB9Cn07CgpTbGlkZUNvbnRyb2xsZXIucHJvdG90eXBlLnNlbmRNc2cgPSBmdW5jdGlvbihtc2cpIHsKICAvLyAvLyBTZW5kIG1lc3NhZ2UgdG8gcG9wdXAgd2luZG93LgogIC8vIGlmICh0aGlzLnBvcHVwKSB7CiAgLy8gICB0aGlzLnBvcHVwLnBvc3RNZXNzYWdlKG1zZywgT1JJR0lOXyk7CiAgLy8gfQoKICAvLyBTZW5kIG1lc3NhZ2UgdG8gbWFpbiB3aW5kb3cuCiAgaWYgKHRoaXMuaXNQb3B1cCkgewogICAgLy8gVE9ETzogSXQgd291bGQgYmUgZG9wZSBpZiBGRiBpbXBsZW1lbnRlZCBsb2NhdGlvbi5vcmlnaW4uCiAgICB3aW5kb3cub3BlbmVyLnBvc3RNZXNzYWdlKG1zZywgJyonKTsKICB9Cn07Cgp3aW5kb3cuU2xpZGVDb250cm9sbGVyID0gU2xpZGVDb250cm9sbGVyOwoKfSkod2luZG93KTsKCg=="></script> + <script src="data:application/x-javascript;base64,LyoqCiAqIEBhdXRob3JzIEx1a2UgTWFoZQogKiBAYXV0aG9ycyBFcmljIEJpZGVsbWFuCiAqIEBmaWxlb3ZlcnZpZXcgVE9ETwogKi8KZG9jdW1lbnQuY2FuY2VsRnVsbFNjcmVlbiA9IGRvY3VtZW50LndlYmtpdENhbmNlbEZ1bGxTY3JlZW4gfHwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRvY3VtZW50Lm1vekNhbmNlbEZ1bGxTY3JlZW47CgovKioKICogQGNvbnN0cnVjdG9yCiAqLwpmdW5jdGlvbiBTbGlkZURlY2soZWwpIHsKICB0aGlzLmN1clNsaWRlXyA9IDA7CiAgdGhpcy5wcmV2U2xpZGVfID0gMDsKICB0aGlzLmNvbmZpZ18gPSBudWxsOwogIHRoaXMuY29udGFpbmVyID0gZWwgfHwgZG9jdW1lbnQucXVlcnlTZWxlY3Rvcignc2xpZGVzJyk7CiAgdGhpcy5zbGlkZXMgPSBbXTsKICB0aGlzLmNvbnRyb2xsZXIgPSBudWxsOwoKICB0aGlzLmdldEN1cnJlbnRTbGlkZUZyb21IYXNoXygpOwoKICAvLyBDYWxsIHRoaXMgZXhwbGljaXRseS4gTW9kZXJuaXpyLmxvYWQgd29uJ3QgYmUgZG9uZSB1bnRpbCBhZnRlciBET00gbG9hZC4KICB0aGlzLm9uRG9tTG9hZGVkXy5iaW5kKHRoaXMpKCk7Cn0KCi8qKgogKiBAY29uc3QKICogQHByaXZhdGUKICovClNsaWRlRGVjay5wcm90b3R5cGUuU0xJREVfQ0xBU1NFU18gPSBbCiAgJ2Zhci1wYXN0JywgJ3Bhc3QnLCAnY3VycmVudCcsICduZXh0JywgJ2Zhci1uZXh0J107CgovKioKICogQGNvbnN0CiAqIEBwcml2YXRlCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLkNTU19ESVJfID0gJ3RoZW1lL2Nzcy8nOwoKLyoqCiAqIEBwcml2YXRlCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmdldEN1cnJlbnRTbGlkZUZyb21IYXNoXyA9IGZ1bmN0aW9uKCkgewogIHZhciBzbGlkZU5vID0gcGFyc2VJbnQoZG9jdW1lbnQubG9jYXRpb24uaGFzaC5zdWJzdHIoMSkpOwoKICBpZiAoc2xpZGVObykgewogICAgdGhpcy5jdXJTbGlkZV8gPSBzbGlkZU5vIC0gMTsKICB9IGVsc2UgewogICAgdGhpcy5jdXJTbGlkZV8gPSAwOwogIH0KfTsKCi8qKgogKiBAcGFyYW0ge251bWJlcn0gc2xpZGVObwogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS5sb2FkU2xpZGUgPSBmdW5jdGlvbihzbGlkZU5vKSB7CiAgaWYgKHNsaWRlTm8pIHsKICAgIHRoaXMuY3VyU2xpZGVfID0gc2xpZGVObyAtIDE7CiAgICB0aGlzLnVwZGF0ZVNsaWRlc18oKTsKICB9Cn07CgovKioKICogQHByaXZhdGUKICovClNsaWRlRGVjay5wcm90b3R5cGUub25Eb21Mb2FkZWRfID0gZnVuY3Rpb24oZSkgewogIGRvY3VtZW50LmJvZHkuY2xhc3NMaXN0LmFkZCgnbG9hZGVkJyk7IC8vIEFkZCBsb2FkZWQgY2xhc3MgZm9yIHRlbXBsYXRlcyB0byB1c2UuCgogIHRoaXMuc2xpZGVzID0gdGhpcy5jb250YWluZXIucXVlcnlTZWxlY3RvckFsbCgnc2xpZGU6bm90KFtoaWRkZW5dKTpub3QoLmhpZGRlbik6bm90KC5iYWNrZHJvcCknKTsKCiAgLy8gSWYgd2UncmUgb24gYSBzbWFydHBob25lLCBhcHBseSBzcGVjaWFsIHNhdWNlLgogIGlmIChNb2Rlcm5penIubXEoJ29ubHkgc2NyZWVuIGFuZCAobWF4LWRldmljZS13aWR0aDogNDgwcHgpJykpIHsKICAgIC8vIHZhciBzdHlsZSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpbmsnKTsKICAgIC8vIHN0eWxlLnJlbCA9ICdzdHlsZXNoZWV0JzsKICAgIC8vIHN0eWxlLnR5cGUgPSAndGV4dC9jc3MnOwogICAgLy8gc3R5bGUuaHJlZiA9IHRoaXMuQ1NTX0RJUl8gKyAncGhvbmUuY3NzJzsKICAgIC8vIGRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoJ2hlYWQnKS5hcHBlbmRDaGlsZChzdHlsZSk7CgogICAgLy8gTm8gbmVlZCBmb3Igd2lkZXNjcmVlbiBsYXlvdXQgb24gYSBwaG9uZS4KICAgIHRoaXMuY29udGFpbmVyLmNsYXNzTGlzdC5yZW1vdmUoJ2xheW91dC13aWRlc2NyZWVuJyk7CiAgfQoKICB0aGlzLmxvYWRDb25maWdfKFNMSURFX0NPTkZJRyk7CiAgdGhpcy5hZGRFdmVudExpc3RlbmVyc18oKTsKICB0aGlzLnVwZGF0ZVNsaWRlc18oKTsKCiAgLy8gQWRkIHNsaWRlIG51bWJlcnMgYW5kIHRvdGFsIHNsaWRlIGNvdW50IG1ldGFkYXRhIHRvIGVhY2ggc2xpZGUuCiAgdmFyIHRoYXQgPSB0aGlzOwogIGZvciAodmFyIGkgPSAwLCBzbGlkZTsgc2xpZGUgPSB0aGlzLnNsaWRlc1tpXTsgKytpKSB7CiAgICBzbGlkZS5kYXRhc2V0LnNsaWRlTnVtID0gaSArIDE7CiAgICBzbGlkZS5kYXRhc2V0LnRvdGFsU2xpZGVzID0gdGhpcy5zbGlkZXMubGVuZ3RoOwoKICAgIHNsaWRlLmFkZEV2ZW50TGlzdGVuZXIoJ2NsaWNrJywgZnVuY3Rpb24oZSkgewogICAgICBpZiAoZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuY29udGFpbnMoJ292ZXJ2aWV3JykpIHsKICAgICAgICB0aGF0LmxvYWRTbGlkZSh0aGlzLmRhdGFzZXQuc2xpZGVOdW0pOwogICAgICAgIGUucHJldmVudERlZmF1bHQoKTsKICAgICAgICB3aW5kb3cuc2V0VGltZW91dChmdW5jdGlvbigpIHsKICAgICAgICAgIHRoYXQudG9nZ2xlT3ZlcnZpZXcoKTsKICAgICAgICB9LCA1MDApOwogICAgICB9CiAgICB9LCBmYWxzZSk7CiAgfQoKICAvLyBOb3RlOiB0aGlzIG5lZWRzIHRvIGNvbWUgYWZ0ZXIgYWRkRXZlbnRMaXN0ZW5lcnNfKCksIHdoaWNoIGFkZHMgYQogIC8vICdrZXlkb3duJyBsaXN0ZW5lciB0aGF0IHRoaXMgY29udHJvbGxlciByZWxpZXMgb24uCgogIC8vIE1vZGVybml6ci50b3VjaCBpc24ndCBhIHN1ZmZpY2llbnQgY2hlY2sgZm9yIGRldmljZXMgdGhhdCBzdXBwb3J0IGJvdGgKICAvLyB0b3VjaCBhbmQgbW91c2UuIENyZWF0ZSB0aGUgY29udHJvbGxlciBpbiBhbGwgY2FzZXMuCiAgLy8gLy8gQWxzbywgbm8gbmVlZCB0byBzZXQgdGhpcyB1cCBpZiB3ZSdyZSBvbiBtb2JpbGUuCiAgLy8gaWYgKCFNb2Rlcm5penIudG91Y2gpIHsKICAgIHRoaXMuY29udHJvbGxlciA9IG5ldyBTbGlkZUNvbnRyb2xsZXIodGhpcyk7CiAgICBpZiAodGhpcy5jb250cm9sbGVyLmlzUG9wdXApIHsKICAgICAgZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuYWRkKCdwb3B1cCcpOwogICAgfQogIC8vfQp9OwoKLyoqCiAqIEBwcml2YXRlCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmFkZEV2ZW50TGlzdGVuZXJzXyA9IGZ1bmN0aW9uKCkgewogIGRvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2tleWRvd24nLCB0aGlzLm9uQm9keUtleURvd25fLmJpbmQodGhpcyksIHRydWUpOwogIHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKCdwb3BzdGF0ZScsIHRoaXMub25Qb3BTdGF0ZV8uYmluZCh0aGlzKSwgZmFsc2UpOwoKICAvLyB2YXIgdHJhbnNFbmRFdmVudE5hbWVzID0gewogIC8vICAgJ1dlYmtpdFRyYW5zaXRpb24nOiAnd2Via2l0VHJhbnNpdGlvbkVuZCcsCiAgLy8gICAnTW96VHJhbnNpdGlvbic6ICd0cmFuc2l0aW9uZW5kJywKICAvLyAgICdPVHJhbnNpdGlvbic6ICdvVHJhbnNpdGlvbkVuZCcsCiAgLy8gICAnbXNUcmFuc2l0aW9uJzogJ01TVHJhbnNpdGlvbkVuZCcsCiAgLy8gICAndHJhbnNpdGlvbic6ICd0cmFuc2l0aW9uZW5kJwogIC8vIH07CiAgLy8KICAvLyAvLyBGaW5kIHRoZSBjb3JyZWN0IHRyYW5zaXRpb25FbmQgdmVuZG9yIHByZWZpeC4KICAvLyB3aW5kb3cudHJhbnNFbmRFdmVudE5hbWUgPSB0cmFuc0VuZEV2ZW50TmFtZXNbCiAgLy8gICAgIE1vZGVybml6ci5wcmVmaXhlZCgndHJhbnNpdGlvbicpXTsKICAvLwogIC8vIC8vIFdoZW4gc2xpZGVzIGFyZSBkb25lIHRyYW5zaXRpb25pbmcsIGtpY2tvZmYgbG9hZGluZyBpZnJhbWVzLgogIC8vIC8vIE5vdGU6IHdlJ3JlIG9ubHkgbG9va2luZyBhdCBhIHNpbmdsZSB0cmFuc2l0aW9uIChvbiB0aGUgc2xpZGUpLiBUaGlzCiAgLy8gLy8gZG9lc24ndCBpbmNsdWRlIGF1dG9idWlsZHMgdGhlIHNsaWRlcyBtYXkgaGF2ZS4gQWxzbywgaWYgdGhlIHNsaWRlCiAgLy8gLy8gdHJhbnNpdGlvbnMgb24gbXVsdGlwbGUgcHJvcGVydGllcyAoZS5nLiBub3QganVzdCAnYWxsJyksIHRoaXMgZG9lc24ndAogIC8vIC8vIGhhbmRsZSB0aGF0IGNhc2UuCiAgLy8gdGhpcy5jb250YWluZXIuYWRkRXZlbnRMaXN0ZW5lcih0cmFuc0VuZEV2ZW50TmFtZSwgZnVuY3Rpb24oZSkgewogIC8vICAgICB0aGlzLmVuYWJsZVNsaWRlRnJhbWVzXyh0aGlzLmN1clNsaWRlXyk7CiAgLy8gfS5iaW5kKHRoaXMpLCBmYWxzZSk7CgogIC8vIGRvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ3NsaWRlZW50ZXInLCBmdW5jdGlvbihlKSB7CiAgLy8gICB2YXIgc2xpZGUgPSBlLnRhcmdldDsKICAvLyAgIHdpbmRvdy5zZXRUaW1lb3V0KGZ1bmN0aW9uKCkgewogIC8vICAgICB0aGlzLmVuYWJsZVNsaWRlRnJhbWVzXyhlLnNsaWRlTnVtYmVyKTsKICAvLyAgICAgdGhpcy5lbmFibGVTbGlkZUZyYW1lc18oZS5zbGlkZU51bWJlciArIDEpOwogIC8vICAgfS5iaW5kKHRoaXMpLCAzMDApOwogIC8vIH0uYmluZCh0aGlzKSwgZmFsc2UpOwp9OwoKLyoqCiAqIEBwcml2YXRlCiAqIEBwYXJhbSB7RXZlbnR9IGUgVGhlIHBvcCBldmVudC4KICovClNsaWRlRGVjay5wcm90b3R5cGUub25Qb3BTdGF0ZV8gPSBmdW5jdGlvbihlKSB7CiAgaWYgKGUuc3RhdGUgIT0gbnVsbCkgewogICAgdGhpcy5jdXJTbGlkZV8gPSBlLnN0YXRlOwogICAgdGhpcy51cGRhdGVTbGlkZXNfKHRydWUpOwogIH0KfTsKCi8qKgogKiBAcGFyYW0ge0V2ZW50fSBlCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLm9uQm9keUtleURvd25fID0gZnVuY3Rpb24oZSkgewoKICAvLyBEb24ndCBoYW5kbGUga2V5cyBpZiBhbiBpbnB1dCBvciB0ZXh0IGFyZWEgaXMgYWN0aXZlLiBEbyBzcGVjaWFsIGhhbmRsaW5nCiAgLy8gZm9yIHNlbGVjdGl6ZSBiZWNhdXNlIGl0IGtlZXBzIGZvY3VzIHdpdGhpbiBhbiBvZmZzY3JlZW4gdGV4dGJveCBldmVuCiAgLy8gd2hlbiBqdXN0IHRoZSBzZWxlY3QgY29udHJvbCBpcyBzaG93aW5nIC0tIGZvciBzZWxlY3RpemUgd2UgcmVmcmFpbiBmcm9tCiAgLy8gaGFuZGxpbmcga2V5cyBvbmx5IHdoZW4gdGhlIHRleHQgaW5wdXQgaXMgYWN0aXZlIG9yIHdoZW4gdGhlIHVwIG9yIGRvd24KICAvLyBhcnJvdyBrZXkgaXMgcHJlc3NlZCAod2hpY2ggaXMgdXNlZCB0byBvcGVuIHRoZSBsaXN0IGZyb20gdGhlIGtleWJvYXJkKQogIHZhciBwYXJlbnROb2RlID0gZS50YXJnZXQucGFyZW50Tm9kZSB8fCBlLnRhcmdldDsgLy8gaGFuZGxlIG5vIHBhcmVudAogIGlmIChwYXJlbnROb2RlLmNsYXNzTGlzdCAmJiBwYXJlbnROb2RlLmNsYXNzTGlzdC5jb250YWlucygnc2VsZWN0aXplLWlucHV0JykpIHsKICAgIGlmIChwYXJlbnROb2RlLmNsYXNzTGlzdC5jb250YWlucygnaW5wdXQtYWN0aXZlJykgfHwgIC8vIHRleHQgaW5wdXQgaXMgYWN0aXZlCiAgICAgICAoZS5rZXlDb2RlID09IDM4KSB8fCAoZS5rZXlDb2RlID09IDQwKSkgICAgICAgICAgICAvLyB1cCBvciBkb3duIGFycm93CiAgICAgIHJldHVybjsKICB9IGVsc2UgaWYgKC9eKGlucHV0fHRleHRhcmVhKSQvaS50ZXN0KGUudGFyZ2V0Lm5vZGVOYW1lKSB8fAogICAgICBlLnRhcmdldC5pc0NvbnRlbnRFZGl0YWJsZSkgewogICAgcmV0dXJuOwogIH0KCiAgLy8gRm9yd2FyZCBrZXlkb3ducyB0byB0aGUgbWFpbiBzbGlkZXMgaWYgd2UncmUgdGhlIHBvcHVwLgogIGlmICh0aGlzLmNvbnRyb2xsZXIgJiYgdGhpcy5jb250cm9sbGVyLmlzUG9wdXApIHsKICAgIHRoaXMuY29udHJvbGxlci5zZW5kTXNnKHtrZXlDb2RlOiBlLmtleUNvZGV9KTsKICB9CgogIHN3aXRjaCAoZS5rZXlDb2RlKSB7CiAgICBjYXNlIDEzOiAvLyBFbnRlcgogICAgICBpZiAoZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuY29udGFpbnMoJ292ZXJ2aWV3JykpIHsKICAgICAgICB0aGlzLnRvZ2dsZU92ZXJ2aWV3KCk7CiAgICAgIH0KICAgICAgYnJlYWs7CgogICAgY2FzZSAzOTogLy8gcmlnaHQgYXJyb3cKICAgIGNhc2UgMzI6IC8vIHNwYWNlCiAgICBjYXNlIDM0OiAvLyBQZ0RuCiAgICAgIHRoaXMubmV4dFNsaWRlKCk7CiAgICAgIGUucHJldmVudERlZmF1bHQoKTsKICAgICAgYnJlYWs7CgogICAgY2FzZSAzNzogLy8gbGVmdCBhcnJvdwogICAgY2FzZSA4OiAvLyBCYWNrc3BhY2UKICAgIGNhc2UgMzM6IC8vIFBnVXAKICAgICAgdGhpcy5wcmV2U2xpZGUoKTsKICAgICAgZS5wcmV2ZW50RGVmYXVsdCgpOwogICAgICBicmVhazsKCiAgICBjYXNlIDQwOiAvLyBkb3duIGFycm93CiAgICAgIHRoaXMubmV4dFNsaWRlKCk7CiAgICAgIGUucHJldmVudERlZmF1bHQoKTsKICAgICAgYnJlYWs7CgogICAgY2FzZSAzODogLy8gdXAgYXJyb3cKICAgICAgdGhpcy5wcmV2U2xpZGUoKTsKICAgICAgZS5wcmV2ZW50RGVmYXVsdCgpOwogICAgICBicmVhazsKCiAgICBjYXNlIDcyOiAvLyBIOiBUb2dnbGUgY29kZSBoaWdobGlnaHRpbmcKICAgICAgZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QudG9nZ2xlKCdoaWdobGlnaHQtY29kZScpOwogICAgICBicmVhazsKCiAgICBjYXNlIDc5OiAvLyBPOiBUb2dnbGUgb3ZlcnZpZXcKICAgICAgdGhpcy50b2dnbGVPdmVydmlldygpOwogICAgICBicmVhazsKCiAgICBjYXNlIDgwOiAvLyBQCiAgICAgIGlmICh0aGlzLmNvbnRyb2xsZXIgJiYgdGhpcy5jb250cm9sbGVyLmlzUG9wdXApIHsKICAgICAgICBkb2N1bWVudC5ib2R5LmNsYXNzTGlzdC50b2dnbGUoJ3dpdGgtbm90ZXMnKTsKICAgICAgfSBlbHNlIGlmICh0aGlzLmNvbnRyb2xsZXIgJiYgIXRoaXMuY29udHJvbGxlci5wb3B1cCkgewogICAgICAgIGRvY3VtZW50LmJvZHkuY2xhc3NMaXN0LnRvZ2dsZSgnd2l0aC1ub3RlcycpOwogICAgICB9CiAgICAgIGJyZWFrOwoKICAgIGNhc2UgODI6IC8vIFIKICAgICAgLy8gVE9ETzogaW1wbGVtZW50IHJlZnJlc2ggb24gbWFpbiBzbGlkZXMgd2hlbiBwb3B1cCBpcyByZWZyZXNoZWQuCiAgICAgIGJyZWFrOwoKICAgIGNhc2UgMjc6IC8vIEVTQzogSGlkZSBub3RlcyBhbmQgaGlnaGxpZ2h0aW5nCiAgICAgIGRvY3VtZW50LmJvZHkuY2xhc3NMaXN0LnJlbW92ZSgnd2l0aC1ub3RlcycpOwogICAgICBkb2N1bWVudC5ib2R5LmNsYXNzTGlzdC5yZW1vdmUoJ2hpZ2hsaWdodC1jb2RlJyk7CgogICAgICBpZiAoZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuY29udGFpbnMoJ292ZXJ2aWV3JykpIHsKICAgICAgICB0aGlzLnRvZ2dsZU92ZXJ2aWV3KCk7CiAgICAgIH0KICAgICAgYnJlYWs7CgogICAgY2FzZSA3MDogLy8gRjogVG9nZ2xlIGZ1bGxzY3JlZW4KICAgICAgIC8vIE9ubHkgcmVzcGVjdCAnZicgb24gYm9keS4gRG9uJ3Qgd2FudCB0byBjYXB0dXJlIGtleXMgZnJvbSBhbiA8aW5wdXQ+LgogICAgICAgLy8gQWxzbywgaWdub3JlIGJyb3dzZXIncyBmdWxsc2NyZWVuIHNob3J0Y3V0IChjbWQrc2hpZnQrZikgc28gd2UgZG9uJ3QKICAgICAgIC8vIGdldCB0cmFwcGVkIGluIGZ1bGxzY3JlZW4hCiAgICAgIGlmIChkb2N1bWVudC5jYW5jZWxGdWxsU2NyZWVuICE9PSB1bmRlZmluZWQgJiYgZS50YXJnZXQgPT0gZG9jdW1lbnQuYm9keSAmJiAhKGUuc2hpZnRLZXkgJiYgZS5tZXRhS2V5KSkgewogICAgICAgIGlmIChkb2N1bWVudC5tb3pGdWxsU2NyZWVuICE9PSB1bmRlZmluZWQgJiYgIWRvY3VtZW50Lm1vekZ1bGxTY3JlZW4pIHsKICAgICAgICAgIGRvY3VtZW50LmJvZHkubW96UmVxdWVzdEZ1bGxTY3JlZW4oRWxlbWVudC5BTExPV19LRVlCT0FSRF9JTlBVVCk7CiAgICAgICAgfSBlbHNlIGlmIChkb2N1bWVudC53ZWJraXRJc0Z1bGxTY3JlZW4gIT09IHVuZGVmaW5lZCAmJiAhZG9jdW1lbnQud2Via2l0SXNGdWxsU2NyZWVuKSB7CiAgICAgICAgICBkb2N1bWVudC5ib2R5LndlYmtpdFJlcXVlc3RGdWxsU2NyZWVuKEVsZW1lbnQuQUxMT1dfS0VZQk9BUkRfSU5QVVQpOwogICAgICAgIH0gZWxzZSB7CiAgICAgICAgICBkb2N1bWVudC5jYW5jZWxGdWxsU2NyZWVuKCk7CiAgICAgICAgfQogICAgICB9CiAgICAgIGJyZWFrOwoKICAgIGNhc2UgODc6IC8vIFc6IFRvZ2dsZSB3aWRlc2NyZWVuCiAgICAgIC8vIE9ubHkgcmVzcGVjdCAndycgb24gYm9keS4gRG9uJ3Qgd2FudCB0byBjYXB0dXJlIGtleXMgZnJvbSBhbiA8aW5wdXQ+LgogICAgICBpZiAoZS50YXJnZXQgPT0gZG9jdW1lbnQuYm9keSAmJiAhKGUuc2hpZnRLZXkgJiYgZS5tZXRhS2V5KSkgewogICAgICAgIHRoaXMuY29udGFpbmVyLmNsYXNzTGlzdC50b2dnbGUoJ2xheW91dC13aWRlc2NyZWVuJyk7CiAgICAgIH0KICAgICAgYnJlYWs7CiAgfQp9OwoKLyoqCiAqCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmZvY3VzT3ZlcnZpZXdfID0gZnVuY3Rpb24oKSB7CiAgdmFyIG92ZXJ2aWV3ID0gZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuY29udGFpbnMoJ292ZXJ2aWV3Jyk7CgogIGZvciAodmFyIGkgPSAwLCBzbGlkZTsgc2xpZGUgPSB0aGlzLnNsaWRlc1tpXTsgaSsrKSB7CiAgICBzbGlkZS5zdHlsZVtNb2Rlcm5penIucHJlZml4ZWQoJ3RyYW5zZm9ybScpXSA9IG92ZXJ2aWV3ID8KICAgICAgICAndHJhbnNsYXRlWigtMjUwMHB4KSB0cmFuc2xhdGUoJyArICgoIGkgLSB0aGlzLmN1clNsaWRlXyApICogMTA1KSArCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICclLCAwJSknIDogJyc7CiAgfQp9OwoKLyoqCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLnRvZ2dsZU92ZXJ2aWV3ID0gZnVuY3Rpb24oKSB7CiAgZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QudG9nZ2xlKCdvdmVydmlldycpOwoKICB0aGlzLmZvY3VzT3ZlcnZpZXdfKCk7Cn07CgovKioKICogQHByaXZhdGUKICovClNsaWRlRGVjay5wcm90b3R5cGUubG9hZENvbmZpZ18gPSBmdW5jdGlvbihjb25maWcpIHsKICBpZiAoIWNvbmZpZykgewogICAgcmV0dXJuOwogIH0KCiAgdGhpcy5jb25maWdfID0gY29uZmlnOwoKICB2YXIgc2V0dGluZ3MgPSB0aGlzLmNvbmZpZ18uc2V0dGluZ3M7CgogIHRoaXMubG9hZFRoZW1lXyhzZXR0aW5ncy50aGVtZSB8fCBbXSk7CgogIGlmIChzZXR0aW5ncy5mYXZJY29uKSB7CiAgICB0aGlzLmFkZEZhdkljb25fKHNldHRpbmdzLmZhdkljb24pOwogIH0KCiAgLy8gUHJldHR5cHJpbnQuIERlZmF1bHQgdG8gb24uCiAgaWYgKCEhISgndXNlUHJldHRpZnknIGluIHNldHRpbmdzKSB8fCBzZXR0aW5ncy51c2VQcmV0dGlmeSkgewogICAgcHJldHR5UHJpbnQoKTsKICB9CgogIGlmIChzZXR0aW5ncy5hbmFseXRpY3MpIHsKICAgIHRoaXMubG9hZEFuYWx5dGljc18oKTsKICB9CgogIGlmIChzZXR0aW5ncy5mb250cykgewogICAgdGhpcy5hZGRGb250c18oc2V0dGluZ3MuZm9udHMpOwogIH0KCiAgLy8gQnVpbGRzLiBEZWZhdWx0IHRvIG9uLgogIGlmICghISEoJ3VzZUJ1aWxkcycgaW4gc2V0dGluZ3MpIHx8IHNldHRpbmdzLnVzZUJ1aWxkcykgewogICAgdGhpcy5tYWtlQnVpbGRMaXN0c18oKTsKICB9CgogIGlmIChzZXR0aW5ncy50aXRsZSkgewogICAgZG9jdW1lbnQudGl0bGUgPSBzZXR0aW5ncy50aXRsZS5yZXBsYWNlKC88YnJcLz8+LywgJyAnKTsKICAgIGlmIChzZXR0aW5ncy5ldmVudEluZm8gJiYgc2V0dGluZ3MuZXZlbnRJbmZvLnRpdGxlKSB7CiAgICAgIGRvY3VtZW50LnRpdGxlICs9ICAnIC0gJyArIHNldHRpbmdzLmV2ZW50SW5mby50aXRsZTsKICAgIH0KICAgIGRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoJ1tkYXRhLWNvbmZpZy10aXRsZV0nKS5pbm5lckhUTUwgPSBzZXR0aW5ncy50aXRsZTsKICB9CgogIGlmIChzZXR0aW5ncy5zdWJ0aXRsZSkgewogICAgZG9jdW1lbnQucXVlcnlTZWxlY3RvcignW2RhdGEtY29uZmlnLXN1YnRpdGxlXScpLmlubmVySFRNTCA9IHNldHRpbmdzLnN1YnRpdGxlOwogIH0KCiAgaWYgKHRoaXMuY29uZmlnXy5wcmVzZW50ZXJzKSB7CiAgICB2YXIgcHJlc2VudGVycyA9IHRoaXMuY29uZmlnXy5wcmVzZW50ZXJzOwogICAgdmFyIGRhdGFDb25maWdDb250YWN0ID0gZG9jdW1lbnQucXVlcnlTZWxlY3RvcignW2RhdGEtY29uZmlnLWNvbnRhY3RdJyk7CgogICAgdmFyIGh0bWwgPSBbXTsKICAgIGlmIChwcmVzZW50ZXJzLmxlbmd0aCA9PSAxKSB7CiAgICAgIHZhciBwID0gcHJlc2VudGVyc1swXTsKCiAgICAgIHZhciBwcmVzZW50ZXJUaXRsZSA9IFtwLm5hbWVdOwogICAgICBpZiAocC5jb21wYW55KSB7CiAgICAgICAgcHJlc2VudGVyVGl0bGUucHVzaChwLmNvbXBhbnkpOwogICAgICB9CiAgICAgIGh0bWwgPSBwcmVzZW50ZXJUaXRsZS5qb2luKCcgLSAnKSArICc8YnI+JzsKCiAgICAgIHZhciBncGx1cyA9IHAuZ3BsdXMgPyAnPHNwYW4+Zys8L3NwYW4+PGEgaHJlZj0iJyArIHAuZ3BsdXMgKwogICAgICAgICAgJyI+JyArIHAuZ3BsdXMucmVwbGFjZSgvaHR0cHM/OlwvXC8vLCAnJykgKyAnPC9hPicgOiAnJzsKCiAgICAgIHZhciB0d2l0dGVyID0gcC50d2l0dGVyID8gJzxzcGFuPnR3aXR0ZXI8L3NwYW4+JyArCiAgICAgICAgICAnPGEgaHJlZj0iaHR0cDovL3R3aXR0ZXIuY29tLycgKyBwLnR3aXR0ZXIgKyAnIj4nICsKICAgICAgICAgIHAudHdpdHRlciArICc8L2E+JyA6ICcnOwoKICAgICAgdmFyIHd3dyA9IHAud3d3ID8gJzxzcGFuPnd3dzwvc3Bhbj48YSBocmVmPSInICsgcC53d3cgKwogICAgICAgICAgICAgICAgICAgICAgICAnIj4nICsgcC53d3cucmVwbGFjZSgvaHR0cHM/OlwvXC8vLCAnJykgKyAnPC9hPicgOiAnJzsKCiAgICAgIHZhciBnaXRodWIgPSBwLmdpdGh1YiA/ICc8c3Bhbj5naXRodWI8L3NwYW4+PGEgaHJlZj0iJyArIHAuZ2l0aHViICsKICAgICAgICAgICciPicgKyBwLmdpdGh1Yi5yZXBsYWNlKC9odHRwcz86XC9cLy8sICcnKSArICc8L2E+JyA6ICcnOwoKICAgICAgdmFyIGh0bWwyID0gW2dwbHVzLCB0d2l0dGVyLCB3d3csIGdpdGh1Yl0uam9pbignPGJyPicpOwoKICAgICAgaWYgKGRhdGFDb25maWdDb250YWN0KSB7CiAgICAgICAgZGF0YUNvbmZpZ0NvbnRhY3QuaW5uZXJIVE1MID0gaHRtbDI7CiAgICAgIH0KICAgIH0gZWxzZSB7CiAgICAgIGZvciAodmFyIGkgPSAwLCBwOyBwID0gcHJlc2VudGVyc1tpXTsgKytpKSB7CiAgICAgICAgaHRtbC5wdXNoKHAubmFtZSArICcgLSAnICsgcC5jb21wYW55KTsKICAgICAgfQogICAgICBodG1sID0gaHRtbC5qb2luKCc8YnI+Jyk7CiAgICAgIGlmIChkYXRhQ29uZmlnQ29udGFjdCkgewogICAgICAgIGRhdGFDb25maWdDb250YWN0LmlubmVySFRNTCA9IGh0bWw7CiAgICAgIH0KICAgIH0KCiAgICB2YXIgZGF0YUNvbmZpZ1ByZXNlbnRlciA9IGRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoJ1tkYXRhLWNvbmZpZy1wcmVzZW50ZXJdJyk7CiAgICBpZiAoZGF0YUNvbmZpZ1ByZXNlbnRlcikgewogICAgICBkYXRhQ29uZmlnUHJlc2VudGVyLmlubmVySFRNTCA9IGh0bWw7CiAgICAgIGlmIChzZXR0aW5ncy5ldmVudEluZm8pIHsKICAgICAgICB2YXIgZGF0ZSA9IHNldHRpbmdzLmV2ZW50SW5mby5kYXRlOwogICAgICAgIHZhciBkYXRlSW5mbyA9IGRhdGUgPyAnIC0gPHRpbWU+JyArIGRhdGUgKyAnPC90aW1lPicgOiAnJzsKICAgICAgICBkYXRhQ29uZmlnUHJlc2VudGVyLmlubmVySFRNTCArPSBzZXR0aW5ncy5ldmVudEluZm8udGl0bGUgKyBkYXRlSW5mbzsKICAgICAgfQogICAgfQogIH0KCiAgLyogTGVmdC9SaWdodCB0YXAgYXJlYXMuIERlZmF1bHQgdG8gaW5jbHVkaW5nLiAqLwogIGlmICghISEoJ2VuYWJsZVNsaWRlQXJlYXMnIGluIHNldHRpbmdzKSB8fCBzZXR0aW5ncy5lbmFibGVTbGlkZUFyZWFzKSB7CiAgICB2YXIgZWwgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdkaXYnKTsKICAgIGVsLmNsYXNzTGlzdC5hZGQoJ3NsaWRlLWFyZWEnKTsKICAgIGVsLmlkID0gJ3ByZXYtc2xpZGUtYXJlYSc7CiAgICBlbC5hZGRFdmVudExpc3RlbmVyKCdjbGljaycsIHRoaXMucHJldlNsaWRlLmJpbmQodGhpcyksIGZhbHNlKTsKICAgIHRoaXMuY29udGFpbmVyLmFwcGVuZENoaWxkKGVsKTsKCiAgICB2YXIgZWwgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdkaXYnKTsKICAgIGVsLmNsYXNzTGlzdC5hZGQoJ3NsaWRlLWFyZWEnKTsKICAgIGVsLmlkID0gJ25leHQtc2xpZGUtYXJlYSc7CiAgICBlbC5hZGRFdmVudExpc3RlbmVyKCdjbGljaycsIHRoaXMubmV4dFNsaWRlLmJpbmQodGhpcyksIGZhbHNlKTsKICAgIHRoaXMuY29udGFpbmVyLmFwcGVuZENoaWxkKGVsKTsKICB9CgogIGlmIChNb2Rlcm5penIudG91Y2ggJiYgKCEhISgnZW5hYmxlVG91Y2gnIGluIHNldHRpbmdzKSB8fAogICAgICBzZXR0aW5ncy5lbmFibGVUb3VjaCkpIHsKICAgIHZhciBzZWxmID0gdGhpczsKCiAgICAvLyBOb3RlOiB0aGlzIHByZXZlbnRzIG1vYmlsZSB6b29tIGluL291dCBidXQgcHJldmVudHMgaU9TIGZyb20gZG9pbmcKICAgIC8vIGl0J3MgY3Jhenkgc2Nyb2xsIG92ZXIgZWZmZWN0IGFuZCBkaXNhbGlnbmluZyB0aGUgc2xpZGVzLgogICAgd2luZG93LmFkZEV2ZW50TGlzdGVuZXIoJ3RvdWNoc3RhcnQnLCBmdW5jdGlvbihlKSB7CiAgICAgIGUucHJldmVudERlZmF1bHQoKTsKICAgIH0sIGZhbHNlKTsKCiAgICB2YXIgaGFtbWVyID0gbmV3IEhhbW1lcih0aGlzLmNvbnRhaW5lcik7CiAgICBoYW1tZXIub25kcmFnZW5kID0gZnVuY3Rpb24oZSkgewogICAgICBpZiAoZS5kaXJlY3Rpb24gPT0gJ3JpZ2h0JyB8fCBlLmRpcmVjdGlvbiA9PSAnZG93bicpIHsKICAgICAgICBzZWxmLnByZXZTbGlkZSgpOwogICAgICB9IGVsc2UgaWYgKGUuZGlyZWN0aW9uID09ICdsZWZ0JyB8fCBlLmRpcmVjdGlvbiA9PSAndXAnKSB7CiAgICAgICAgc2VsZi5uZXh0U2xpZGUoKTsKICAgICAgfQogICAgfTsKICB9Cn07CgovKioKICogQHByaXZhdGUKICogQHBhcmFtIHtBcnJheS48c3RyaW5nPn0gZm9udHMKICovClNsaWRlRGVjay5wcm90b3R5cGUuYWRkRm9udHNfID0gZnVuY3Rpb24oZm9udHMpIHsKICB2YXIgZWwgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaW5rJyk7CiAgZWwucmVsID0gJ3N0eWxlc2hlZXQnOwogIGVsLmhyZWYgPSAoJ2h0dHBzOicgPT0gZG9jdW1lbnQubG9jYXRpb24ucHJvdG9jb2wgPyAnaHR0cHMnIDogJ2h0dHAnKSArCiAgICAgICc6Ly9mb250cy5nb29nbGVhcGlzLmNvbS9jc3M/ZmFtaWx5PScgKyBmb250cy5qb2luKCd8JykgKyAnJnYyJzsKICBkb2N1bWVudC5xdWVyeVNlbGVjdG9yKCdoZWFkJykuYXBwZW5kQ2hpbGQoZWwpOwp9OwoKLyoqCiAqIEBwcml2YXRlCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmJ1aWxkTmV4dEl0ZW1fID0gZnVuY3Rpb24oKSB7CiAgdmFyIHNsaWRlID0gdGhpcy5zbGlkZXNbdGhpcy5jdXJTbGlkZV9dOwogIHZhciB0b0J1aWxkID0gc2xpZGUucXVlcnlTZWxlY3RvcignLnRvLWJ1aWxkJyk7CiAgdmFyIGJ1aWx0ID0gc2xpZGUucXVlcnlTZWxlY3RvcignLmJ1aWxkLWN1cnJlbnQnKTsKCiAgaWYgKGJ1aWx0KSB7CiAgICBidWlsdC5jbGFzc0xpc3QucmVtb3ZlKCdidWlsZC1jdXJyZW50Jyk7CiAgICBpZiAoYnVpbHQuY2xhc3NMaXN0LmNvbnRhaW5zKCdmYWRlJykpIHsKICAgICAgYnVpbHQuY2xhc3NMaXN0LmFkZCgnYnVpbGQtZmFkZScpOwogICAgfQogIH0KCiAgaWYgKCF0b0J1aWxkKSB7CiAgICB2YXIgaXRlbXMgPSBzbGlkZS5xdWVyeVNlbGVjdG9yQWxsKCcuYnVpbGQtZmFkZScpOwogICAgZm9yICh2YXIgaiA9IDAsIGl0ZW07IGl0ZW0gPSBpdGVtc1tqXTsgaisrKSB7CiAgICAgIGl0ZW0uY2xhc3NMaXN0LnJlbW92ZSgnYnVpbGQtZmFkZScpOwogICAgfQogICAgcmV0dXJuIGZhbHNlOwogIH0KCiAgdG9CdWlsZC5jbGFzc0xpc3QucmVtb3ZlKCd0by1idWlsZCcpOwogIHRvQnVpbGQuY2xhc3NMaXN0LmFkZCgnYnVpbGQtY3VycmVudCcpOwoKICByZXR1cm4gdHJ1ZTsKfTsKCi8qKgogKiBAcGFyYW0ge2Jvb2xlYW49fSBvcHRfZG9udFB1c2gKICovClNsaWRlRGVjay5wcm90b3R5cGUucHJldlNsaWRlID0gZnVuY3Rpb24ob3B0X2RvbnRQdXNoKSB7CiAgaWYgKHRoaXMuY3VyU2xpZGVfID4gMCkgewogICAgdmFyIGJvZHlDbGFzc0xpc3QgPSBkb2N1bWVudC5ib2R5LmNsYXNzTGlzdDsKICAgIGJvZHlDbGFzc0xpc3QucmVtb3ZlKCdoaWdobGlnaHQtY29kZScpOwoKICAgIC8vIFRvZ2dsZSBvZmYgc3BlYWtlciBub3RlcyBpZiB0aGV5J3JlIHNob3dpbmcgd2hlbiB3ZSBtb3ZlIGJhY2t3YXJkcyBvbiB0aGUKICAgIC8vIG1haW4gc2xpZGVzLiBJZiB3ZSdyZSB0aGUgc3BlYWtlciBub3RlcyBwb3B1cCwgbGVhdmUgdGhlbSB1cC4KICAgIGlmICh0aGlzLmNvbnRyb2xsZXIgJiYgIXRoaXMuY29udHJvbGxlci5pc1BvcHVwKSB7CiAgICAgIGJvZHlDbGFzc0xpc3QucmVtb3ZlKCd3aXRoLW5vdGVzJyk7CiAgICB9IGVsc2UgaWYgKCF0aGlzLmNvbnRyb2xsZXIpIHsKICAgICAgYm9keUNsYXNzTGlzdC5yZW1vdmUoJ3dpdGgtbm90ZXMnKTsKICAgIH0KCiAgICB0aGlzLnByZXZTbGlkZV8gPSB0aGlzLmN1clNsaWRlXy0tOwoKICAgIHRoaXMudXBkYXRlU2xpZGVzXyhvcHRfZG9udFB1c2gpOwogIH0KfTsKCi8qKgogKiBAcGFyYW0ge2Jvb2xlYW49fSBvcHRfZG9udFB1c2gKICovClNsaWRlRGVjay5wcm90b3R5cGUubmV4dFNsaWRlID0gZnVuY3Rpb24ob3B0X2RvbnRQdXNoKSB7CiAgaWYgKCFkb2N1bWVudC5ib2R5LmNsYXNzTGlzdC5jb250YWlucygnb3ZlcnZpZXcnKSAmJiB0aGlzLmJ1aWxkTmV4dEl0ZW1fKCkpIHsKICAgIHJldHVybjsKICB9CgogIGlmICh0aGlzLmN1clNsaWRlXyA8IHRoaXMuc2xpZGVzLmxlbmd0aCAtIDEpIHsKICAgIHZhciBib2R5Q2xhc3NMaXN0ID0gZG9jdW1lbnQuYm9keS5jbGFzc0xpc3Q7CiAgICBib2R5Q2xhc3NMaXN0LnJlbW92ZSgnaGlnaGxpZ2h0LWNvZGUnKTsKCiAgICAvLyBUb2dnbGUgb2ZmIHNwZWFrZXIgbm90ZXMgaWYgdGhleSdyZSBzaG93aW5nIHdoZW4gd2UgYWR2YW5jZWQgb24gdGhlIG1haW4KICAgIC8vIHNsaWRlcy4gSWYgd2UncmUgdGhlIHNwZWFrZXIgbm90ZXMgcG9wdXAsIGxlYXZlIHRoZW0gdXAuCiAgICBpZiAodGhpcy5jb250cm9sbGVyICYmICF0aGlzLmNvbnRyb2xsZXIuaXNQb3B1cCkgewogICAgICBib2R5Q2xhc3NMaXN0LnJlbW92ZSgnd2l0aC1ub3RlcycpOwogICAgfSBlbHNlIGlmICghdGhpcy5jb250cm9sbGVyKSB7CiAgICAgIGJvZHlDbGFzc0xpc3QucmVtb3ZlKCd3aXRoLW5vdGVzJyk7CiAgICB9CgogICAgdGhpcy5wcmV2U2xpZGVfID0gdGhpcy5jdXJTbGlkZV8rKzsKCiAgICB0aGlzLnVwZGF0ZVNsaWRlc18ob3B0X2RvbnRQdXNoKTsKICB9Cn07CgovKiBTbGlkZSBldmVudHMgKi8KCi8qKgogKiBUcmlnZ2VyZWQgd2hlbiBhIHNsaWRlIGVudGVyL2xlYXZlIGV2ZW50IHNob3VsZCBiZSBkaXNwYXRjaGVkLgogKgogKiBAcGFyYW0ge3N0cmluZ30gdHlwZSBUaGUgdHlwZSBvZiBldmVudCB0byB0cmlnZ2VyCiAqICAgICAoZS5nLiAnc2xpZGVlbnRlcicsICdzbGlkZWxlYXZlJykuCiAqIEBwYXJhbSB7bnVtYmVyfSBzbGlkZU5vIFRoZSBpbmRleCBvZiB0aGUgc2xpZGUgdGhhdCBpcyBiZWluZyBsZWZ0LgogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS50cmlnZ2VyU2xpZGVFdmVudCA9IGZ1bmN0aW9uKHR5cGUsIHNsaWRlTm8pIHsKICB2YXIgZWwgPSB0aGlzLmdldFNsaWRlRWxfKHNsaWRlTm8pOwogIGlmICghZWwpIHsKICAgIHJldHVybjsKICB9CgogIC8vIENhbGwgb25zbGlkZWVudGVyL29uc2xpZGVsZWF2ZSBpZiB0aGUgYXR0cmlidXRlIGlzIGRlZmluZWQgb24gdGhpcyBzbGlkZS4KICB2YXIgZnVuYyA9IGVsLmdldEF0dHJpYnV0ZSh0eXBlKTsKICBpZiAoZnVuYykgewogICAgbmV3IEZ1bmN0aW9uKGZ1bmMpLmNhbGwoZWwpOyAvLyBUT0RPOiBEb24ndCB1c2UgbmV3IEZ1bmN0aW9uKCkgOigKICB9CgogIC8vIERpc3BhdGNoIGV2ZW50IHRvIGxpc3RlbmVycyBzZXR1cCB1c2luZyBhZGRFdmVudExpc3RlbmVyLgogIHZhciBldnQgPSBkb2N1bWVudC5jcmVhdGVFdmVudCgnRXZlbnQnKTsKICBldnQuaW5pdEV2ZW50KHR5cGUsIHRydWUsIHRydWUpOwogIGV2dC5zbGlkZU51bWJlciA9IHNsaWRlTm8gKyAxOyAvLyBNYWtlIGl0IHJlYWRhYmxlCiAgZXZ0LnNsaWRlID0gZWw7CgogIGVsLmRpc3BhdGNoRXZlbnQoZXZ0KTsKfTsKCi8qKgogKiBAcHJpdmF0ZQogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS51cGRhdGVTbGlkZXNfID0gZnVuY3Rpb24ob3B0X2RvbnRQdXNoKSB7CiAgdmFyIGRvbnRQdXNoID0gb3B0X2RvbnRQdXNoIHx8IGZhbHNlOwoKICB2YXIgY3VyU2xpZGUgPSB0aGlzLmN1clNsaWRlXzsKICBmb3IgKHZhciBpID0gMDsgaSA8IHRoaXMuc2xpZGVzLmxlbmd0aDsgKytpKSB7CiAgICBzd2l0Y2ggKGkpIHsKICAgICAgY2FzZSBjdXJTbGlkZSAtIDI6CiAgICAgICAgdGhpcy51cGRhdGVTbGlkZUNsYXNzXyhpLCAnZmFyLXBhc3QnKTsKICAgICAgICBicmVhazsKICAgICAgY2FzZSBjdXJTbGlkZSAtIDE6CiAgICAgICAgdGhpcy51cGRhdGVTbGlkZUNsYXNzXyhpLCAncGFzdCcpOwogICAgICAgIGJyZWFrOwogICAgICBjYXNlIGN1clNsaWRlOgogICAgICAgIHRoaXMudXBkYXRlU2xpZGVDbGFzc18oaSwgJ2N1cnJlbnQnKTsKICAgICAgICBicmVhazsKICAgICAgY2FzZSBjdXJTbGlkZSArIDE6CiAgICAgICAgdGhpcy51cGRhdGVTbGlkZUNsYXNzXyhpLCAnbmV4dCcpOwogICAgICAgIGJyZWFrOwogICAgICBjYXNlIGN1clNsaWRlICsgMjoKICAgICAgICB0aGlzLnVwZGF0ZVNsaWRlQ2xhc3NfKGksICdmYXItbmV4dCcpOwogICAgICAgIGJyZWFrOwogICAgICBkZWZhdWx0OgogICAgICAgIHRoaXMudXBkYXRlU2xpZGVDbGFzc18oaSk7CiAgICAgICAgYnJlYWs7CiAgICB9CiAgfTsKCiAgdGhpcy50cmlnZ2VyU2xpZGVFdmVudCgnc2xpZGVsZWF2ZScsIHRoaXMucHJldlNsaWRlXyk7CiAgdGhpcy50cmlnZ2VyU2xpZGVFdmVudCgnc2xpZGVlbnRlcicsIGN1clNsaWRlKTsKCi8vIHdpbmRvdy5zZXRUaW1lb3V0KHRoaXMuZGlzYWJsZVNsaWRlRnJhbWVzXy5iaW5kKHRoaXMsIGN1clNsaWRlIC0gMiksIDMwMSk7Ci8vCi8vIHRoaXMuZW5hYmxlU2xpZGVGcmFtZXNfKGN1clNsaWRlIC0gMSk7IC8vIFByZXZpb3VzIHNsaWRlLgovLyB0aGlzLmVuYWJsZVNsaWRlRnJhbWVzXyhjdXJTbGlkZSArIDEpOyAvLyBDdXJyZW50IHNsaWRlLgovLyB0aGlzLmVuYWJsZVNsaWRlRnJhbWVzXyhjdXJTbGlkZSArIDIpOyAvLyBOZXh0IHNsaWRlLgoKICAgLy8gRW5hYmxlIGN1cnJlbnQgc2xpZGUncyBpZnJhbWVzIChuZWVkZWQgZm9yIHBhZ2UgbG9hdCBhdCBjdXJyZW50IHNsaWRlKS4KICAgdGhpcy5lbmFibGVTbGlkZUZyYW1lc18oY3VyU2xpZGUgKyAxKTsKCiAgIC8vIE5vIHdheSB0byB0ZWxsIHdoZW4gYWxsIHNsaWRlIHRyYW5zaXRpb25zICsgYXV0byBidWlsZHMgYXJlIGRvbmUuCiAgIC8vIEdpdmUgb3Vyc2VsdmVzIGEgZ29vZCBidWZmZXIgdG8gcHJlbG9hZCB0aGUgbmV4dCBzbGlkZSdzIGlmcmFtZXMuCiAgIHdpbmRvdy5zZXRUaW1lb3V0KHRoaXMuZW5hYmxlU2xpZGVGcmFtZXNfLmJpbmQodGhpcywgY3VyU2xpZGUgKyAyKSwgMTAwMCk7CgogIHRoaXMudXBkYXRlSGFzaF8oZG9udFB1c2gpOwoKICBpZiAoZG9jdW1lbnQuYm9keS5jbGFzc0xpc3QuY29udGFpbnMoJ292ZXJ2aWV3JykpIHsKICAgIHRoaXMuZm9jdXNPdmVydmlld18oKTsKICAgIHJldHVybjsKICB9Cgp9OwoKLyoqCiAqIEBwcml2YXRlCiAqIEBwYXJhbSB7bnVtYmVyfSBzbGlkZU5vCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmVuYWJsZVNsaWRlRnJhbWVzXyA9IGZ1bmN0aW9uKHNsaWRlTm8pIHsKICB2YXIgZWwgPSB0aGlzLnNsaWRlc1tzbGlkZU5vIC0gMV07CiAgaWYgKCFlbCkgewogICAgcmV0dXJuOwogIH0KCiAgdmFyIGZyYW1lcyA9IGVsLnF1ZXJ5U2VsZWN0b3JBbGwoJ2lmcmFtZScpOwogIGZvciAodmFyIGkgPSAwLCBmcmFtZTsgZnJhbWUgPSBmcmFtZXNbaV07IGkrKykgewogICAgdGhpcy5lbmFibGVGcmFtZV8oZnJhbWUpOwogIH0KfTsKCi8qKgogKiBAcHJpdmF0ZQogKiBAcGFyYW0ge251bWJlcn0gc2xpZGVObwogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS5lbmFibGVGcmFtZV8gPSBmdW5jdGlvbihmcmFtZSkgewogIHZhciBzcmMgPSBmcmFtZS5kYXRhc2V0LnNyYzsKICBpZiAoc3JjICYmIGZyYW1lLnNyYyAhPSBzcmMpIHsKICAgIGZyYW1lLnNyYyA9IHNyYzsKICB9Cn07CgovKioKICogQHByaXZhdGUKICogQHBhcmFtIHtudW1iZXJ9IHNsaWRlTm8KICovClNsaWRlRGVjay5wcm90b3R5cGUuZGlzYWJsZVNsaWRlRnJhbWVzXyA9IGZ1bmN0aW9uKHNsaWRlTm8pIHsKICB2YXIgZWwgPSB0aGlzLnNsaWRlc1tzbGlkZU5vIC0gMV07CiAgaWYgKCFlbCkgewogICAgcmV0dXJuOwogIH0KCiAgdmFyIGZyYW1lcyA9IGVsLnF1ZXJ5U2VsZWN0b3JBbGwoJ2lmcmFtZScpOwogIGZvciAodmFyIGkgPSAwLCBmcmFtZTsgZnJhbWUgPSBmcmFtZXNbaV07IGkrKykgewogICAgdGhpcy5kaXNhYmxlRnJhbWVfKGZyYW1lKTsKICB9Cn07CgovKioKICogQHByaXZhdGUKICogQHBhcmFtIHtOb2RlfSBmcmFtZQogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS5kaXNhYmxlRnJhbWVfID0gZnVuY3Rpb24oZnJhbWUpIHsKICBmcmFtZS5zcmMgPSAnYWJvdXQ6YmxhbmsnOwp9OwoKLyoqCiAqIEBwcml2YXRlCiAqIEBwYXJhbSB7bnVtYmVyfSBzbGlkZU5vCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmdldFNsaWRlRWxfID0gZnVuY3Rpb24obm8pIHsKICBpZiAoKG5vIDwgMCkgfHwgKG5vID49IHRoaXMuc2xpZGVzLmxlbmd0aCkpIHsKICAgIHJldHVybiBudWxsOwogIH0gZWxzZSB7CiAgICByZXR1cm4gdGhpcy5zbGlkZXNbbm9dOwogIH0KfTsKCi8qKgogKiBAcHJpdmF0ZQogKiBAcGFyYW0ge251bWJlcn0gc2xpZGVObwogKiBAcGFyYW0ge3N0cmluZ30gY2xhc3NOYW1lCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLnVwZGF0ZVNsaWRlQ2xhc3NfID0gZnVuY3Rpb24oc2xpZGVObywgY2xhc3NOYW1lKSB7CiAgdmFyIGVsID0gdGhpcy5nZXRTbGlkZUVsXyhzbGlkZU5vKTsKCiAgaWYgKCFlbCkgewogICAgcmV0dXJuOwogIH0KCiAgaWYgKGNsYXNzTmFtZSkgewogICAgZWwuY2xhc3NMaXN0LmFkZChjbGFzc05hbWUpOwogIH0KCiAgZm9yICh2YXIgaSA9IDAsIHNsaWRlQ2xhc3M7IHNsaWRlQ2xhc3MgPSB0aGlzLlNMSURFX0NMQVNTRVNfW2ldOyArK2kpIHsKICAgIGlmIChjbGFzc05hbWUgIT0gc2xpZGVDbGFzcykgewogICAgICBlbC5jbGFzc0xpc3QucmVtb3ZlKHNsaWRlQ2xhc3MpOwogICAgfQogIH0KfTsKCi8qKgogKiBAcHJpdmF0ZQogKi8KU2xpZGVEZWNrLnByb3RvdHlwZS5tYWtlQnVpbGRMaXN0c18gPSBmdW5jdGlvbiAoKSB7CiAgZm9yICh2YXIgaSA9IHRoaXMuY3VyU2xpZGVfLCBzbGlkZTsgc2xpZGUgPSB0aGlzLnNsaWRlc1tpXTsgKytpKSB7CiAgICB2YXIgaXRlbXMgPSBzbGlkZS5xdWVyeVNlbGVjdG9yQWxsKCcuYnVpbGQgPiAqJyk7CiAgICBmb3IgKHZhciBqID0gMCwgaXRlbTsgaXRlbSA9IGl0ZW1zW2pdOyArK2opIHsKICAgICAgaWYgKGl0ZW0uY2xhc3NMaXN0KSB7CiAgICAgICAgaXRlbS5jbGFzc0xpc3QuYWRkKCd0by1idWlsZCcpOwogICAgICAgIGlmIChpdGVtLnBhcmVudE5vZGUuY2xhc3NMaXN0LmNvbnRhaW5zKCdmYWRlJykpIHsKICAgICAgICAgIGl0ZW0uY2xhc3NMaXN0LmFkZCgnZmFkZScpOwogICAgICAgIH0KICAgICAgfQogICAgfQogIH0KfTsKCi8qKgogKiBAcHJpdmF0ZQogKiBAcGFyYW0ge2Jvb2xlYW59IGRvbnRQdXNoCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLnVwZGF0ZUhhc2hfID0gZnVuY3Rpb24oZG9udFB1c2gpIHsKICBpZiAoIWRvbnRQdXNoKSB7CiAgICB2YXIgc2xpZGVObyA9IHRoaXMuY3VyU2xpZGVfICsgMTsKICAgIC8vIEFkZCBldmVyeXRoaW5nIGV4Y2VwdCB0aGUgaGFzaC4KICAgIHZhciBsb2MgPSBsb2NhdGlvbi5wcm90b2NvbCsnLy8nK2xvY2F0aW9uLmhvc3QrbG9jYXRpb24ucGF0aG5hbWUrKGxvY2F0aW9uLnNlYXJjaD9sb2NhdGlvbi5zZWFyY2g6IiIpOwogICAgdmFyIGhhc2ggPSAnIycgKyBzbGlkZU5vOwogICAgaWYgKHdpbmRvdy5oaXN0b3J5LnB1c2hTdGF0ZSAmJiAobG9jYXRpb24ucHJvdG9jb2wgIT09ICJmaWxlOiIpKSB7CiAgICAgIHdpbmRvdy5oaXN0b3J5LnB1c2hTdGF0ZSh0aGlzLmN1clNsaWRlXywgJ1NsaWRlICcgKyBzbGlkZU5vLCBsb2MgKyBoYXNoKTsKICAgIH0gZWxzZSB7CiAgICAgIHdpbmRvdy5sb2NhdGlvbi5yZXBsYWNlKGxvYyArIGhhc2gpOwogICAgfQoKICAgIC8vIFJlY29yZCBHQSBoaXQgb24gdGhpcyBzbGlkZS4KICAgIGlmKHR5cGVvZiB3aW5kb3cuZ2EgPT09ICdmdW5jdGlvbicpIHsKICAgICAgZ2EoJ3NldCcsICdwYWdlJywgaGFzaCkKICAgICAgZ2EoJ3NlbmQnLCAncGFnZXZpZXcnKTsKICAgIH0KICB9Cn07CgoKLyoqCiAqIEBwcml2YXRlCiAqIEBwYXJhbSB7c3RyaW5nfSBmYXZJY29uCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmFkZEZhdkljb25fID0gZnVuY3Rpb24oZmF2SWNvbikgewogIHZhciBlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpbmsnKTsKICBlbC5yZWwgPSAnaWNvbic7CiAgZWwudHlwZSA9ICdpbWFnZS9wbmcnOwogIGVsLmhyZWYgPSBmYXZJY29uOwogIGRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoJ2hlYWQnKS5hcHBlbmRDaGlsZChlbCk7Cn07CgovKioKICogQHByaXZhdGUKICogQHBhcmFtIHtzdHJpbmd9IHRoZW1lCiAqLwpTbGlkZURlY2sucHJvdG90eXBlLmxvYWRUaGVtZV8gPSBmdW5jdGlvbih0aGVtZSkgewogIHZhciBzdHlsZXMgPSBbXTsKICBpZiAodGhlbWUuY29uc3RydWN0b3IubmFtZSA9PT0gJ1N0cmluZycpIHsKICAgIHN0eWxlcy5wdXNoKHRoZW1lKTsKICB9IGVsc2UgewogICAgc3R5bGVzID0gdGhlbWU7CiAgfQoKICBmb3IgKHZhciBpID0gMCwgc3R5bGU7IHRoZW1lVXJsID0gc3R5bGVzW2ldOyBpKyspIHsKICAgIHZhciBzdHlsZSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpbmsnKTsKICAgIHN0eWxlLnJlbCA9ICdzdHlsZXNoZWV0JzsKICAgIHN0eWxlLnR5cGUgPSAndGV4dC9jc3MnOwogICAgaWYgKHRoZW1lVXJsLmluZGV4T2YoJ2h0dHAnKSA9PSAtMSkgewogICAgICBzdHlsZS5ocmVmID0gdGhpcy5DU1NfRElSXyArIHRoZW1lVXJsICsgJy5jc3MnOwogICAgfSBlbHNlIHsKICAgICAgc3R5bGUuaHJlZiA9IHRoZW1lVXJsOwogICAgfQogICAgZG9jdW1lbnQucXVlcnlTZWxlY3RvcignaGVhZCcpLmFwcGVuZENoaWxkKHN0eWxlKTsKICB9Cn07CgovKioKICogQHByaXZhdGUKICovClNsaWRlRGVjay5wcm90b3R5cGUubG9hZEFuYWx5dGljc18gPSBmdW5jdGlvbigpIHsKICAoZnVuY3Rpb24oaSxzLG8sZyxyLGEsbSl7aVsnR29vZ2xlQW5hbHl0aWNzT2JqZWN0J109cjtpW3JdPWlbcl18fGZ1bmN0aW9uKCl7CiAgICAoaVtyXS5xPWlbcl0ucXx8W10pLnB1c2goYXJndW1lbnRzKX0saVtyXS5sPTEqbmV3IERhdGUoKTthPXMuY3JlYXRlRWxlbWVudChvKSwKICAgIG09cy5nZXRFbGVtZW50c0J5VGFnTmFtZShvKVswXTthLmFzeW5jPTE7YS5zcmM9ZzttLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsbSkKICB9KSh3aW5kb3csZG9jdW1lbnQsJ3NjcmlwdCcsJy8vd3d3Lmdvb2dsZS1hbmFseXRpY3MuY29tL2FuYWx5dGljcy5qcycsJ2dhJyk7CgogIGdhKCdjcmVhdGUnLCB0aGlzLmNvbmZpZ18uc2V0dGluZ3MuYW5hbHl0aWNzLCAnYXV0bycpOwogIGdhKCdzZW5kJywgJ3BhZ2V2aWV3Jyk7Cn07CgoKdmFyIGxvYWREZWNrID0gZnVuY3Rpb24oZXZlbnQpIHsKICAvLyBQb2x5ZmlsbCBtaXNzaW5nIEFQSXMgKGlmIHdlIG5lZWQgdG8pLCB0aGVuIGNyZWF0ZSB0aGUgc2xpZGUgZGVjay4KICAvLyBpT1MgPCA1IG5lZWRzIGNsYXNzTGlzdCwgZGF0YXNldCwgYW5kIHdpbmRvdy5tYXRjaE1lZGlhLiBNb2Rlcm5penIgY29udGFpbnMKICAvLyB0aGUgbGFzdCBvbmUuCiAgTW9kZXJuaXpyLmxvYWQoewogICAgY29tcGxldGU6IGZ1bmN0aW9uKCkgewogICAgICB3aW5kb3cuc2xpZGVkZWNrID0gbmV3IFNsaWRlRGVjaygpOwogICAgfQogIH0pOwp9OwoKaWYgKGRvY3VtZW50LnJlYWR5U3RhdGUgIT09ICJsb2FkaW5nIiAmJgogICAgZG9jdW1lbnQucXVlcnlTZWxlY3Rvcignc2xpZGVzJykgPT09IG51bGwpIHsgCiAgLy8gaWYgdGhlIGRvY3VtZW50IGlzIGRvbmUgbG9hZGluZyBidXQgb3VyIGVsZW1lbnQgaGFzbid0IHlldCBhcHBlYXJlZCwgZGVmZXIKICAvLyBsb2FkaW5nIG9mIHRoZSBkZWNrCiAgd2luZG93LnNldFRpbWVvdXQoZnVuY3Rpb24oKSB7CiAgICBsb2FkRGVjayhudWxsKTsKICB9LCAwKTsKfSBlbHNlIHsKICAvLyBzdGlsbCBsb2FkaW5nIHRoZSBET00sIHNvIHdhaXQgdW50aWwgaXQncyBmaW5pc2hlZAogIGRvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoIkRPTUNvbnRlbnRMb2FkZWQiLCBsb2FkRGVjayk7Cn0KCgoK"></script> + + <style type="text/css"> + + b, strong { + font-weight: bold; + } + + em { + font-style: italic; + } + + slides > slide { + -webkit-transition: all 0.4s ease-in-out; + -moz-transition: all 0.4s ease-in-out; + -o-transition: all 0.4s ease-in-out; + transition: all 0.4s ease-in-out; + } + + .auto-fadein { + -webkit-transition: opacity 0.6s ease-in; + -webkit-transition-delay: 0.4s; + -moz-transition: opacity 0.6s ease-in 0.4s; + -o-transition: opacity 0.6s ease-in 0.4s; + transition: opacity 0.6s ease-in 0.4s; + opacity: 0; + } + + slides > slide:not(.nobackground):before { + font-size: 12pt; + content: ""; + position: absolute; + bottom: 20px; + left: 60px; + background: url(kerning.png) no-repeat 0 50%; + -webkit-background-size: 30px 30px; + -moz-background-size: 30px 30px; + -o-background-size: 30px 30px; + background-size: 30px 30px; + padding-left: 40px; + height: 30px; + line-height: 1.9; + } + </style> + + <link href="data:text/css;charset=utf-8,slides%20%3E%20slide%2Ebackdrop%20%7B%0Abackground%3A%20white%3B%0Aborder%2Dbottom%3A%200px%3B%0Abox%2Dshadow%3A%200%200%200%3B%0A%7D%0Aslides%20%3E%20slide%20%7B%0Afont%2Dfamily%3A%20%27Open%20Sans%27%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Aborder%2Dbottom%3A%203px%20solid%20%23F66733%3B%0Abox%2Dshadow%3A%200%203px%200%20%23522D80%3B%0A%7D%0A%2Etitle%2Dslide%20hgroup%20h1%20%7B%0Acolor%3A%20%23522D80%3B%0Afont%2Dsize%3A%2048px%3B%0A%7D%0A%2Etitle%2Dslide%20hgroup%20h2%20%7B%0Afont%2Dsize%3A%2028px%3B%0A%7D%0Ah2%20%7B%0Acolor%3A%20%23522D80%3B%0A%7D%0Aslides%20%3E%20slide%2Edark%20%7B%0Abackground%3A%20%23522D80%20%21important%3B%0Aborder%2Dbottom%3A%200%3B%0Abox%2Dshadow%3A%200%200%200%3B%0A%7D%0A%2Esegue%20h2%20%7B%0Acolor%3A%20white%3B%0A%7D%0Aslides%20%3E%20slide%2Etitle%2Dslide%20%7B%0Aborder%2Dbottom%3A%200%3B%0Abox%2Dshadow%3A%200%200%200%3B%0A%7D%0Aol%2C%20ul%20%7B%0Apadding%2Dbottom%3A%2010px%3B%0A%7D%0Aslides%20%3E%20slide%3Anot%28%2Enobackground%29%3Abefore%20%7B%0Afont%2Dsize%3A%2012pt%3B%0Acontent%3A%20%22%22%3B%0Aposition%3A%20absolute%3B%0Abottom%3A%2020px%3B%0Aleft%3A%2060px%3B%0Abackground%3A%20no%2Drepeat%200%2050%25%3B%0A%2Dwebkit%2Dbackground%2Dsize%3A%2030px%2030px%3B%0A%2Dmoz%2Dbackground%2Dsize%3A%2030px%2030px%3B%0A%2Do%2Dbackground%2Dsize%3A%2030px%2030px%3B%0Abackground%2Dsize%3A%2030px%2030px%3B%0Apadding%2Dleft%3A%2040px%3B%0Aheight%3A%2030px%3B%0Aline%2Dheight%3A%201%2E9%3B%0A%7D%0A" rel="stylesheet" type="text/css" /> + +</head> + +<body style="opacity: 0"> + +<slides> + + <slide class="title-slide segue nobackground"> + <aside class="gdbar"><img src=""></aside> + <!-- The content of this hgroup is replaced programmatically through the slide_config.json. --> + <hgroup class="auto-fadein"> + <h1 data-config-title><!-- populated from slide_config.json --></h1> + <h2 data-config-subtitle><!-- populated from slide_config.json --></h2> + <p data-config-presenter><!-- populated from slide_config.json --></p> + </hgroup> + </slide> + +<slide class='segue dark nobackground level1'><hgroup class = 'auto-fadein'><h2>Pop Songs and Political Science</h2></hgroup><article id="pop-songs-and-political-science" class="smaller "> + +</article></slide><slide class=''><hgroup><h2>Sheena Easton and Game Theory</h2></hgroup><article id="sheena-easton-and-game-theory" class="smaller "> + +<p>Sheena Easton describes the following scenario for her baby:</p> + +<ol> +<li>Takes the morning train</li> +<li>Works from nine 'til five</li> +<li>Takes another train home again</li> +<li>Finds Sheena Easton waiting for him</li> +</ol> + +<p>Sheena Easton and her baby are playing a <strong>zero-sum (total conflict) game</strong>.</p> + +<ul> +<li>Akin to Holmes-Moriarty game (see: von Neumann and Morgenstern)</li> +<li>Solution: <strong>mixed strategy</strong></li> +</ul> + +</article></slide><slide class=''><hgroup><h2>Rick Astley's Re-election Platform</h2></hgroup><article id="rick-astleys-re-election-platform" class="smaller "> + +<p>Rick Astley's campaign promises:</p> + +<ul> +<li>Never gonna give you up.</li> +<li>Never gonna let you down.</li> +<li>Never gonna run around and desert you.</li> +<li>Never gonna make you cry.</li> +<li>Never gonna say goodbye.</li> +<li>Never gonna tell a lie and hurt you.</li> +</ul> + +<p>Whereas these pledges conform to the preferences of the <strong>median voter</strong>, we expect Congressman Astley to secure re-election.</p> + +</article></slide><slide class=''><hgroup><h2>Caribbean Queen and Operation Urgent Fury</h2></hgroup><article id="caribbean-queen-and-operation-urgent-fury" class="smaller "> + +<p>Billy Ocean released "Caribbean Queen" in 1984.</p> + +<ul> +<li>Emphasized sharing the same dream</li> +<li>Hearts beating as one</li> +</ul> + +<p>"Caribbean Queen" is about the poor execution of Operation Urgent Fury.</p> + +<ul> +<li>Coordination problems plagued its execution from the start.</li> +<li>Echoed JCS chairman David Jones' frustrations with military establishment.</li> +</ul> + +<p>Billy Ocean is advocating for what became the Goldwater-Nichols Act.</p> + +<ul> +<li>Wanted to take advantage of <strong>economies of scale</strong>, resolve <strong>coordination problems</strong> in U.S. military.</li> +</ul> + +</article></slide><slide class=''><hgroup><h2>The Good Day Hypothesis</h2></hgroup><article id="the-good-day-hypothesis" class="smaller "> + +<p>We know the following about Ice Cube's day.</p> + +<ol> +<li>The Lakers beat the Supersonics.</li> +<li>No helicopter looked for a murder.</li> +<li>Consumed Fatburger at 2 a.m.</li> +<li>Goodyear blimp: "Ice Cube's a pimp."</li> +</ol> + +<p>This leads to two different hypotheses:</p> + +<ul> +<li>\(H_0\): Ice Cube's day is statistically indistinguishable from a typical day.</li> +<li>\(H_1\): Ice Cube is having a good (i.e. greater than average) day.</li> +</ul> + +<p>These hypotheses are tested using archival data of Ice Cube's life.</p> + +</article></slide><slide class='segue dark nobackground level1'><hgroup class = 'auto-fadein'><h2>Example R code</h2></hgroup><article id="example-r-code" class="smaller "> + +</article></slide><slide class=''><hgroup><h2>Example R stuff</h2></hgroup><article id="example-r-stuff" class="smaller "> + +<pre class = 'prettyprint lang-r'>summary(cars)</pre> + +<pre >## speed dist +## Min. : 4.0 Min. : 2.00 +## 1st Qu.:12.0 1st Qu.: 26.00 +## Median :15.0 Median : 36.00 +## Mean :15.4 Mean : 42.98 +## 3rd Qu.:19.0 3rd Qu.: 56.00 +## Max. :25.0 Max. :120.00</pre> + +</article></slide><slide class=''><hgroup><h2>Slide with Plot</h2></hgroup><article id="slide-with-plot" class="smaller "> + +<pre class = 'prettyprint lang-r'>plot(pressure)</pre> + +<p><img src="" width="720" /></p> + +</article></slide><slide class=''><hgroup><h2>ggplot code</h2></hgroup><article id="ggplot-code" class="smaller "> + +<pre class = 'prettyprint lang-r'>df <- data.frame(x = rnorm(1000)) +x <- df$x +base <- ggplot(df, aes(x)) + geom_density() + scale_x_continuous(limits = c(-5, 5)) +base + stat_function(fun = dnorm, colour = "red")</pre> + +</article></slide><slide class=''><hgroup><h2>Another Plot</h2></hgroup><article id="another-plot" class="smaller "> + +<p><img src="" width="720" /></p></article></slide> + + + <slide class="backdrop"></slide> + +</slides> + +<!-- dynamically load mathjax for compatibility with self-contained --> +<script> + (function () { + var script = document.createElement("script"); + script.type = "text/javascript"; + script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; + document.getElementsByTagName("head")[0].appendChild(script); + })(); +</script> + +<!-- map slide visiblity events into shiny --> +<script> + (function() { + if (window.jQuery) { + window.jQuery(document).on('slideleave', function(e) { + window.jQuery(e.target).trigger('hidden'); + }); + window.jQuery(document).on('slideenter', function(e) { + window.jQuery(e.target).trigger('shown'); + }); + } + })(); +</script> + +</body> +</html> diff --git a/svm-rmarkdown-syllabus-example.Rmd b/svm-rmarkdown-syllabus-example.Rmd index 60ab88fb0fb8e643558de56241ee53fa9f7d494f..4a75470eebdcaa128c96602662452cf3bbc9cb50 100644 --- a/svm-rmarkdown-syllabus-example.Rmd +++ b/svm-rmarkdown-syllabus-example.Rmd @@ -4,7 +4,7 @@ output: keep_tex: true fig_caption: yes latex_engine: pdflatex - template: ~/Dropbox/miscelanea/svm-r-markdown-templates/svm-latex-syllabus.tex + template: ./templates/svm-latex-syllabus.tex geometry: margin=1in title: "POSC 0000: A Class with an R Markdown Syllabus" @@ -42,9 +42,9 @@ advdate <- function(obj, adv) { } library(RefManageR) -# library(knitcitations) -# library(rcrossref) -bib <- ReadBib("~/Dropbox/master.bib") +library(knitcitations) +library(rcrossref) +bib <- ReadBib("./svm-rmarkdown-syllabus-example.bib") myopts <- BibOptions(bib.style = "authoryear", style="latex", first.inits=FALSE, max.names = 20) ``` @@ -64,7 +64,7 @@ You'll learn stuff in this class, I hope. Lorem ipsum dolor sit amet, consectetu # Required Readings ```{r, echo = FALSE, results="asis"} -bib["vasquez2009twp", "wagner2007ws"] +bib["small", "big"] ``` @@ -88,7 +88,7 @@ I will detail the policy for this course below. Basically, don't cheat and try t ```{r, include=FALSE} options(scipen=999) -Attend <- read.csv("~/Dropbox/teaching/attendance-grades-relationship.csv") +Attend <- read.csv("./svm-rmarkdown-syllabus-example.csv") Attend$rgrade <- round(Attend$grade, 0) Attend$perattend <- (Attend$attendance/Attend$max)*100 Attend <- subset(Attend, !is.na(rgrade)) @@ -173,13 +173,13 @@ Read *all* associated documents on course website. ## `r advdate(mon, 2)`: The First Topic Where We Read John Vasquez ```{r, echo = FALSE, results="asis"} -bib[author = "vasquez"] +bib[author = "Jass, Hugh"] ``` ## `r advdate(mon, 3)`: Read the Nos. 90-97 Items in My Bib ```{r, echo = FALSE, results="asis"} -bib[90:97] +bib[1:2] ``` *Your "Slow Ride" appreciation paper is due in Thursday's class*. @@ -187,7 +187,7 @@ bib[90:97] ## `r advdate(mon, 4)`: Read Bib Item No. 120 ```{r, echo = FALSE, results="asis"} -bib[120] +bib[1] ``` @@ -195,7 +195,7 @@ bib[120] ## `r advdate(mon, 5)`: The Fourth Topic with Bib Item No. 510 ```{r, echo = FALSE, results="asis"} -bib[510] +bib[2] ``` ## `r advdate(mon, 6)`: Keep diff --git a/svm-rmarkdown-syllabus-example.bib b/svm-rmarkdown-syllabus-example.bib new file mode 100644 index 0000000000000000000000000000000000000000..946789209c83536874beed04cbcafe1337e9b1c8 --- /dev/null +++ b/svm-rmarkdown-syllabus-example.bib @@ -0,0 +1,16 @@ +@article{small, +author = {Freely, I.P.}, +title = {A small paper}, +journal = {The journal of small papers}, +year = 1997, +volume = {-1}, +note = {to appear}, +} + +@article{big, +author = {Jass, Hugh}, +title = {A big paper}, +journal = {The journal of big papers}, +year = 7991, +volume = {MCMXCVII}, +} \ No newline at end of file diff --git a/svm-rmarkdown-syllabus-example.csv b/svm-rmarkdown-syllabus-example.csv new file mode 100644 index 0000000000000000000000000000000000000000..1b35ac20ef3352205d809d223a0707d9817e87d1 --- /dev/null +++ b/svm-rmarkdown-syllabus-example.csv @@ -0,0 +1,1001 @@ +id,perattend,name,rgrade,term,class,grade,attendance,max +1,35,Mills,pmills0@usgs.gov,4,8,8,12,26 +2,61,Williamson,dwilliamson1@bing.com,1,5,68,21,54 +3,69,James,vjames2@360.cn,2,1,5,12,17 +4,18,Gonzales,ngonzales3@gizmodo.com,2,5,55,95,48 +5,53,Williams,gwilliams4@imdb.com,4,10,19,87,89 +6,98,Reynolds,ereynolds5@cbslocal.com,1,10,72,11,12 +7,96,Ellis,gellis6@csmonitor.com,3,8,52,100,61 +8,46,White,lwhite7@1688.com,3,6,100,97,47 +9,30,Jacobs,jjacobs8@woothemes.com,1,8,2,34,16 +10,46,Mason,lmason9@clickbank.net,2,1,45,9,84 +11,19,Riley,lrileya@arizona.edu,1,3,26,6,89 +12,81,Adams,cadamsb@telegraph.co.uk,4,5,17,6,36 +13,45,Cook,jcookc@globo.com,3,8,76,56,38 +14,6,Davis,pdavisd@macromedia.com,1,2,88,3,22 +15,82,Marshall,smarshalle@boston.com,3,1,46,3,72 +16,54,Watkins,jwatkinsf@webeden.co.uk,1,1,7,15,63 +17,46,Hunter,dhunterg@vk.com,4,6,1,32,93 +18,95,Shaw,rshawh@craigslist.org,1,6,74,19,96 +19,52,Collins,lcollinsi@fastcompany.com,2,3,12,89,35 +20,27,Chavez,pchavezj@adobe.com,4,2,92,49,86 +21,16,Ruiz,nruizk@phoca.cz,3,5,55,38,11 +22,81,Kelley,nkelleyl@elpais.com,3,10,53,9,99 +23,71,Griffin,jgriffinm@qq.com,4,3,24,17,78 +24,54,Montgomery,smontgomeryn@gizmodo.com,2,10,68,36,97 +25,49,West,bwesto@privacy.gov.au,1,1,53,38,83 +26,42,Lynch,rlynchp@rediff.com,2,1,17,84,21 +27,99,Payne,cpayneq@who.int,1,9,35,94,84 +28,15,Peters,wpetersr@tamu.edu,3,6,1,27,91 +29,28,Hughes,ahughess@fotki.com,4,4,33,9,46 +30,4,Hernandez,mhernandezt@archive.org,3,7,28,86,98 +31,76,Wagner,fwagneru@vistaprint.com,3,10,25,30,49 +32,22,Stephens,cstephensv@dot.gov,1,4,54,84,4 +33,96,Gonzales,sgonzalesw@hhs.gov,4,5,17,55,64 +34,62,Hudson,lhudsonx@joomla.org,3,7,89,49,28 +35,1,King,lkingy@un.org,4,9,45,83,84 +36,35,Medina,amedinaz@yelp.com,2,2,23,79,9 +37,82,Mason,pmason10@prnewswire.com,2,8,39,52,60 +38,44,Morris,amorris11@ucla.edu,2,4,59,84,36 +39,89,Burns,cburns12@pagesperso-orange.fr,2,4,29,45,98 +40,99,Wagner,pwagner13@yolasite.com,3,4,63,11,2 +41,43,Nichols,jnichols14@mapquest.com,2,6,64,70,60 +42,15,Rose,rrose15@vkontakte.ru,4,10,73,56,86 +43,43,Simpson,msimpson16@diigo.com,1,5,97,7,96 +44,85,Carr,vcarr17@blog.com,2,4,26,40,90 +45,4,Young,lyoung18@instagram.com,2,5,70,38,43 +46,54,Gutierrez,lgutierrez19@thetimes.co.uk,4,9,24,73,41 +47,95,Moore,jmoore1a@google.co.uk,3,6,61,9,81 +48,85,Harvey,jharvey1b@chron.com,3,2,49,70,30 +49,10,Baker,rbaker1c@spiegel.de,1,5,92,93,73 +50,59,Matthews,dmatthews1d@myspace.com,2,2,58,56,90 +51,76,Powell,mpowell1e@mtv.com,3,1,87,82,17 +52,97,Mccoy,hmccoy1f@myspace.com,3,8,34,97,60 +53,53,Stevens,tstevens1g@hatena.ne.jp,2,10,94,2,15 +54,22,Warren,dwarren1h@mysql.com,4,7,43,85,52 +55,91,Andrews,mandrews1i@arstechnica.com,2,5,79,53,67 +56,24,Schmidt,sschmidt1j@mozilla.com,3,3,86,31,44 +57,3,Weaver,jweaver1k@photobucket.com,3,6,64,22,92 +58,2,Jordan,kjordan1l@csmonitor.com,4,1,32,54,71 +59,53,Hansen,rhansen1m@ovh.net,1,5,18,7,74 +60,62,Meyer,emeyer1n@vimeo.com,2,3,16,69,78 +61,61,Rose,jrose1o@msn.com,4,7,75,47,33 +62,11,Ellis,kellis1p@forbes.com,2,2,20,91,85 +63,4,Dixon,jdixon1q@domainmarket.com,1,9,36,100,59 +64,35,Chapman,cchapman1r@webs.com,4,3,14,16,34 +65,7,Collins,dcollins1s@wsj.com,2,8,68,3,72 +66,80,Henderson,whenderson1t@shop-pro.jp,2,8,24,87,35 +67,36,Burke,lburke1u@vistaprint.com,2,8,74,68,49 +68,4,Reyes,hreyes1v@about.com,1,2,99,24,18 +69,69,Hamilton,khamilton1w@delicious.com,3,3,63,86,52 +70,40,Adams,aadams1x@nydailynews.com,4,5,39,50,30 +71,3,Frazier,ffrazier1y@newsvine.com,4,2,45,40,84 +72,44,Garcia,agarcia1z@loc.gov,3,2,75,66,87 +73,61,Johnston,jjohnston20@sun.com,3,5,73,59,40 +74,40,George,pgeorge21@skype.com,2,9,78,30,2 +75,61,Webb,cwebb22@seesaa.net,3,6,15,43,65 +76,83,Webb,hwebb23@fema.gov,1,2,90,42,38 +77,44,Cox,tcox24@elpais.com,1,8,71,29,97 +78,49,Lewis,mlewis25@cmu.edu,1,9,16,33,61 +79,32,Fisher,tfisher26@cocolog-nifty.com,4,5,36,85,4 +80,26,Powell,cpowell27@pen.io,3,3,18,98,20 +81,84,Black,tblack28@1und1.de,1,1,52,34,60 +82,36,Cox,acox29@odnoklassniki.ru,4,9,66,90,94 +83,12,Robertson,jrobertson2a@forbes.com,4,6,66,57,16 +84,97,Dixon,kdixon2b@networkadvertising.org,4,4,88,24,61 +85,35,Hayes,jhayes2c@elegantthemes.com,4,6,73,84,99 +86,39,Tucker,atucker2d@technorati.com,3,9,6,5,98 +87,4,White,jwhite2e@4shared.com,4,7,39,58,92 +88,92,Bishop,tbishop2f@so-net.ne.jp,1,8,51,7,85 +89,44,Medina,pmedina2g@businessweek.com,1,7,55,99,31 +90,23,Austin,baustin2h@nsw.gov.au,2,5,10,70,32 +91,53,Willis,dwillis2i@tiny.cc,3,5,94,79,96 +92,31,Walker,jwalker2j@purevolume.com,1,9,71,89,32 +93,73,Bradley,dbradley2k@ucsd.edu,4,3,91,80,34 +94,72,Simmons,csimmons2l@joomla.org,3,1,19,67,20 +95,73,Burns,sburns2m@delicious.com,4,8,76,73,55 +96,5,Simpson,ksimpson2n@oaic.gov.au,4,9,38,50,40 +97,67,Williams,awilliams2o@123-reg.co.uk,4,6,46,65,66 +98,96,Ryan,hryan2p@list-manage.com,1,1,43,46,95 +99,14,Stewart,astewart2q@hhs.gov,2,10,19,57,53 +100,21,Wallace,lwallace2r@jiathis.com,2,7,58,66,95 +101,76,Sanchez,rsanchez2s@privacy.gov.au,1,5,65,56,52 +102,27,Bailey,hbailey2t@51.la,2,3,64,89,11 +103,91,Welch,rwelch2u@godaddy.com,2,7,23,28,85 +104,99,Perez,aperez2v@admin.ch,1,3,25,38,6 +105,87,Williams,dwilliams2w@sfgate.com,1,4,3,84,95 +106,81,Fields,rfields2x@i2i.jp,2,8,49,63,13 +107,1,Johnson,pjohnson2y@icio.us,2,8,11,70,17 +108,90,Ross,bross2z@reference.com,2,5,97,100,36 +109,38,Hansen,khansen30@google.it,1,1,53,31,32 +110,10,Hicks,mhicks31@whitehouse.gov,2,3,83,27,81 +111,83,Arnold,parnold32@netscape.com,4,3,16,24,16 +112,2,Green,bgreen33@unc.edu,4,2,83,44,6 +113,89,Morgan,jmorgan34@yahoo.com,2,3,4,87,89 +114,94,Kelley,pkelley35@imageshack.us,4,3,2,33,7 +115,100,Rose,lrose36@simplemachines.org,1,8,15,96,9 +116,85,Burke,sburke37@huffingtonpost.com,3,1,64,37,80 +117,45,Little,dlittle38@google.ca,3,6,91,80,69 +118,59,Morrison,rmorrison39@nba.com,4,5,23,78,81 +119,33,Henderson,jhenderson3a@yellowpages.com,4,1,32,39,88 +120,52,Spencer,tspencer3b@who.int,1,3,46,92,5 +121,73,Pierce,mpierce3c@economist.com,3,8,17,61,49 +122,13,Thomas,kthomas3d@foxnews.com,3,2,82,22,61 +123,31,Watkins,pwatkins3e@tmall.com,2,2,86,30,22 +124,7,Ortiz,wortiz3f@hostgator.com,4,7,12,63,18 +125,49,Rogers,hrogers3g@buzzfeed.com,3,1,22,55,36 +126,63,Matthews,mmatthews3h@360.cn,2,7,60,90,9 +127,100,Scott,escott3i@blogs.com,1,9,39,63,86 +128,99,Murray,rmurray3j@abc.net.au,1,7,55,13,31 +129,86,Thomas,athomas3k@army.mil,1,10,71,67,40 +130,63,Frazier,sfrazier3l@skyrock.com,3,5,48,32,40 +131,48,Lawson,klawson3m@yolasite.com,4,9,73,18,65 +132,68,Lee,dlee3n@printfriendly.com,4,5,96,37,12 +133,80,Scott,vscott3o@bandcamp.com,4,8,44,81,24 +134,39,Gomez,jgomez3p@hibu.com,4,3,20,75,18 +135,30,Young,tyoung3q@storify.com,4,6,50,22,78 +136,15,Fields,afields3r@bbb.org,4,5,47,33,13 +137,24,Ruiz,lruiz3s@ucsd.edu,3,7,25,97,64 +138,27,Bennett,bbennett3t@amazonaws.com,1,8,5,18,95 +139,18,Bailey,rbailey3u@whitehouse.gov,3,10,74,28,99 +140,14,Thompson,tthompson3v@cafepress.com,4,5,32,91,89 +141,18,Oliver,boliver3w@cyberchimps.com,1,9,18,59,69 +142,8,Sullivan,ssullivan3x@tuttocitta.it,2,7,72,81,5 +143,47,Garrett,rgarrett3y@networksolutions.com,2,9,48,3,80 +144,28,Jackson,rjackson3z@twitpic.com,3,10,63,53,67 +145,97,Nelson,rnelson40@flickr.com,1,10,6,33,32 +146,15,Fowler,afowler41@ovh.net,2,10,74,82,25 +147,20,Diaz,gdiaz42@yahoo.com,2,4,6,27,87 +148,42,Banks,rbanks43@gmpg.org,2,7,47,38,79 +149,85,Bailey,lbailey44@nih.gov,4,4,82,12,94 +150,69,Garrett,agarrett45@usnews.com,4,3,5,36,94 +151,50,Hernandez,ahernandez46@engadget.com,4,8,35,39,64 +152,72,Fisher,jfisher47@devhub.com,1,10,13,6,81 +153,16,Hayes,mhayes48@last.fm,4,9,36,19,85 +154,31,Alexander,calexander49@newsvine.com,2,7,14,87,23 +155,93,Wilson,awilson4a@rakuten.co.jp,1,8,48,3,51 +156,47,Kennedy,kkennedy4b@buzzfeed.com,1,3,16,9,94 +157,12,Carter,jcarter4c@oaic.gov.au,2,9,47,35,73 +158,33,Ruiz,jruiz4d@infoseek.co.jp,1,2,80,2,76 +159,82,Wilson,rwilson4e@nydailynews.com,3,8,91,20,97 +160,73,Montgomery,dmontgomery4f@instagram.com,1,4,36,91,47 +161,11,Wallace,dwallace4g@imgur.com,1,2,68,78,9 +162,34,Diaz,ndiaz4h@prweb.com,2,10,87,91,25 +163,76,Fields,afields4i@chron.com,3,10,26,55,14 +164,33,Lewis,plewis4j@360.cn,1,4,32,26,47 +165,17,Hernandez,mhernandez4k@com.com,3,9,74,15,91 +166,89,Peters,speters4l@toplist.cz,2,1,75,44,14 +167,90,Palmer,kpalmer4m@chronoengine.com,1,5,96,46,25 +168,30,Patterson,lpatterson4n@tuttocitta.it,2,8,60,31,23 +169,61,Ferguson,jferguson4o@virginia.edu,4,4,62,35,6 +170,91,Fox,gfox4p@lulu.com,3,7,98,35,66 +171,54,Reyes,jreyes4q@netlog.com,3,6,21,92,35 +172,61,Allen,lallen4r@ocn.ne.jp,3,9,98,11,31 +173,18,Watkins,rwatkins4s@furl.net,4,3,4,61,100 +174,32,Hall,rhall4t@cloudflare.com,3,2,8,57,62 +175,72,Chapman,fchapman4u@cbc.ca,2,1,81,6,27 +176,67,Brown,jbrown4v@flavors.me,2,6,65,43,54 +177,81,Medina,smedina4w@wikipedia.org,2,2,12,31,99 +178,17,White,rwhite4x@posterous.com,1,3,13,4,77 +179,58,Ward,cward4y@usatoday.com,1,3,7,30,11 +180,16,King,eking4z@weather.com,3,3,76,51,30 +181,18,Hudson,rhudson50@upenn.edu,4,1,76,24,33 +182,81,Turner,gturner51@list-manage.com,2,8,52,8,50 +183,1,Tucker,stucker52@rediff.com,1,10,67,86,16 +184,21,Murray,bmurray53@jugem.jp,4,4,48,22,27 +185,39,Harvey,sharvey54@usnews.com,2,10,21,51,6 +186,66,Bennett,sbennett55@devhub.com,1,3,20,51,31 +187,12,Arnold,marnold56@ucla.edu,1,8,71,40,92 +188,34,Gomez,agomez57@myspace.com,3,6,8,36,34 +189,5,Hall,ihall58@walmart.com,4,8,65,30,54 +190,51,Allen,kallen59@surveymonkey.com,3,10,81,24,15 +191,1,Vasquez,bvasquez5a@google.de,3,3,81,90,36 +192,50,Berry,rberry5b@blog.com,1,6,26,27,47 +193,33,Garcia,dgarcia5c@dedecms.com,2,4,26,79,42 +194,45,Black,kblack5d@moonfruit.com,2,1,59,9,42 +195,26,Clark,rclark5e@a8.net,3,3,42,64,16 +196,24,Murphy,mmurphy5f@nifty.com,3,10,67,22,4 +197,66,Mason,mmason5g@webs.com,1,9,88,95,95 +198,71,Kennedy,akennedy5h@myspace.com,1,4,28,36,4 +199,57,Tucker,dtucker5i@cnet.com,3,2,93,51,25 +200,68,Nelson,tnelson5j@smugmug.com,1,2,11,87,65 +201,96,Schmidt,tschmidt5k@netscape.com,2,8,49,93,51 +202,14,Freeman,jfreeman5l@over-blog.com,2,7,12,55,46 +203,50,Elliott,delliott5m@surveymonkey.com,2,5,12,4,32 +204,9,Brown,bbrown5n@adobe.com,1,8,44,80,32 +205,65,Gordon,bgordon5o@so-net.ne.jp,3,8,2,35,86 +206,11,Ray,fray5p@networksolutions.com,2,6,85,82,49 +207,87,Lewis,dlewis5q@yandex.ru,3,1,24,91,68 +208,35,Howell,lhowell5r@sohu.com,3,3,9,77,1 +209,37,Franklin,vfranklin5s@wikipedia.org,3,1,31,58,92 +210,25,Gonzales,dgonzales5t@blogspot.com,3,10,42,67,39 +211,92,Mills,jmills5u@amazon.co.jp,3,10,18,2,80 +212,67,Cook,bcook5v@java.com,3,8,53,31,22 +213,64,Simmons,asimmons5w@ehow.com,4,2,54,73,1 +214,33,Griffin,jgriffin5x@scribd.com,3,9,53,84,51 +215,86,Schmidt,eschmidt5y@shop-pro.jp,1,5,56,71,46 +216,79,Henry,phenry5z@hexun.com,2,3,86,83,60 +217,58,Cruz,scruz60@jugem.jp,3,9,3,73,89 +218,75,Morrison,rmorrison61@meetup.com,3,5,97,17,83 +219,25,Martinez,jmartinez62@blogspot.com,2,4,22,49,18 +220,24,Taylor,ptaylor63@illinois.edu,3,5,53,81,16 +221,15,Snyder,bsnyder64@adobe.com,1,2,50,76,35 +222,9,Torres,ptorres65@smh.com.au,1,1,28,13,98 +223,99,Kennedy,akennedy66@yandex.ru,3,4,95,7,66 +224,5,Bradley,tbradley67@gnu.org,1,1,12,3,94 +225,91,Riley,driley68@ocn.ne.jp,1,6,16,27,39 +226,5,Simmons,msimmons69@wikispaces.com,2,2,31,82,18 +227,21,Alexander,walexander6a@altervista.org,4,7,11,2,96 +228,41,Cunningham,dcunningham6b@wsj.com,3,7,33,66,78 +229,17,Perez,kperez6c@dropbox.com,4,4,30,21,99 +230,2,Jones,kjones6d@delicious.com,4,1,24,8,40 +231,27,Gonzales,egonzales6e@google.com,3,8,33,26,65 +232,51,Patterson,apatterson6f@usa.gov,1,6,19,2,60 +233,43,Burton,jburton6g@reuters.com,1,5,94,67,54 +234,85,Sims,ssims6h@usa.gov,4,6,15,97,65 +235,93,Hicks,mhicks6i@tripadvisor.com,4,10,6,52,68 +236,48,Murray,hmurray6j@amazon.co.jp,1,10,12,52,45 +237,40,Hicks,rhicks6k@sakura.ne.jp,3,9,76,25,54 +238,39,Sanchez,jsanchez6l@hibu.com,4,3,24,41,49 +239,21,Pierce,tpierce6m@flavors.me,1,9,5,15,67 +240,10,Armstrong,aarmstrong6n@omniture.com,4,8,11,14,7 +241,54,Griffin,jgriffin6o@w3.org,3,2,64,4,42 +242,94,Chapman,cchapman6p@alibaba.com,1,8,39,3,43 +243,12,Kelly,jkelly6q@addthis.com,3,10,35,7,62 +244,62,Sanchez,hsanchez6r@cafepress.com,1,7,3,4,87 +245,12,Stanley,estanley6s@booking.com,3,2,75,6,73 +246,47,Riley,priley6t@xinhuanet.com,1,1,51,82,98 +247,8,Wagner,mwagner6u@xinhuanet.com,2,6,39,13,63 +248,60,Cole,bcole6v@washington.edu,1,2,84,77,18 +249,31,Coleman,ccoleman6w@google.it,1,10,70,52,32 +250,62,Lawson,mlawson6x@paypal.com,3,3,44,79,12 +251,73,Walker,swalker6y@icio.us,4,4,17,63,89 +252,64,Ramos,bramos6z@webeden.co.uk,3,6,24,72,79 +253,27,Thomas,sthomas70@wsj.com,1,9,99,24,54 +254,84,Lane,elane71@newsvine.com,4,10,63,34,80 +255,46,Simmons,msimmons72@nih.gov,4,8,82,12,53 +256,25,Hart,ahart73@blogger.com,2,5,39,35,80 +257,67,Cooper,jcooper74@wiley.com,2,7,12,70,85 +258,86,Ray,sray75@yelp.com,4,3,39,84,56 +259,2,Lewis,glewis76@dot.gov,1,6,76,2,17 +260,55,Simmons,ssimmons77@nps.gov,3,4,21,66,60 +261,63,Burns,dburns78@paginegialle.it,4,9,46,14,52 +262,1,Hunter,thunter79@examiner.com,3,10,61,47,92 +263,55,Cunningham,jcunningham7a@engadget.com,1,4,23,31,70 +264,76,Perry,jperry7b@berkeley.edu,1,7,8,92,54 +265,29,Woods,vwoods7c@cdc.gov,2,10,33,5,27 +266,18,Burns,mburns7d@xrea.com,1,2,14,7,54 +267,84,Cunningham,jcunningham7e@berkeley.edu,4,4,46,96,31 +268,47,Flores,dflores7f@cnn.com,2,1,1,96,80 +269,24,Lane,slane7g@imdb.com,4,10,28,91,61 +270,93,Gomez,jgomez7h@devhub.com,4,10,26,77,89 +271,29,Jackson,jjackson7i@google.nl,2,9,14,28,7 +272,86,Chavez,mchavez7j@washingtonpost.com,1,8,71,58,65 +273,89,Gomez,kgomez7k@zimbio.com,2,10,76,43,38 +274,41,Flores,tflores7l@networkadvertising.org,1,5,83,69,77 +275,93,Wheeler,swheeler7m@goodreads.com,2,7,90,32,62 +276,62,Robertson,jrobertson7n@opera.com,2,1,47,72,99 +277,26,Turner,jturner7o@ted.com,3,8,45,62,86 +278,15,Coleman,hcoleman7p@google.com.au,3,10,84,26,98 +279,70,Williams,cwilliams7q@sfgate.com,2,3,17,65,72 +280,90,George,ggeorge7r@godaddy.com,2,5,11,26,48 +281,61,Anderson,janderson7s@com.com,4,3,32,84,43 +282,91,Reyes,rreyes7t@godaddy.com,3,9,85,98,70 +283,66,Hernandez,ahernandez7u@facebook.com,2,5,53,72,50 +284,68,Reynolds,mreynolds7v@miibeian.gov.cn,4,10,16,85,10 +285,85,Olson,colson7w@ustream.tv,3,5,73,44,30 +286,43,Murphy,wmurphy7x@phoca.cz,4,4,80,10,48 +287,94,Foster,jfoster7y@360.cn,1,4,53,94,65 +288,52,Tucker,ktucker7z@cbc.ca,4,2,51,64,49 +289,63,Butler,vbutler80@noaa.gov,4,3,19,81,85 +290,27,Parker,pparker81@rediff.com,1,2,32,32,78 +291,55,Nelson,mnelson82@yandex.ru,1,2,56,25,53 +292,13,Gutierrez,cgutierrez83@patch.com,4,7,31,11,37 +293,9,Hamilton,ahamilton84@trellian.com,4,4,30,73,5 +294,98,Rice,mrice85@sakura.ne.jp,4,4,23,23,20 +295,37,Walker,swalker86@timesonline.co.uk,2,8,18,35,89 +296,59,Price,cprice87@macromedia.com,4,8,31,26,48 +297,90,Reynolds,freynolds88@themeforest.net,3,4,97,15,92 +298,54,Grant,agrant89@upenn.edu,3,5,31,4,23 +299,35,Jackson,sjackson8a@biglobe.ne.jp,4,2,45,75,55 +300,30,Hall,ahall8b@topsy.com,1,3,35,57,75 +301,71,Sims,asims8c@cnet.com,2,3,60,21,83 +302,8,Mcdonald,lmcdonald8d@addtoany.com,1,8,70,99,88 +303,95,Andrews,dandrews8e@myspace.com,2,1,95,45,31 +304,97,Hanson,thanson8f@loc.gov,1,10,14,48,62 +305,37,Gomez,rgomez8g@usnews.com,2,6,27,30,75 +306,75,Mcdonald,lmcdonald8h@unesco.org,2,3,81,100,29 +307,51,Garza,ngarza8i@prnewswire.com,4,9,1,70,48 +308,63,Coleman,scoleman8j@bing.com,2,6,47,57,82 +309,81,Robertson,drobertson8k@stumbleupon.com,3,4,67,33,96 +310,70,Rodriguez,jrodriguez8l@multiply.com,1,5,22,43,96 +311,97,James,jjames8m@ocn.ne.jp,3,2,40,69,18 +312,50,Reed,rreed8n@businesswire.com,3,9,28,31,5 +313,41,Ellis,jellis8o@uiuc.edu,4,3,67,91,64 +314,2,Meyer,rmeyer8p@loc.gov,4,7,73,23,14 +315,92,Franklin,rfranklin8q@desdev.cn,1,8,97,8,62 +316,16,Hernandez,shernandez8r@google.com,1,3,82,5,99 +317,9,Ramirez,jramirez8s@nps.gov,1,1,66,82,29 +318,3,Reid,rreid8t@exblog.jp,4,1,77,4,88 +319,18,Martinez,dmartinez8u@weebly.com,4,10,48,19,3 +320,4,Porter,aporter8v@mail.ru,4,1,15,33,25 +321,76,Chapman,jchapman8w@slate.com,3,9,2,6,24 +322,92,Rogers,jrogers8x@oaic.gov.au,4,2,92,43,92 +323,79,Ramirez,jramirez8y@discovery.com,4,1,46,50,7 +324,11,Anderson,panderson8z@boston.com,4,1,20,45,80 +325,9,Andrews,candrews90@webnode.com,4,7,99,73,4 +326,42,Howard,choward91@live.com,1,8,99,100,44 +327,73,Ramos,jramos92@gravatar.com,3,2,49,47,99 +328,40,Simmons,msimmons93@timesonline.co.uk,3,8,64,100,65 +329,24,King,gking94@networksolutions.com,4,2,85,1,31 +330,91,Ferguson,dferguson95@last.fm,3,3,64,1,20 +331,92,Banks,pbanks96@stumbleupon.com,1,1,75,84,76 +332,54,Graham,pgraham97@marketwatch.com,1,6,26,41,22 +333,43,Porter,rporter98@fema.gov,2,6,82,12,90 +334,75,Scott,iscott99@tripod.com,3,3,17,24,69 +335,96,Bishop,mbishop9a@sitemeter.com,3,9,44,35,95 +336,29,Dean,rdean9b@meetup.com,1,7,83,46,34 +337,7,Ross,jross9c@skype.com,1,8,19,24,69 +338,92,Lee,tlee9d@spiegel.de,2,8,22,9,27 +339,5,Fernandez,sfernandez9e@mtv.com,2,9,97,44,33 +340,36,Myers,jmyers9f@about.me,4,9,91,22,25 +341,10,Williams,jwilliams9g@eventbrite.com,1,8,78,34,9 +342,43,Nelson,snelson9h@devhub.com,2,9,25,13,28 +343,11,Garrett,agarrett9i@cam.ac.uk,1,1,81,97,61 +344,67,Hill,chill9j@deliciousdays.com,4,9,46,2,62 +345,47,Boyd,jboyd9k@mashable.com,3,10,56,60,47 +346,94,Murray,cmurray9l@jigsy.com,4,8,83,53,13 +347,31,Porter,eporter9m@usnews.com,4,8,66,41,7 +348,82,Ward,tward9n@cbslocal.com,3,1,43,63,66 +349,52,Simmons,esimmons9o@washington.edu,4,7,36,71,25 +350,19,Freeman,jfreeman9p@vkontakte.ru,3,2,85,75,5 +351,9,Franklin,kfranklin9q@imdb.com,4,3,31,20,86 +352,81,Sanchez,psanchez9r@ed.gov,3,3,89,11,83 +353,10,Welch,cwelch9s@europa.eu,1,9,7,8,31 +354,74,Henry,mhenry9t@prlog.org,2,8,31,94,80 +355,9,Scott,dscott9u@sphinn.com,3,8,56,86,29 +356,98,Kennedy,lkennedy9v@npr.org,4,8,49,30,54 +357,36,Garza,mgarza9w@nationalgeographic.com,3,6,6,47,74 +358,41,Alexander,malexander9x@scientificamerican.com,3,9,21,43,27 +359,67,Garrett,mgarrett9y@ocn.ne.jp,3,8,59,30,35 +360,60,Sullivan,csullivan9z@github.com,1,1,98,64,73 +361,58,Riley,hrileya0@boston.com,3,7,91,78,63 +362,73,Morales,pmoralesa1@webmd.com,2,4,69,29,23 +363,92,Willis,jwillisa2@soundcloud.com,3,4,79,28,79 +364,41,Butler,kbutlera3@bloglovin.com,3,10,22,76,72 +365,54,Fisher,jfishera4@wisc.edu,4,5,7,76,96 +366,21,Bowman,jbowmana5@scribd.com,4,8,43,96,97 +367,19,Campbell,ccampbella6@youtube.com,4,9,13,14,20 +368,99,Washington,jwashingtona7@tripod.com,2,10,50,13,20 +369,1,Wood,jwooda8@comcast.net,2,2,51,5,54 +370,13,Austin,taustina9@reference.com,2,3,86,11,1 +371,46,Burke,aburkeaa@gnu.org,3,4,7,12,64 +372,35,Grant,sgrantab@51.la,2,8,7,52,89 +373,29,James,bjamesac@cafepress.com,4,2,36,22,50 +374,84,Larson,rlarsonad@ted.com,1,4,77,77,5 +375,30,Gibson,agibsonae@amazon.de,1,3,62,37,42 +376,86,Rice,sriceaf@ftc.gov,2,2,80,80,46 +377,97,Bennett,dbennettag@hc360.com,4,1,28,42,24 +378,37,Gonzalez,cgonzalezah@chicagotribune.com,3,4,22,74,30 +379,35,Holmes,dholmesai@shop-pro.jp,1,7,92,25,44 +380,57,Williamson,rwilliamsonaj@lulu.com,3,6,54,32,99 +381,98,Bryant,jbryantak@twitpic.com,1,5,73,32,100 +382,36,Ortiz,lortizal@skype.com,2,7,50,24,94 +383,44,Kelly,pkellyam@eventbrite.com,4,10,88,98,77 +384,14,Matthews,mmatthewsan@java.com,2,3,34,47,84 +385,57,Romero,lromeroao@chronoengine.com,2,6,86,67,71 +386,3,Long,dlongap@prnewswire.com,1,8,14,75,19 +387,57,Wilson,jwilsonaq@sitemeter.com,1,7,14,50,68 +388,14,Carpenter,rcarpenterar@ehow.com,3,7,88,79,27 +389,9,Collins,hcollinsas@netscape.com,4,7,31,52,35 +390,36,Richards,crichardsat@utexas.edu,2,6,91,90,78 +391,57,Carr,jcarrau@ted.com,2,1,82,4,31 +392,80,Ortiz,kortizav@netvibes.com,1,6,49,93,63 +393,24,Pierce,mpierceaw@time.com,2,4,51,69,52 +394,49,Wells,jwellsax@washingtonpost.com,1,1,73,88,19 +395,81,Garza,jgarzaay@hexun.com,1,10,73,96,83 +396,92,Bell,fbellaz@imageshack.us,3,1,53,46,26 +397,100,Warren,swarrenb0@etsy.com,2,9,67,65,85 +398,43,Johnson,bjohnsonb1@globo.com,3,5,89,46,43 +399,43,Franklin,lfranklinb2@parallels.com,4,10,17,73,19 +400,13,West,swestb3@ehow.com,2,1,96,32,60 +401,38,Hansen,dhansenb4@upenn.edu,4,9,94,12,14 +402,10,Mills,lmillsb5@merriam-webster.com,3,3,84,63,54 +403,36,Williamson,kwilliamsonb6@latimes.com,4,6,93,8,78 +404,77,Wood,awoodb7@bluehost.com,2,9,22,68,33 +405,100,Cooper,ccooperb8@altervista.org,1,10,35,53,27 +406,55,Morris,mmorrisb9@purevolume.com,1,1,10,23,71 +407,95,Cox,mcoxba@yellowpages.com,4,6,66,87,55 +408,5,Tucker,atuckerbb@lycos.com,1,5,54,68,76 +409,63,Alvarez,jalvarezbc@infoseek.co.jp,2,10,67,85,72 +410,58,Green,jgreenbd@netlog.com,2,10,45,88,29 +411,67,Rice,bricebe@ucsd.edu,2,5,27,77,92 +412,26,Lawson,rlawsonbf@typepad.com,1,6,43,15,15 +413,82,Watkins,jwatkinsbg@paypal.com,2,8,85,33,36 +414,16,Washington,cwashingtonbh@census.gov,2,3,90,4,45 +415,27,Lopez,blopezbi@cloudflare.com,1,1,6,23,61 +416,46,Martin,jmartinbj@businessinsider.com,2,9,30,81,8 +417,49,Fisher,lfisherbk@mozilla.com,1,10,27,69,89 +418,48,Jordan,bjordanbl@tmall.com,3,1,19,46,37 +419,43,Sullivan,hsullivanbm@wufoo.com,3,7,7,10,38 +420,63,Freeman,gfreemanbn@gnu.org,4,7,48,91,34 +421,76,Morris,dmorrisbo@parallels.com,3,4,50,50,25 +422,65,Kelley,akelleybp@trellian.com,4,3,56,17,10 +423,12,Jordan,tjordanbq@blogger.com,2,10,96,22,30 +424,45,Coleman,jcolemanbr@comcast.net,4,3,71,25,76 +425,61,Frazier,hfrazierbs@berkeley.edu,2,8,70,96,53 +426,10,Lawrence,alawrencebt@dailymotion.com,4,5,13,48,90 +427,36,Schmidt,jschmidtbu@berkeley.edu,3,1,32,17,81 +428,40,Hernandez,dhernandezbv@typepad.com,2,2,84,46,73 +429,32,Graham,agrahambw@tinypic.com,4,5,68,83,88 +430,60,Howard,ahowardbx@fda.gov,4,3,8,57,3 +431,94,Snyder,ksnyderby@nih.gov,2,1,74,39,71 +432,34,Sims,ssimsbz@abc.net.au,1,7,56,7,34 +433,44,Anderson,kandersonc0@wikimedia.org,2,9,69,17,26 +434,51,Bradley,pbradleyc1@eventbrite.com,3,8,82,85,51 +435,32,Cunningham,acunninghamc2@pbs.org,3,6,26,54,29 +436,33,Palmer,apalmerc3@independent.co.uk,1,8,20,60,93 +437,24,James,ajamesc4@smugmug.com,1,2,100,47,66 +438,65,Jacobs,sjacobsc5@virginia.edu,1,2,100,99,92 +439,12,Johnson,jjohnsonc6@ca.gov,4,5,30,2,76 +440,34,Baker,rbakerc7@cnet.com,2,9,54,63,83 +441,74,Armstrong,darmstrongc8@elegantthemes.com,3,4,77,85,35 +442,30,Reid,kreidc9@amazon.de,3,8,33,38,63 +443,52,Murray,tmurrayca@meetup.com,3,9,7,60,88 +444,80,Sims,jsimscb@house.gov,2,10,85,58,89 +445,22,Fisher,hfishercc@aol.com,1,9,22,25,61 +446,54,Mcdonald,tmcdonaldcd@soup.io,1,7,89,53,96 +447,23,Harris,mharrisce@de.vu,1,3,42,81,56 +448,61,Stanley,sstanleycf@unesco.org,2,9,10,50,84 +449,42,Morales,smoralescg@boston.com,2,6,62,36,4 +450,84,Butler,sbutlerch@prweb.com,1,6,24,62,88 +451,94,Mills,lmillsci@amazon.com,3,6,51,74,73 +452,17,Simmons,csimmonscj@live.com,2,6,57,36,42 +453,58,Ellis,cellisck@sfgate.com,2,1,47,80,2 +454,47,Ryan,jryancl@msu.edu,2,10,53,85,1 +455,63,Nichols,rnicholscm@reddit.com,1,5,73,70,56 +456,60,Shaw,cshawcn@ifeng.com,1,6,89,81,62 +457,57,Russell,rrussellco@fotki.com,2,2,3,44,38 +458,48,Lane,slanecp@pinterest.com,4,2,62,16,3 +459,73,Banks,ebankscq@thetimes.co.uk,4,8,46,14,70 +460,21,Welch,rwelchcr@wix.com,2,3,26,15,50 +461,1,Dean,hdeancs@cnet.com,3,10,51,99,24 +462,42,Hunter,dhunterct@webmd.com,4,1,9,17,54 +463,57,Greene,pgreenecu@hhs.gov,3,3,76,52,47 +464,88,Elliott,helliottcv@wikipedia.org,3,3,13,71,35 +465,56,Reed,sreedcw@ibm.com,1,2,19,29,5 +466,54,Hicks,bhickscx@cpanel.net,2,3,45,7,62 +467,26,Andrews,eandrewscy@tripadvisor.com,2,7,33,23,70 +468,65,Bailey,wbaileycz@tumblr.com,1,4,59,55,5 +469,75,Pierce,gpierced0@craigslist.org,3,2,42,11,25 +470,82,Reynolds,dreynoldsd1@mediafire.com,4,3,73,93,3 +471,34,Larson,llarsond2@ca.gov,2,10,69,8,48 +472,45,Matthews,jmatthewsd3@guardian.co.uk,1,8,60,16,16 +473,68,Bowman,jbowmand4@sciencedirect.com,4,9,25,87,12 +474,92,Dean,adeand5@nydailynews.com,4,7,24,81,12 +475,50,Ward,awardd6@canalblog.com,4,3,36,12,50 +476,24,Watkins,cwatkinsd7@woothemes.com,4,2,51,3,90 +477,84,West,lwestd8@amazon.co.uk,2,2,26,41,21 +478,87,Dunn,ddunnd9@so-net.ne.jp,4,10,39,63,63 +479,78,Mason,tmasonda@wsj.com,2,1,79,90,40 +480,72,Banks,dbanksdb@w3.org,4,1,22,71,94 +481,79,Wright,wwrightdc@hatena.ne.jp,1,4,68,60,54 +482,26,Gilbert,pgilbertdd@boston.com,2,10,81,83,71 +483,96,Marshall,tmarshallde@tiny.cc,4,8,95,18,74 +484,18,King,akingdf@pagesperso-orange.fr,1,8,39,17,5 +485,75,Foster,afosterdg@springer.com,4,3,99,65,54 +486,76,Cole,pcoledh@mit.edu,1,6,27,43,28 +487,71,Mcdonald,gmcdonalddi@dropbox.com,2,6,61,12,31 +488,35,Walker,swalkerdj@discuz.net,1,4,89,75,20 +489,80,West,rwestdk@army.mil,2,6,48,49,92 +490,74,Oliver,moliverdl@technorati.com,4,6,38,24,36 +491,97,James,cjamesdm@bloomberg.com,2,10,59,16,31 +492,100,Chapman,gchapmandn@scribd.com,4,8,62,83,97 +493,33,Kennedy,akennedydo@symantec.com,4,8,21,70,74 +494,69,Fowler,cfowlerdp@reddit.com,3,9,46,87,36 +495,12,Bowman,tbowmandq@icq.com,2,10,96,35,15 +496,37,Reyes,creyesdr@adobe.com,2,7,85,3,78 +497,39,Martin,mmartinds@google.es,4,2,89,93,64 +498,64,Brooks,bbrooksdt@pinterest.com,3,5,53,40,71 +499,68,Owens,aowensdu@shutterfly.com,3,1,80,66,36 +500,74,Murphy,pmurphydv@usa.gov,2,3,45,40,51 +501,86,Hamilton,ghamiltondw@nps.gov,1,2,75,54,9 +502,98,Freeman,jfreemandx@ask.com,3,7,62,36,14 +503,94,Harvey,jharveydy@techcrunch.com,2,10,65,4,44 +504,7,Bowman,sbowmandz@a8.net,3,6,49,56,82 +505,97,Mccoy,jmccoye0@wikia.com,3,8,79,90,80 +506,54,Parker,dparkere1@homestead.com,2,7,72,38,84 +507,53,Jones,mjonese2@washingtonpost.com,3,7,61,40,35 +508,21,Ward,cwarde3@theguardian.com,4,6,21,13,47 +509,33,Edwards,nedwardse4@blogtalkradio.com,1,2,10,23,2 +510,46,Turner,lturnere5@1und1.de,3,9,84,96,44 +511,21,Morales,cmoralese6@rakuten.co.jp,4,4,80,43,55 +512,58,Coleman,ecolemane7@craigslist.org,3,3,85,3,74 +513,99,Ellis,rellise8@google.de,4,9,43,37,94 +514,13,Baker,rbakere9@redcross.org,1,10,3,83,39 +515,17,Jackson,cjacksonea@list-manage.com,4,3,89,41,58 +516,9,Gomez,bgomezeb@list-manage.com,4,1,67,43,3 +517,100,Ortiz,rortizec@t-online.de,3,5,37,40,93 +518,29,Stanley,bstanleyed@indiegogo.com,2,2,39,45,31 +519,45,Howell,jhowellee@xinhuanet.com,1,5,36,16,34 +520,90,Ford,tfordef@nba.com,2,2,94,47,88 +521,92,Palmer,epalmereg@ft.com,4,1,91,85,47 +522,24,Cook,ccookeh@dot.gov,1,6,27,28,4 +523,18,Chavez,achavezei@pinterest.com,3,5,29,93,46 +524,40,Mccoy,kmccoyej@google.cn,4,10,16,29,74 +525,32,King,dkingek@cornell.edu,3,3,61,7,48 +526,5,Burke,jburkeel@omniture.com,4,8,1,55,79 +527,67,Butler,dbutlerem@over-blog.com,2,7,53,29,81 +528,25,Gilbert,jgilberten@parallels.com,2,9,58,75,67 +529,90,Hall,khalleo@1und1.de,3,10,55,47,90 +530,65,Arnold,carnoldep@furl.net,2,8,96,72,90 +531,14,Hall,bhalleq@ucoz.com,1,8,15,18,18 +532,96,Mcdonald,dmcdonalder@elpais.com,2,3,39,81,42 +533,3,Sanders,asanderses@51.la,2,2,77,64,69 +534,32,Harrison,charrisonet@godaddy.com,3,9,25,35,74 +535,46,Lane,alaneeu@cmu.edu,2,3,74,40,26 +536,2,Fuller,kfullerev@amazon.com,1,10,85,69,19 +537,10,Peterson,lpetersonew@whitehouse.gov,3,4,99,72,73 +538,37,Lawson,dlawsonex@engadget.com,4,10,63,12,19 +539,4,Bradley,jbradleyey@cnbc.com,3,3,55,68,9 +540,19,Wagner,jwagnerez@imgur.com,1,4,81,83,79 +541,62,Johnston,fjohnstonf0@tiny.cc,4,9,5,79,100 +542,27,Wallace,kwallacef1@yolasite.com,4,2,100,62,99 +543,31,Carter,lcarterf2@quantcast.com,4,5,39,27,66 +544,47,Long,alongf3@yelp.com,3,7,40,5,41 +545,85,Bailey,bbaileyf4@opensource.org,4,3,78,23,56 +546,11,Fox,wfoxf5@vkontakte.ru,4,9,74,3,46 +547,67,Porter,jporterf6@microsoft.com,2,6,15,85,66 +548,27,King,dkingf7@list-manage.com,4,6,73,12,53 +549,20,Foster,kfosterf8@blogtalkradio.com,2,5,60,31,80 +550,4,Austin,raustinf9@un.org,1,4,65,66,22 +551,23,Dunn,kdunnfa@github.io,4,9,56,67,27 +552,64,King,jkingfb@yolasite.com,4,7,62,71,35 +553,10,Spencer,sspencerfc@narod.ru,3,6,84,66,91 +554,5,Torres,wtorresfd@elegantthemes.com,4,9,86,82,19 +555,40,Anderson,landersonfe@state.tx.us,2,5,58,53,26 +556,82,Jones,cjonesff@bravesites.com,3,2,45,1,10 +557,38,Lawrence,mlawrencefg@dion.ne.jp,2,7,14,47,90 +558,39,Allen,jallenfh@sogou.com,2,6,8,9,40 +559,55,Harris,kharrisfi@dailymail.co.uk,3,7,56,66,45 +560,99,Ellis,mellisfj@skyrock.com,1,7,49,92,73 +561,76,Evans,cevansfk@jimdo.com,4,10,18,49,60 +562,61,Perry,jperryfl@imgur.com,4,10,72,22,47 +563,80,Gonzalez,mgonzalezfm@dell.com,3,5,46,74,53 +564,87,Baker,nbakerfn@so-net.ne.jp,2,9,20,92,69 +565,99,Miller,amillerfo@earthlink.net,3,1,3,73,61 +566,29,Lopez,llopezfp@washingtonpost.com,1,2,22,39,46 +567,83,Wood,twoodfq@scribd.com,4,9,97,92,1 +568,63,Warren,swarrenfr@github.com,3,10,77,1,74 +569,69,Perkins,sperkinsfs@discovery.com,2,4,68,58,25 +570,35,Watkins,jwatkinsft@ucsd.edu,3,7,67,21,77 +571,62,Mcdonald,amcdonaldfu@smh.com.au,2,7,28,7,2 +572,88,Richardson,frichardsonfv@4shared.com,3,4,68,20,91 +573,65,Lawrence,jlawrencefw@mediafire.com,1,8,88,83,6 +574,96,Mendoza,jmendozafx@chicagotribune.com,2,9,5,71,42 +575,15,Ferguson,tfergusonfy@ow.ly,4,7,2,51,84 +576,5,Gordon,fgordonfz@phoca.cz,4,6,75,75,6 +577,51,Gonzalez,ngonzalezg0@yellowbook.com,1,3,54,60,45 +578,89,Dean,cdeang1@umn.edu,3,9,55,50,94 +579,41,Clark,jclarkg2@is.gd,2,3,52,62,68 +580,94,Rose,croseg3@storify.com,4,7,81,10,44 +581,44,Daniels,gdanielsg4@freewebs.com,1,4,24,62,90 +582,79,Jacobs,ljacobsg5@dot.gov,1,3,13,89,38 +583,89,Gordon,tgordong6@jiathis.com,4,8,76,52,41 +584,64,Martin,fmarting7@mayoclinic.com,4,2,24,32,11 +585,19,Montgomery,nmontgomeryg8@npr.org,2,8,23,63,72 +586,49,Edwards,sedwardsg9@de.vu,3,4,48,75,26 +587,8,Stanley,mstanleyga@dot.gov,3,6,94,80,18 +588,72,Allen,lallengb@skype.com,3,8,3,76,56 +589,70,Carter,rcartergc@infoseek.co.jp,3,3,73,50,25 +590,46,Grant,bgrantgd@people.com.cn,1,10,55,69,18 +591,73,Lynch,hlynchge@canalblog.com,1,1,12,68,95 +592,93,Mason,tmasongf@examiner.com,1,7,68,52,1 +593,71,Hanson,lhansongg@tuttocitta.it,1,9,84,33,85 +594,36,Ferguson,sfergusongh@netlog.com,2,2,38,1,18 +595,93,Cunningham,fcunninghamgi@networkadvertising.org,2,8,77,98,57 +596,82,Hicks,dhicksgj@t-online.de,4,1,90,62,75 +597,5,Snyder,asnydergk@skype.com,3,4,58,62,16 +598,86,Martinez,dmartinezgl@comsenz.com,1,4,99,12,26 +599,41,Miller,wmillergm@tripadvisor.com,4,10,97,66,18 +600,91,Bell,pbellgn@so-net.ne.jp,1,8,56,58,68 +601,28,Burton,jburtongo@webmd.com,4,1,23,84,72 +602,38,Rice,jricegp@ask.com,3,10,62,62,96 +603,13,Snyder,esnydergq@behance.net,2,10,48,60,25 +604,56,Crawford,lcrawfordgr@bluehost.com,2,7,57,82,82 +605,81,Gardner,dgardnergs@princeton.edu,3,2,62,87,74 +606,98,Roberts,brobertsgt@eepurl.com,2,7,99,60,11 +607,25,Henderson,chendersongu@indiegogo.com,3,7,88,63,49 +608,44,Mcdonald,smcdonaldgv@businessweek.com,2,9,43,34,24 +609,93,Owens,rowensgw@studiopress.com,4,6,52,8,75 +610,83,Robertson,krobertsongx@fastcompany.com,3,10,87,7,65 +611,82,Pierce,wpiercegy@chronoengine.com,4,2,44,2,54 +612,53,Clark,aclarkgz@army.mil,3,9,68,29,78 +613,44,Nguyen,anguyenh0@simplemachines.org,1,4,95,8,15 +614,69,Adams,jadamsh1@simplemachines.org,3,2,59,67,100 +615,74,Ramos,dramosh2@arstechnica.com,4,10,93,73,29 +616,90,Carpenter,bcarpenterh3@blogger.com,1,9,78,65,51 +617,92,Robertson,jrobertsonh4@amazon.co.uk,1,10,61,16,42 +618,65,Thomas,dthomash5@webeden.co.uk,2,7,64,91,96 +619,37,Thompson,gthompsonh6@symantec.com,1,3,77,8,66 +620,92,Perkins,nperkinsh7@pinterest.com,1,10,16,80,86 +621,14,Morales,jmoralesh8@cam.ac.uk,1,5,22,95,57 +622,78,Lawrence,klawrenceh9@cafepress.com,3,5,56,34,24 +623,64,Freeman,efreemanha@amazonaws.com,2,4,12,69,8 +624,81,Rice,cricehb@wufoo.com,3,3,87,77,50 +625,35,Dunn,adunnhc@wikispaces.com,2,5,71,30,20 +626,69,Day,jdayhd@ucoz.ru,4,6,84,62,14 +627,88,Ferguson,jfergusonhe@ehow.com,4,5,96,11,60 +628,25,Palmer,rpalmerhf@pbs.org,3,3,64,67,56 +629,81,Hawkins,thawkinshg@admin.ch,2,3,29,98,51 +630,64,Willis,jwillishh@mozilla.org,3,2,38,13,58 +631,83,Reynolds,dreynoldshi@ycombinator.com,1,6,3,50,10 +632,29,Roberts,rrobertshj@amazon.com,4,4,40,41,84 +633,40,Gray,jgrayhk@theatlantic.com,4,7,29,63,50 +634,37,Green,bgreenhl@cbc.ca,3,8,26,66,9 +635,26,Williams,jwilliamshm@globo.com,1,10,52,7,13 +636,84,Williamson,jwilliamsonhn@google.pl,3,5,80,84,55 +637,10,Hawkins,jhawkinsho@scientificamerican.com,1,7,84,25,99 +638,35,Ford,wfordhp@xinhuanet.com,1,6,78,41,1 +639,24,Richardson,arichardsonhq@ucoz.ru,2,10,13,84,43 +640,64,Wells,pwellshr@cnn.com,4,1,19,9,63 +641,46,Hicks,chickshs@illinois.edu,4,2,80,71,58 +642,45,Robinson,rrobinsonht@shop-pro.jp,2,9,84,72,34 +643,25,Elliott,selliotthu@ucla.edu,2,5,66,87,19 +644,1,Reynolds,breynoldshv@apache.org,4,8,99,19,16 +645,33,Burton,jburtonhw@psu.edu,2,10,14,86,30 +646,85,Banks,jbankshx@ox.ac.uk,2,10,85,88,27 +647,48,Bailey,bbaileyhy@chronoengine.com,2,6,1,44,67 +648,46,Burke,aburkehz@economist.com,2,5,36,16,71 +649,81,Gomez,cgomezi0@salon.com,2,8,98,50,17 +650,36,Ramos,bramosi1@gmpg.org,3,3,28,88,92 +651,66,Barnes,rbarnesi2@squidoo.com,1,6,36,84,87 +652,67,Baker,tbakeri3@statcounter.com,3,10,71,12,81 +653,92,Bailey,vbaileyi4@prweb.com,4,10,38,59,66 +654,6,Clark,cclarki5@hubpages.com,4,1,66,73,37 +655,25,Gutierrez,jgutierrezi6@wikia.com,4,10,8,78,15 +656,42,Richardson,crichardsoni7@answers.com,1,8,82,70,35 +657,64,Lynch,dlynchi8@upenn.edu,1,5,29,86,24 +658,35,King,bkingi9@archive.org,2,3,46,96,12 +659,42,Simpson,ssimpsonia@bandcamp.com,2,9,94,54,57 +660,86,Thomas,nthomasib@mysql.com,3,9,19,47,20 +661,60,Reid,creidic@paypal.com,2,3,95,54,49 +662,24,Wells,nwellsid@altervista.org,1,8,100,72,19 +663,29,Romero,aromeroie@github.com,2,1,79,25,21 +664,79,Richards,brichardsif@bandcamp.com,3,3,65,89,25 +665,51,Rose,rroseig@buzzfeed.com,1,2,57,79,61 +666,93,Palmer,apalmerih@opera.com,4,2,45,42,15 +667,69,Lawson,hlawsonii@artisteer.com,4,5,51,16,95 +668,41,Ruiz,aruizij@oakley.com,3,3,22,20,87 +669,16,Sims,hsimsik@acquirethisname.com,4,2,65,81,9 +670,96,Reid,sreidil@dion.ne.jp,2,10,15,86,10 +671,1,Bailey,pbaileyim@webnode.com,3,5,33,32,27 +672,12,Lane,alanein@sitemeter.com,4,1,91,73,70 +673,14,Medina,tmedinaio@canalblog.com,1,3,33,63,30 +674,51,Anderson,jandersonip@disqus.com,3,10,17,17,51 +675,81,Johnston,fjohnstoniq@amazon.co.jp,1,4,25,62,2 +676,4,Knight,lknightir@1und1.de,3,1,53,3,58 +677,82,Jordan,rjordanis@twitter.com,3,7,26,80,37 +678,90,Harper,gharperit@bloomberg.com,2,6,46,26,67 +679,12,Austin,gaustiniu@businesswire.com,1,2,71,27,47 +680,2,Alexander,jalexanderiv@tinyurl.com,3,3,55,4,7 +681,10,Arnold,varnoldiw@photobucket.com,1,2,91,14,93 +682,80,Cook,tcookix@columbia.edu,3,5,90,38,82 +683,86,Miller,tmilleriy@foxnews.com,4,3,78,63,41 +684,88,Perez,ppereziz@networkadvertising.org,2,7,72,94,6 +685,2,Austin,jaustinj0@flavors.me,4,10,12,8,15 +686,81,Bishop,ibishopj1@cocolog-nifty.com,1,1,51,95,36 +687,90,Boyd,mboydj2@uol.com.br,3,4,33,47,74 +688,51,Meyer,mmeyerj3@wikispaces.com,2,10,85,72,87 +689,76,Cruz,kcruzj4@columbia.edu,3,3,5,11,96 +690,14,Powell,wpowellj5@statcounter.com,2,2,93,81,14 +691,25,Green,fgreenj6@google.nl,4,1,3,38,35 +692,80,Robinson,trobinsonj7@rediff.com,1,3,15,77,88 +693,68,Montgomery,mmontgomeryj8@apache.org,2,7,97,40,54 +694,36,Stanley,dstanleyj9@illinois.edu,3,5,84,14,49 +695,58,Gonzalez,sgonzalezja@angelfire.com,4,3,57,81,14 +696,47,Cunningham,pcunninghamjb@artisteer.com,1,3,63,87,73 +697,14,Montgomery,lmontgomeryjc@hexun.com,3,1,87,64,14 +698,18,Duncan,eduncanjd@reuters.com,3,10,19,63,11 +699,14,Moreno,mmorenoje@mac.com,1,3,46,90,9 +700,30,Russell,brusselljf@pinterest.com,2,4,79,64,39 +701,21,Ryan,rryanjg@shutterfly.com,1,4,36,22,40 +702,84,Stewart,mstewartjh@psu.edu,3,7,17,5,87 +703,9,Diaz,rdiazji@printfriendly.com,4,4,4,3,45 +704,5,Hamilton,phamiltonjj@multiply.com,3,1,89,87,10 +705,34,Armstrong,aarmstrongjk@homestead.com,4,9,29,37,85 +706,29,Chavez,schavezjl@addtoany.com,1,9,83,68,96 +707,51,Stanley,bstanleyjm@redcross.org,1,3,49,74,13 +708,77,Frazier,cfrazierjn@yahoo.com,2,8,95,68,67 +709,96,Russell,arusselljo@google.co.uk,3,6,91,7,39 +710,6,West,mwestjp@geocities.jp,4,1,25,40,17 +711,6,Campbell,rcampbelljq@webnode.com,4,8,41,98,53 +712,34,Wood,ewoodjr@tripod.com,1,6,62,92,18 +713,35,Lopez,dlopezjs@jimdo.com,2,10,6,60,4 +714,50,Grant,sgrantjt@tiny.cc,2,8,63,65,47 +715,10,Barnes,pbarnesju@squarespace.com,3,2,16,80,3 +716,33,Ford,rfordjv@csmonitor.com,1,10,54,38,47 +717,81,Oliver,roliverjw@hatena.ne.jp,4,7,43,42,82 +718,36,Boyd,jboydjx@fema.gov,2,3,54,98,26 +719,12,Chapman,cchapmanjy@amazon.co.jp,3,3,92,75,17 +720,13,Ford,efordjz@unc.edu,2,1,52,60,92 +721,31,Hernandez,ahernandezk0@rambler.ru,2,3,84,100,42 +722,38,Adams,hadamsk1@wisc.edu,4,2,77,86,38 +723,35,Wallace,jwallacek2@is.gd,1,7,88,45,3 +724,99,Chapman,echapmank3@arizona.edu,2,7,42,61,17 +725,1,Ray,srayk4@behance.net,3,10,50,32,92 +726,93,Williams,dwilliamsk5@miitbeian.gov.cn,4,4,73,10,87 +727,66,Morgan,kmorgank6@technorati.com,1,10,38,2,69 +728,50,Morgan,mmorgank7@quantcast.com,4,1,68,17,10 +729,67,Castillo,hcastillok8@comsenz.com,1,4,12,5,81 +730,45,Thomas,nthomask9@goo.gl,2,7,41,77,59 +731,86,Porter,tporterka@vk.com,1,3,38,60,93 +732,66,Stanley,astanleykb@ed.gov,2,7,1,75,25 +733,48,Austin,jaustinkc@t-online.de,4,5,12,89,61 +734,99,Black,kblackkd@cnet.com,2,2,75,59,5 +735,47,Hicks,lhickske@blog.com,1,2,76,68,32 +736,34,Rogers,trogerskf@salon.com,1,3,77,24,21 +737,74,Chavez,tchavezkg@netlog.com,1,5,70,3,79 +738,66,Martin,rmartinkh@bandcamp.com,3,7,66,51,62 +739,50,Riley,arileyki@devhub.com,4,5,40,41,58 +740,20,Hall,challkj@taobao.com,3,6,43,59,72 +741,75,Gibson,mgibsonkk@flickr.com,4,3,56,66,62 +742,71,Howell,phowellkl@tuttocitta.it,2,3,84,90,35 +743,8,Franklin,rfranklinkm@t-online.de,3,6,20,6,20 +744,67,Richardson,jrichardsonkn@imdb.com,4,8,89,90,73 +745,14,Johnston,kjohnstonko@4shared.com,3,2,26,11,90 +746,75,Carroll,dcarrollkp@linkedin.com,2,8,29,12,45 +747,15,Lawson,clawsonkq@arstechnica.com,2,4,78,17,86 +748,4,Jenkins,wjenkinskr@yandex.ru,4,9,26,36,4 +749,29,Hart,dhartks@webs.com,2,6,35,42,20 +750,56,Perkins,rperkinskt@hatena.ne.jp,2,5,28,23,75 +751,84,Nelson,cnelsonku@apache.org,3,4,48,24,86 +752,84,Crawford,gcrawfordkv@multiply.com,3,2,83,73,20 +753,62,Allen,fallenkw@marketwatch.com,3,2,35,99,8 +754,83,Nichols,snicholskx@wikia.com,3,6,94,46,17 +755,81,Daniels,jdanielsky@state.gov,3,9,77,18,73 +756,57,Cook,ecookkz@mtv.com,3,1,60,4,3 +757,59,Nichols,fnicholsl0@etsy.com,2,5,1,4,98 +758,92,Johnson,cjohnsonl1@cloudflare.com,1,8,97,28,33 +759,28,Ellis,pellisl2@msu.edu,1,9,53,7,97 +760,55,Gutierrez,fgutierrezl3@washington.edu,1,9,65,57,22 +761,67,Gonzales,rgonzalesl4@japanpost.jp,2,8,99,85,48 +762,49,Martin,amartinl5@imageshack.us,2,6,67,16,91 +763,18,Hart,hhartl6@1688.com,3,3,41,60,79 +764,69,Pierce,npiercel7@surveymonkey.com,3,4,50,11,26 +765,85,Fuller,jfullerl8@va.gov,4,9,84,69,3 +766,54,Diaz,ediazl9@thetimes.co.uk,1,4,6,36,55 +767,27,Chavez,dchavezla@discuz.net,4,3,11,47,25 +768,54,Marshall,rmarshalllb@wired.com,4,10,21,80,51 +769,58,Hunt,phuntlc@pcworld.com,3,6,93,54,4 +770,51,Wagner,rwagnerld@abc.net.au,4,5,16,80,77 +771,30,Rice,mricele@typepad.com,2,9,65,3,41 +772,71,Stevens,astevenslf@sogou.com,2,1,17,55,82 +773,62,Hughes,mhugheslg@123-reg.co.uk,1,6,58,42,54 +774,75,Robertson,jrobertsonlh@oracle.com,2,7,100,45,79 +775,59,Dunn,adunnli@instagram.com,2,1,5,54,92 +776,36,Wagner,cwagnerlj@themeforest.net,3,3,50,93,51 +777,44,Morales,bmoraleslk@webnode.com,2,8,19,42,13 +778,49,Cunningham,tcunninghamll@wired.com,1,5,97,24,40 +779,61,Romero,lromerolm@list-manage.com,2,9,56,6,5 +780,22,George,cgeorgeln@studiopress.com,3,2,10,24,48 +781,72,Sanchez,isanchezlo@a8.net,4,5,71,26,80 +782,67,Smith,asmithlp@miitbeian.gov.cn,1,6,52,62,53 +783,38,Thompson,cthompsonlq@ezinearticles.com,3,8,70,3,13 +784,32,Morrison,jmorrisonlr@answers.com,3,4,63,81,17 +785,9,Medina,pmedinals@about.me,4,8,31,80,33 +786,18,Williamson,cwilliamsonlt@cargocollective.com,4,5,80,5,35 +787,84,Stone,dstonelu@flickr.com,2,1,30,72,99 +788,9,Thompson,jthompsonlv@disqus.com,1,8,77,15,15 +789,37,Evans,eevanslw@microsoft.com,4,8,65,44,20 +790,79,Palmer,cpalmerlx@cisco.com,4,8,88,8,43 +791,94,Sanders,esandersly@cnn.com,1,9,100,89,72 +792,54,Adams,madamslz@addtoany.com,3,2,96,89,76 +793,26,Hall,shallm0@wufoo.com,3,9,5,56,97 +794,99,Jackson,sjacksonm1@miibeian.gov.cn,3,9,92,34,92 +795,6,Stephens,bstephensm2@toplist.cz,2,4,18,31,74 +796,52,Ramirez,aramirezm3@moonfruit.com,3,5,69,55,14 +797,12,Wheeler,jwheelerm4@list-manage.com,4,9,36,30,78 +798,37,Morales,hmoralesm5@typepad.com,3,4,89,37,1 +799,92,Vasquez,tvasquezm6@google.com,4,5,27,44,6 +800,8,Coleman,mcolemanm7@washington.edu,1,1,92,100,31 +801,69,Sanchez,jsanchezm8@theglobeandmail.com,1,5,61,49,98 +802,61,Ryan,wryanm9@friendfeed.com,1,3,40,67,62 +803,96,Nichols,dnicholsma@fotki.com,4,7,4,7,18 +804,66,Snyder,rsnydermb@surveymonkey.com,3,3,66,22,10 +805,29,Hamilton,jhamiltonmc@bing.com,4,2,29,32,19 +806,97,Young,cyoungmd@jimdo.com,4,3,61,13,66 +807,100,Howell,mhowellme@nature.com,2,5,47,9,84 +808,76,Wagner,swagnermf@discovery.com,1,5,86,96,12 +809,48,Austin,haustinmg@bloomberg.com,4,5,94,73,75 +810,74,Black,sblackmh@over-blog.com,1,5,26,6,78 +811,38,Hayes,dhayesmi@huffingtonpost.com,2,6,73,81,96 +812,2,Bailey,abaileymj@angelfire.com,2,10,77,58,58 +813,78,Henry,shenrymk@smugmug.com,4,8,19,8,32 +814,56,Romero,wromeroml@4shared.com,4,3,49,7,84 +815,78,Butler,dbutlermm@umich.edu,1,3,13,48,27 +816,84,Matthews,lmatthewsmn@indiatimes.com,1,9,80,57,5 +817,97,Arnold,barnoldmo@g.co,1,1,99,77,8 +818,41,Torres,jtorresmp@is.gd,4,5,95,23,83 +819,75,Woods,bwoodsmq@google.ca,3,9,5,37,56 +820,86,Tucker,rtuckermr@wikia.com,1,1,14,60,23 +821,50,Chavez,achavezms@xrea.com,4,10,100,41,55 +822,66,Harris,wharrismt@quantcast.com,4,6,30,76,75 +823,66,Morrison,lmorrisonmu@ca.gov,2,2,43,100,7 +824,40,Franklin,mfranklinmv@163.com,3,1,39,62,16 +825,39,Gilbert,jgilbertmw@dion.ne.jp,4,1,59,7,92 +826,24,Hudson,khudsonmx@hugedomains.com,4,6,70,70,52 +827,62,Greene,sgreenemy@oakley.com,4,7,100,32,96 +828,82,Mills,nmillsmz@nih.gov,2,2,87,77,34 +829,77,Nichols,tnicholsn0@sitemeter.com,4,1,27,66,68 +830,51,Hayes,jhayesn1@archive.org,3,5,90,18,38 +831,83,Fowler,rfowlern2@elegantthemes.com,2,4,96,8,6 +832,76,Long,clongn3@harvard.edu,1,6,27,19,24 +833,11,Fowler,kfowlern4@reuters.com,1,7,77,68,64 +834,10,Romero,mromeron5@forbes.com,3,3,82,58,30 +835,83,Gomez,kgomezn6@sciencedirect.com,4,2,58,92,80 +836,99,Anderson,aandersonn7@nifty.com,2,5,7,7,71 +837,2,Alexander,balexandern8@amazon.de,4,9,34,58,31 +838,13,Bennett,abennettn9@soundcloud.com,2,7,75,1,78 +839,41,Fernandez,rfernandezna@pinterest.com,1,9,58,19,94 +840,58,Price,mpricenb@constantcontact.com,3,4,72,100,40 +841,69,Diaz,adiaznc@surveymonkey.com,3,1,90,46,33 +842,97,Armstrong,aarmstrongnd@thetimes.co.uk,3,9,55,85,100 +843,55,Hernandez,chernandezne@skyrock.com,3,7,50,59,70 +844,39,Brooks,dbrooksnf@theguardian.com,4,9,79,35,33 +845,71,Black,jblackng@dagondesign.com,4,7,48,39,13 +846,93,Flores,sfloresnh@xinhuanet.com,3,1,65,6,75 +847,5,Bradley,rbradleyni@ucoz.ru,3,5,58,56,100 +848,83,Howard,showardnj@nationalgeographic.com,2,3,38,100,79 +849,37,Ward,jwardnk@eepurl.com,3,2,10,45,79 +850,12,Cruz,hcruznl@creativecommons.org,4,1,75,54,70 +851,38,Kennedy,mkennedynm@123-reg.co.uk,2,1,45,59,50 +852,90,Pierce,bpiercenn@princeton.edu,1,6,81,84,33 +853,80,Cooper,jcooperno@google.pl,1,4,46,72,18 +854,8,Boyd,dboydnp@hud.gov,2,3,30,66,53 +855,52,Armstrong,sarmstrongnq@globo.com,1,2,26,31,20 +856,25,Ellis,aellisnr@who.int,3,4,26,26,49 +857,100,Roberts,lrobertsns@cocolog-nifty.com,3,9,82,47,70 +858,3,Stewart,rstewartnt@webs.com,4,9,74,38,78 +859,97,Marshall,amarshallnu@macromedia.com,4,1,56,54,64 +860,35,Medina,rmedinanv@netvibes.com,2,3,19,41,33 +861,15,Lawrence,rlawrencenw@google.co.uk,4,10,100,55,9 +862,52,Martinez,jmartineznx@time.com,2,10,34,9,56 +863,91,Wilson,pwilsonny@nps.gov,1,7,97,10,95 +864,65,Henderson,dhendersonnz@cargocollective.com,4,4,82,95,62 +865,10,Turner,rturnero0@istockphoto.com,4,2,61,50,91 +866,24,Reyes,creyeso1@behance.net,2,9,11,14,78 +867,52,Murphy,smurphyo2@rambler.ru,3,1,98,89,45 +868,19,Ray,rrayo3@barnesandnoble.com,3,5,31,78,52 +869,84,Cox,acoxo4@homestead.com,1,4,91,9,31 +870,50,Carpenter,pcarpentero5@acquirethisname.com,1,6,18,40,100 +871,87,Harris,bharriso6@clickbank.net,3,3,91,44,100 +872,60,Butler,pbutlero7@deviantart.com,1,10,49,40,21 +873,40,Jordan,mjordano8@reddit.com,2,8,64,10,23 +874,83,Williamson,dwilliamsono9@ehow.com,3,7,93,30,23 +875,61,Austin,eaustinoa@nifty.com,2,3,39,50,8 +876,76,Cox,ccoxob@economist.com,4,7,27,74,14 +877,84,Peterson,spetersonoc@google.it,2,4,95,62,24 +878,82,Peters,hpetersod@wp.com,3,2,39,3,57 +879,35,Stone,astoneoe@flavors.me,2,5,95,86,73 +880,10,Hunt,ehuntof@adobe.com,4,9,1,14,84 +881,12,Ellis,wellisog@ovh.net,3,6,72,73,14 +882,1,Warren,pwarrenoh@google.pl,3,8,95,28,4 +883,100,Parker,rparkeroi@jiathis.com,1,2,75,25,90 +884,74,Morales,jmoralesoj@si.edu,3,8,62,73,35 +885,51,Ortiz,aortizok@bbc.co.uk,4,3,39,84,47 +886,26,Medina,lmedinaol@shinystat.com,4,3,28,27,75 +887,25,Little,alittleom@samsung.com,3,2,83,15,78 +888,60,Duncan,cduncanon@princeton.edu,4,3,13,15,69 +889,19,Lewis,clewisoo@uiuc.edu,4,8,77,47,63 +890,52,Phillips,cphillipsop@friendfeed.com,3,7,82,37,97 +891,19,Baker,lbakeroq@tripadvisor.com,1,4,35,51,48 +892,60,Warren,vwarrenor@cargocollective.com,4,10,63,83,100 +893,67,Hunt,shuntos@histats.com,3,1,86,27,72 +894,66,Reynolds,jreynoldsot@nyu.edu,3,5,31,65,73 +895,53,Bowman,abowmanou@mozilla.org,4,10,52,62,33 +896,25,Ellis,hellisov@rediff.com,1,4,94,4,8 +897,78,Thomas,athomasow@hubpages.com,2,8,88,48,71 +898,2,Franklin,bfranklinox@edublogs.org,3,2,31,17,52 +899,79,Fisher,dfisheroy@quantcast.com,4,2,55,14,77 +900,46,Robertson,probertsonoz@cornell.edu,3,7,1,20,62 +901,91,Gray,lgrayp0@disqus.com,4,3,98,17,82 +902,8,Perkins,lperkinsp1@jimdo.com,4,7,71,47,25 +903,82,Cruz,jcruzp2@ovh.net,1,1,36,100,52 +904,61,Arnold,sarnoldp3@quantcast.com,4,4,92,39,61 +905,37,Ramirez,pramirezp4@cnbc.com,4,2,70,17,68 +906,43,Harvey,charveyp5@slashdot.org,2,1,97,17,68 +907,68,Parker,jparkerp6@answers.com,3,6,21,54,58 +908,39,Clark,gclarkp7@studiopress.com,2,10,93,5,39 +909,15,Elliott,jelliottp8@imageshack.us,2,9,42,77,85 +910,53,Hall,challp9@netscape.com,1,9,28,87,56 +911,8,Rose,mrosepa@dailymail.co.uk,2,6,14,47,71 +912,63,Scott,gscottpb@paginegialle.it,2,2,98,57,1 +913,71,Gomez,cgomezpc@salon.com,2,9,59,27,8 +914,100,Andrews,randrewspd@photobucket.com,1,10,50,30,24 +915,26,Bennett,tbennettpe@flavors.me,1,4,50,47,45 +916,11,Larson,blarsonpf@hp.com,4,3,17,24,25 +917,67,Mitchell,kmitchellpg@live.com,1,8,76,53,18 +918,96,Hicks,nhicksph@ebay.co.uk,3,2,94,10,69 +919,81,Reynolds,dreynoldspi@imgur.com,4,10,5,16,28 +920,24,Rice,hricepj@xing.com,4,2,5,19,92 +921,61,Austin,caustinpk@umich.edu,4,10,76,9,24 +922,49,Banks,kbankspl@yahoo.com,4,1,14,99,13 +923,35,Hayes,dhayespm@mapy.cz,1,10,78,26,16 +924,95,Wood,jwoodpn@bluehost.com,2,2,87,58,23 +925,58,Long,slongpo@clickbank.net,1,10,21,18,29 +926,1,Lopez,alopezpp@shareasale.com,2,1,91,87,48 +927,72,Nichols,wnicholspq@mlb.com,2,9,66,37,11 +928,14,Gordon,sgordonpr@4shared.com,3,9,76,23,16 +929,21,Brooks,pbrooksps@artisteer.com,3,7,16,40,69 +930,95,Olson,molsonpt@blogtalkradio.com,3,2,33,95,22 +931,66,Green,jgreenpu@xrea.com,1,1,21,79,30 +932,66,Wilson,awilsonpv@chronoengine.com,3,5,70,14,34 +933,99,Barnes,abarnespw@friendfeed.com,2,7,39,6,97 +934,29,Rice,bricepx@washingtonpost.com,2,6,33,61,21 +935,46,Martin,jmartinpy@ihg.com,2,1,13,58,67 +936,3,Jones,ljonespz@huffingtonpost.com,1,4,88,3,68 +937,38,Sullivan,asullivanq0@google.ru,1,7,10,100,58 +938,54,Edwards,redwardsq1@prlog.org,3,2,92,4,64 +939,24,Garrett,mgarrettq2@engadget.com,3,6,59,85,21 +940,77,Johnston,djohnstonq3@icq.com,3,3,18,42,93 +941,31,Stephens,wstephensq4@tiny.cc,4,10,10,16,45 +942,3,Medina,gmedinaq5@kickstarter.com,4,8,27,10,65 +943,4,Murphy,cmurphyq6@hostgator.com,4,8,49,30,25 +944,23,Hunt,ghuntq7@blogspot.com,3,5,46,53,76 +945,46,Greene,mgreeneq8@trellian.com,4,5,89,94,68 +946,77,Welch,bwelchq9@phpbb.com,3,2,31,10,18 +947,76,Jackson,rjacksonqa@wired.com,4,4,66,24,83 +948,93,Martin,fmartinqb@vk.com,1,4,44,82,90 +949,19,Green,ggreenqc@netlog.com,2,1,92,63,8 +950,43,Harper,mharperqd@liveinternet.ru,4,5,3,10,73 +951,47,Alexander,ealexanderqe@php.net,1,8,91,7,26 +952,94,Peterson,rpetersonqf@msn.com,2,6,43,43,32 +953,8,Montgomery,cmontgomeryqg@ucla.edu,1,3,6,54,85 +954,11,Williams,jwilliamsqh@taobao.com,2,9,36,82,14 +955,15,Anderson,bandersonqi@auda.org.au,3,8,48,25,7 +956,17,Williams,awilliamsqj@upenn.edu,4,9,5,58,82 +957,73,Payne,dpayneqk@4shared.com,4,8,8,28,85 +958,57,Wheeler,kwheelerql@oaic.gov.au,1,4,19,89,62 +959,61,Long,llongqm@woothemes.com,4,8,28,17,45 +960,6,Kennedy,jkennedyqn@amazon.co.jp,2,3,45,4,69 +961,27,Davis,rdavisqo@indiegogo.com,4,10,76,55,9 +962,2,Walker,awalkerqp@java.com,4,4,87,74,35 +963,34,Bishop,lbishopqq@discovery.com,3,3,20,17,5 +964,69,Fuller,jfullerqr@fema.gov,2,8,48,75,16 +965,30,Lewis,jlewisqs@whitehouse.gov,2,7,70,91,24 +966,80,Lewis,slewisqt@cnn.com,4,6,68,14,50 +967,90,Banks,jbanksqu@fema.gov,4,3,90,1,33 +968,8,Sims,rsimsqv@blogs.com,4,9,24,63,79 +969,44,Cole,wcoleqw@ycombinator.com,3,3,17,3,86 +970,69,Walker,twalkerqx@disqus.com,3,10,99,83,99 +971,29,Morales,jmoralesqy@hexun.com,2,1,40,38,13 +972,1,Burke,jburkeqz@twitter.com,1,1,91,59,29 +973,5,King,bkingr0@phoca.cz,4,9,59,20,27 +974,15,Franklin,sfranklinr1@github.com,3,9,87,3,71 +975,97,Garrett,dgarrettr2@youtube.com,2,5,79,27,25 +976,1,Martinez,cmartinezr3@twitpic.com,1,2,6,15,73 +977,93,Andrews,jandrewsr4@wordpress.com,1,3,43,48,37 +978,32,Murphy,hmurphyr5@51.la,4,4,34,63,21 +979,2,Moreno,amorenor6@mtv.com,1,4,88,48,78 +980,2,Johnston,jjohnstonr7@yolasite.com,3,8,87,29,11 +981,81,Montgomery,smontgomeryr8@lulu.com,4,6,82,81,80 +982,15,Graham,mgrahamr9@a8.net,4,8,47,36,1 +983,3,Sims,msimsra@va.gov,3,10,68,67,48 +984,65,Williamson,rwilliamsonrb@reddit.com,2,1,18,79,47 +985,94,Hanson,rhansonrc@ocn.ne.jp,2,3,31,100,71 +986,42,Garza,bgarzard@taobao.com,1,4,83,82,25 +987,4,Romero,mromerore@cnn.com,3,10,59,73,58 +988,80,Torres,jtorresrf@imdb.com,1,6,73,71,55 +989,80,Gordon,mgordonrg@house.gov,1,5,44,44,51 +990,87,Flores,hfloresrh@cam.ac.uk,2,9,27,75,41 +991,59,Hamilton,rhamiltonri@canalblog.com,4,6,81,15,89 +992,4,Cruz,bcruzrj@blogspot.com,4,10,55,81,56 +993,85,Nguyen,lnguyenrk@bloglines.com,1,2,99,69,47 +994,79,Wells,pwellsrl@unesco.org,2,9,62,26,42 +995,65,Harrison,dharrisonrm@shinystat.com,4,7,26,43,79 +996,4,Walker,mwalkerrn@aol.com,1,8,99,13,10 +997,37,Cook,bcookro@google.ru,2,3,24,26,12 +998,53,Barnes,rbarnesrp@homestead.com,4,4,61,49,64 +999,45,Jenkins,cjenkinsrq@scientificamerican.com,1,8,96,23,19 +1000,31,Tucker,jtuckerrr@prweb.com,4,6,72,69,66 diff --git a/svm-rmarkdown-syllabus-example.pdf b/svm-rmarkdown-syllabus-example.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b9cfa39c19cfa78b22be6941aeb9d6506c08a32e Binary files /dev/null and b/svm-rmarkdown-syllabus-example.pdf differ diff --git a/syncleus-white-example.bib b/syncleus-white-example.bib new file mode 100644 index 0000000000000000000000000000000000000000..c1ac24fad2acc7aefff8833daf7978723a4ec6a7 --- /dev/null +++ b/syncleus-white-example.bib @@ -0,0 +1,13632 @@ +%% Saharon Shelah's bibliography +%% (public version of listb.bib) +% generated on: 3 Feb 2017, 8:27 GMT + + +% Disclaimer: This bibliography has its +% own idiosyncrasies. For example, all titles +% are enclosed in double braces, thus ensuring that capitalization +% is maintained. Also: even unpublished papers will be +% called "article". + + +@Preamble{"\def\germ{\frak} \def\scr{\cal} + \ifx\documentclass\undefinedcs + \def\bf{\fam\bffam\tenbf}\def\rm{\fam0\tenrm}\fi + % f**k-amstex! + \def\defaultdefine#1#2{\expandafter\ifx\csname#1\endcsname\relax + \expandafter\def\csname#1\endcsname{#2}\fi} + \defaultdefine{Bbb}{\bf} \defaultdefine{frak}{\bf} + \defaultdefine{=}{\B} % doublef**k-amstex!! + \defaultdefine{mathfrak}{\frak} + \defaultdefine{mathbb}{\bf} + \defaultdefine{mathcal}{\cal} + \defaultdefine{beth}{BETH}\defaultdefine{cal}{\bf} + \def\bbfI{{\Bbb I}} \def\mbox{\hbox} \def\text{\hbox} + \def\om{\omega} \def\Cal#1{{\bf #1}} \def\pcf{pcf} + \defaultdefine{cf}{cf} + \defaultdefine{reals}{{\Bbb R}} \defaultdefine{real}{{\Bbb R}} + \def\restriction{{|}} \def\club{CLUB} + \def\w{\omega} \def\exist{\exists} + \def\se{{\germ se}} \def\bb{{\bf b}} + \def\equivalence{\equiv} + \let\lt< \let\gt> + "} + +@article{Sh:1, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Israel Journal of Mathematics}, +review = {MR 40-7102}, +pages = {187--202}, +title = {{Stable theories}}, +volume = {7}, +year = {1969}, +}, + +@article{Sh:2, +author = {Shelah, Saharon}, +ams-subject = {(05.04)}, +journal = {Journal of Combinatorial Theory}, +review = {MR 39-2652}, +pages = {298--300}, +title = {{Note on a min-max problem of Leo Moser}}, +volume = {6}, +year = {1969}, +}, + +@article{Sh:3, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Annals of Mathematical Logic}, +review = {MR 44-2593}, +pages = {69--118}, +title = {{Finite diagrams stable in power}}, +volume = {2}, +year = {1970}, +}, + +@article{Sh:4, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Journal of Symbolic Logic}, +review = {MR 44-52}, +pages = {73--82}, +title = {{On theories $T$ categorical in $|T|$}}, +volume = {35}, +year = {1970}, +}, + +@article{Sh:5, +author = {Shelah, Saharon}, +ams-subject = {(02.35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 41-6674}, +pages = {75--79}, +title = {{On languages with non-homogeneous strings of quantifiers}}, +volume = {8}, +year = {1970}, +}, + +@article{Sh:6, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Pacific Journal of Mathematics}, +review = {MR 42-2932}, +pages = {541--545}, +title = {{A note on Hanf numbers}}, +volume = {34}, +year = {1970}, +}, + +@article{Sh:7, +author = {Shelah, Saharon}, +ams-subject = {(02H13)}, +journal = {Journal of Symbolic Logic}, +review = {MR 48:3735}, +pages = {83--84}, +title = {{On the cardinality of ultraproduct of finite sets}}, +volume = {35}, +year = {1970}, +}, + +@article{Sh:8, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 46:1581}, +pages = {193--198}, +title = {{Two cardinal compactness}}, +volume = {9}, +year = {1971}, +}, + +@article{Sh:9, +author = {Shelah, Saharon}, +ams-subject = {(02.52)}, +journal = {Annals of Mathematical Logic}, +review = {MR 44-56}, +pages = {441--447}, +title = {{Remark to ``local definability theory'' of Reyes}}, +volume = {2}, +year = {1970}, +}, + +@article{Sh:10, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Annals of Mathematical Logic}, +review = {MR 47:6475}, +pages = {271--362}, +title = {{Stability, the f.c.p., and superstability; model theoretic + properties of formulas in first order theory}}, +volume = {3}, +year = {1971}, +}, + +@article{Sh:11, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Pacific Journal of Mathematics}, +review = {MR 44-2594}, +pages = {811--818}, +title = {{On the number of non-almost isomorphic models of $T$ in a + power}}, +volume = {36}, +year = {1971}, +}, + +@article{Sh:12, +author = {Shelah, Saharon}, +ams-subject = {(02.50)}, +journal = {Israel Journal of Mathematics}, +review = {MR 43-4652}, +pages = {473--487}, +title = {{The number of non-isomorphic models of an unstable first-order + theory}}, +volume = {9}, +year = {1971}, +}, + +@article{Sh:13, +author = {Shelah, Saharon}, +ams-subject = {(02H99)}, +journal = {Israel Journal of Mathematics}, +review = {MR 45:6608}, +pages = {224--233}, +title = {{Every two elementarily equivalent models have isomorphic + ultrapowers}}, +volume = {10}, +year = {1971}, +}, + +@article{Sh:14, +author = {Shelah, Saharon}, +ams-subject = {(02H99)}, +journal = {Annals of Mathematical Logic}, +review = {MR 45:3187}, +pages = {75--114}, +title = {{Saturation of ultrapowers and Keisler's order}}, +volume = {4}, +year = {1972}, +}, + +@article{Sh:15, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Journal of Symbolic Logic}, +review = {MR 47:4787}, +pages = {107--113}, +title = {{Uniqueness and characterization of prime models over sets for + totally transcendental first-order theories}}, +volume = {37}, +year = {1972}, +}, + +@article{Sh:16, +author = {Shelah, Saharon}, +ams-subject = {(02H10)}, +journal = {Pacific Journal of Mathematics}, +review = {MR 46:7018}, +pages = {247--261}, +title = {{A combinatorial problem; stability and order for models and + theories in infinitary languages}}, +volume = {41}, +year = {1972}, +}, + +@article{Sh:17, +author = {Shelah, Saharon}, +ams-subject = {(02H13)}, +journal = {Israel Journal of Mathematics}, +review = {MR 46:3292}, +pages = {23--31}, +title = {{For what filters is every reduced product saturated?}}, +volume = {12}, +year = {1972}, +}, + +@article{Sh:18, +author = {Shelah, Saharon}, +ams-subject = {(02H13)}, +journal = {Journal of Symbolic Logic}, +review = {MR 56:5272}, +pages = {247--267}, +title = {{On models with power-like orderings}}, +volume = {37}, +year = {1972}, +}, + +@article{ErSh:19, +author = {Erdos, Paul and Shelah, Saharon}, +trueauthor = {Erd\H{o}s, Paul and Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Israel Journal of Mathematics}, +review = {MR 47:8312}, +pages = {207--214}, +title = {{Separability properties of almost-disjoint families of sets}}, +volume = {12}, +year = {1972}, +}, + +@article{ScSh:20, +author = {Schmerl, James H. and Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Journal of Symbolic Logic}, +review = {MR 47:6474}, +pages = {531--537}, +title = {{On power-like models for hyperinaccessible cardinals}}, +volume = {37}, +year = {1972}, +}, + +@incollection{ErSh:21, +author = {Erdos, Paul and Shelah, Saharon}, +trueauthor = {Erd\H{o}s, Paul and Shelah, Saharon}, +booktitle = {Graph theory and applications (Proc. Conf., Western + Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. + W. T. Youngs)}, +ams-subject = {(05A15)}, +review = {MR 49:2415}, +pages = {75--79}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{On problems of Moser and Hanson}}, +volume = {303}, +year = {1972}, +}, + +@article{Sh:22, +author = {Shelah, Saharon}, +ams-subject = {(02H10)}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 45:3188}, +pages = {509--514}, +title = {{A note on model complete models and generic models}}, +volume = {34}, +year = {1972}, +}, + +@article{GlSh:23, +author = {Galvin, Fred and Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Journal of Combinatorial Theory. Ser. A}, +review = {MR 48:8240}, +pages = {167--174}, +title = {{Some Counterexamples in the Partition Calculus}}, +volume = {15}, +year = {1973}, +}, + +@article{Sh:24, +author = {Shelah, Saharon}, +ams-subject = {(02H15)}, +journal = {Israel Journal of Mathematics}, +review = {MR 54:4972}, +pages = {149--162}, +title = {{First order theory of permutation groups}}, +volume = {14}, +year = {1973}, +}, + +@article{Sh:25, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +pages = {437--441}, +title = {{Errata to: First order theory of permutation groups}}, +volume = {15}, +year = {1973}, +}, + +@article{Sh:26, +author = {Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Israel Journal of Mathematics}, +review = {MR 48:5864}, +pages = {262--277}, +title = {{Notes on combinatorial set theory}}, +volume = {14}, +year = {1973}, +}, + +@article{MoSh:27, +author = {Moran, Gadi and Shelah, Saharon}, +ams-subject = {(90D05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 47:10084}, +pages = {442--449}, +title = {{Size direction games over the real line. III}}, +volume = {14}, +year = {1973}, +}, + +@article{Sh:28, +author = {Shelah, Saharon}, +ams-subject = {(02B15)}, +journal = {Israel Journal of Mathematics}, +review = {MR 49:20}, +pages = {282--300}, +title = {{There are just four second-order quantifiers}}, +volume = {15}, +year = {1973}, +}, + +@article{Sh:29, +author = {Shelah, Saharon}, +ams-subject = {(05A05)}, +journal = {Journal of Combinatorial Theory. Ser. A}, +review = {MR 48:10824}, +pages = {199--208}, +title = {{A substitute for Hall's theorem for families with infinite + sets}}, +volume = {16}, +year = {1974}, +}, + +@incollection{MzSh:30, +author = {McKenzie, Ralph and Shelah, Saharon}, +booktitle = {Proceedings of the Tarski Symposium (Univ. California, + Berkeley, Calif., 1971)}, +ams-subject = {(02H15)}, +review = {MR 50:12711}, +pages = {53--74}, +publisher = {Amer. Math. Soc., Providence, R.I}, +series = {Proc. Sympos. Pure Math.}, +title = {{The cardinals of simple models for universal theories}}, +volume = {XXV}, +year = {1974}, +}, + +@incollection{Sh:31, +author = {Shelah, Saharon}, +booktitle = {Proceedings of the Tarski Symposium (Univ. of California, + Berkeley, Calif., 1971)}, +ams-subject = {(02G20)}, +review = {MR 51:10074}, +pages = {187--203}, +publisher = {Amer. Math. Soc., Providence, R.I}, +series = {Proc. Sympos. Pure Math.}, +title = {{Categoricity of uncountable theories}}, +volume = {XXV}, +year = {1974}, +}, + +@incollection{EHSh:32, +author = {Erdos, Paul and Hajnal, Andras and Shelah, Saharon}, +trueauthor = {Erd\H{o}s, Paul and Hajnal, Andras and Shelah, Saharon}, +booktitle = {Topics in topology (Proc. Colloq., Keszthely, 1972)}, +ams-subject = {(05C15)}, +review = {MR 50:9662}, +pages = {243--255}, +publisher = {North-Holland, Amsterdam}, +series = {Colloq. Math. Soc. Janos Bolyai}, +title = {{On some general properties of chromatic numbers}}, +volume = {8}, +year = {1974}, +}, + +@article{Sh:33, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Pacific Journal of Mathematics}, +review = {MR 51:132}, +pages = {163--168}, +title = {{The Hanf number of omitting complete types}}, +volume = {50}, +year = {1974}, +}, + +@article{Sh:34, +author = {Shelah, Saharon}, +ams-subject = {(02B25)}, +journal = {Journal of Symbolic Logic}, +review = {MR 51:5263}, +pages = {399--404}, +title = {{Weak definability in infinitary languages}}, +volume = {38}, +year = {1973}, +}, + +@article{MlSh:35, +author = {Milner, Eric C. and Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Canadian Journal of Mathematics. Journal Canadien de + Mathematiques}, +review = {MR 51:10107}, +pages = {948--961}, +title = {{Sufficiency conditions for the existence of transversals}}, +volume = {26}, +year = {1974}, +}, + +@article{Sh:36, +author = {Shelah, Saharon}, +ams-subject = {(54A25)}, +journal = {General Topology and Applications}, +review = {MR 58:2674}, +pages = {251--259}, +title = {{Remarks on cardinal invariants in topology}}, +volume = {7}, +year = {1977}, +}, + +@article{Sh:37, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 50:9573}, +pages = {207--213}, +title = {{A two-cardinal theorem}}, +volume = {48}, +year = {1975}, +}, + +@incollection{Sh:38, +author = {Shelah, Saharon}, +booktitle = {Infinite and finite sets (Colloq., Keszthely, 1973; + dedicated to P. Erd\H{o}s on his 60th birthday)}, +ams-subject = {(05C35)}, +review = {MR 51:7944}, +pages = {1241--1256}, +publisher = {North-Holland, Amsterdam}, +series = {Colloq. Math. Soc. Janos Bolyai}, +title = {{Graphs with prescribed asymmetry and minimal number of + edges}}, +volume = {10 (III)}, +year = {1975}, +}, + +@article{Sh:39, +author = {Shelah, Saharon}, +ams-subject = {(02H15)}, +journal = {Israel Journal of Mathematics}, +review = {MR 49:8856}, +pages = {314--328}, +title = {{Differentially closed fields}}, +volume = {16}, +year = {1973}, +}, + +@incollection{Sh:40, +author = {Shelah, Saharon}, +booktitle = {Infinite and finite sets (Colloq., Keszthely, 1973; + dedicated to P. Erd\H{o}s on his 60th birthday)}, +ams-subject = {(04A20)}, +review = {MR 53:10584}, +pages = {1257--1276}, +publisher = {North-Holland, Amsterdam}, +series = {Colloq. Math. Soc. Janos Bolyai}, +title = {{Notes on partition calculus}}, +volume = {10 (III)}, +year = {1975}, +}, + +@incollection{MlSh:41, +author = {Milner, Eric C. and Shelah, Saharon}, +booktitle = {Infinite and finite sets (Colloq., Keszthely, 1973; + dedicated to P. Erd\H{o}s on his 60th birthday)}, +ams-subject = {(04A20)}, +review = {MR 51:12534}, +pages = {1115--1126}, +publisher = {North Holland, Amsterdam}, +series = {Colloq. Math. Soc. Janos Bolyai}, +title = {{Some theorems on transversals}}, +volume = {10 (III)}, +year = {1975}, +}, + +@article{Sh:42, +author = {Shelah, Saharon}, +ams-subject = {(02G05)}, +journal = {Annals of Mathematics}, +review = {MR 58:10390}, +pages = {379--419}, +title = {{The monadic theory of order}}, +volume = {102}, +year = {1975}, +}, + +@article{Sh:43, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 51:12510}, +pages = {342--364}, +title = {{Generalized quantifiers and compact logic}}, +volume = {204}, +year = {1975}, +}, + +@article{Sh:44, +author = {Shelah, Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 50:9582}, +pages = {243--256}, +title = {{Infinite abelian groups, Whitehead problem and some + constructions}}, +volume = {18}, +year = {1974}, +}, + +@incollection{Sh:45, +author = {Shelah, Saharon}, +booktitle = {Model theory and algebra (A memorial tribute to Abraham + Robinson)}, +ams-subject = {(20K10)}, +review = {MR 54:425}, +pages = {384--402}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Math.}, +title = {{Existence of rigid-like families of abelian $p$-groups}}, +volume = {498}, +year = {1975}, +}, + +@article{Sh:46, +author = {Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Israel Journal of Mathematics}, +review = {MR 55:109}, +pages = {1--12}, +title = {{Colouring without triangles and partition relation}}, +volume = {20}, +year = {1975}, +}, + +@article{MShS:47, +author = {Makowsky, Johann A. and Shelah, Saharon and Stavi, Jonathan}, +ams-subject = {(02B20)}, +journal = {Annals of Mathematical Logic}, +review = {MR 56:15362}, +pages = {155--192}, +title = {{$\Delta$-logics and generalized quantifiers}}, +volume = {10}, +year = {1976}, +}, + +@article{Sh:48, +author = {Shelah, Saharon}, +ams-subject = {(02H10)}, +journal = {Israel Journal of Mathematics}, +review = {MR 52:83}, +pages = {127--148}, +title = {{Categoricity in $\aleph _{1}$ of sentences in $L_{\omega + _{1},\omega}(Q)$}}, +volume = {20}, +year = {1975}, +}, + +@article{Sh:49, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 55:7764}, +pages = {134--136}, +title = {{A two-cardinal theorem and a combinatorial theorem}}, +volume = {62}, +year = {1977}, +}, + +@article{Sh:50, +author = {Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Journal of Combinatorial Theory. Ser. A}, +review = {MR 53:12958}, +pages = {110--114}, +title = {{Decomposing uncountable squares to countably many chains}}, +volume = {21}, +year = {1976}, +}, + +@incollection{Sh:51, +author = {Shelah, Saharon}, +booktitle = {Proceedings of the International Congress of + Mathematicians (Vancouver, B. C., 1974)}, +ams-subject = {(02H05)}, +review = {MR 54:10008}, +pages = {259--263}, +publisher = {Canad. Math. Congress, Montreal, Que}, +title = {{Why there are many nonisomorphic models for unsuperstable + theories}}, +volume = {1}, +year = {1974}, +}, + +@article{Sh:52, +author = {Shelah, Saharon}, +ams-subject = {(02H13)}, +journal = {Israel Journal of Mathematics}, +review = {MR 52:10410}, +pages = {319--349}, +title = {{A compactness theorem for singular cardinals, free algebras, + Whitehead problem and transversals}}, +volume = {21}, +year = {1975}, +}, + +@article{LtSh:53, +author = {Litman, A. and Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 57:9522}, +pages = {331--338}, +title = {{Models with few isomorphic expansions}}, +volume = {28}, +year = {1977}, +}, + +@article{Sh:54, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Logique et Analyse}, +review = {MR 58:27447}, +nt = {Comptes Rendus de la Semaine d'Etude en Theorie des Modeles (Inst. + Math., Univ. Catholique Louvain, Louvain-la-Neuve, 1975).}, +pages = {241--308}, +title = {{The lazy model-theoretician's guide to stability}}, +volume = {18}, +year = {1975}, +}, + +@incollection{Sh:54a, +author = {Shelah, Saharon}, +booktitle = {Six days of model theory}, +fromwhere = {IL}, +pages = {9-76}, +publisher = {ed. P. Henrard, Paul Castella, Switzerland 1661 Albeuve}, +series = {Proceedings of a conference in Louvain-le-Neuve, March 1975}, +title = {{The lazy model theorist's guide to stability}}, +year = {1978}, +}, + +@article{McSh:55, +author = {Macintyre, Angus and Shelah, Saharon}, +ams-subject = {(02H15)}, +journal = {Journal of Algebra}, +review = {MR 55:12511}, +pages = {168--175}, +title = {{Uncountable universal locally finite groups}}, +volume = {43}, +year = {1976}, +}, + +@article{Sh:56, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:5173}, +note = {A special volume, Proceedings of the Symposium in memory of A. + Robinson, Yale, 1975}, +pages = {273--286}, +title = {{Refuting Ehrenfeucht conjecture on rigid models}}, +volume = {25}, +year = {1976}, +}, + +@article{AmSh:57, +author = {Amit, R. and Shelah, Saharon}, +ams-subject = {(02G20)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:5162}, +pages = {200--208}, +title = {{The complete finitely axiomatized theories of order are + dense}}, +volume = {23}, +year = {1976}, +}, + +@article{Sh:58, +author = {Shelah, Saharon}, +ams-subject = {(02G05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:21562}, +pages = {32--44}, +title = {{Decidability of a portion of the predicate calculus}}, +volume = {28}, +year = {1977}, +}, + +@article{HiSh:59, +author = {Hiller, Howard L. and Shelah, Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 56:2820}, +pages = {313--319}, +title = {{Singular cohomology in $L$}}, +volume = {26}, +year = {1977}, +}, + +@article{HLSh:60, +author = {Hodges, Wilfrid and Lachlan, Alistair H. and Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {Bulletin of the London Mathematical Society}, +review = {MR 57:16085}, +pages = {212--215}, +title = {{Possible orderings of an indiscernible sequence}}, +volume = {9}, +year = {1977}, +}, + +@article{Sh:61, +author = {Shelah, Saharon}, +ams-subject = {(02K99)}, +journal = {Ann. Sci. Univ. Clermont}, +review = {MR 58:21622}, +note = {Proceedings of Symposium in Clermont-Ferand, July 1975}, +pages = {1--29}, +title = {{Interpreting set theory in the endomorphism semi-group of a + free algebra or in a category}}, +volume = {13}, +year = {1976}, +}, + +@article{MwSh:62, +author = {Makowsky, Johann A. and Shelah, Saharon}, +ams-subject = {(03C80)}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 81b:03041}, +pages = {215--239}, +title = {{The theorems of Beth and Craig in abstract model theory. I. + The abstract setting}}, +volume = {256}, +year = {1979}, +}, + +@article{SeSh:63, +author = {Stern, Jacques and Shelah, Saharon}, +ams-subject = {(03C65)}, +fromwhere = {IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 80a:03047}, +pages = {147--171}, +title = {{The Hanf number of the first order theory of Banach spaces}}, +volume = {244}, +year = {1978}, +}, + +@article{Sh:64, +author = {Shelah, Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 57:9538}, +pages = {193--204}, +title = {{Whitehead groups may be not free, even assuming CH. I}}, +volume = {28}, +year = {1977}, +}, + +@article{DvSh:65, +author = {Devlin, Keith J. and Shelah, Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 57:9537}, +pages = {239--247}, +title = {{A weak version of $\diamondsuit $ which follows from + $2^{\aleph _{0}}<2^{\aleph _{1}}$}}, +volume = {29}, +year = {1978}, +}, + +@article{Sh:66, +author = {Shelah, Saharon}, +ams-subject = {(03C15)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 80b:03037}, +pages = {550--562}, +title = {{End extensions and numbers of countable models}}, +volume = {43}, +year = {1978}, +}, + +@article{Sh:67, +author = {Shelah, Saharon}, +ams-subject = {(02H13)}, +journal = {Journal of Symbolic Logic}, +review = {MR 58:10414}, +pages = {475--480}, +title = {{On the number of minimal models}}, +volume = {43}, +year = {1978}, +}, + +@article{Sh:68, +author = {Shelah, Saharon}, +ams-subject = {(02H05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:21572}, +pages = {57--64}, +title = {{Jonsson algebras in successor cardinals}}, +volume = {30}, +year = {1978}, +}, + +@incollection{Sh:69, +author = {Shelah, Saharon}, +booktitle = {Word problems, II (Conf. on Decision Problems in Algebra, + Oxford, 1976)}, +ams-subject = {(20F06)}, +review = {MR 81j:20047}, +pages = {373--394}, +publisher = {North-Holland, Amsterdam-New York}, +series = {Studies in Logic and Foundations of Mathematics}, +title = {{On a problem of Kurosh, Jonsson groups, and applications}}, +volume = {95}, +year = {1980}, +}, + +@article{GuSh:70, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03C85)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 81a:03038b}, +pages = {491--502}, +title = {{Modest theory of short chains. II}}, +volume = {44}, +year = {1979}, +}, + +@article{Sh:71, +author = {Shelah, Saharon}, +ams-subject = {(03E10)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 82c:03070}, +pages = {56--66}, +title = {{A note on cardinal exponentiation}}, +volume = {45}, +year = {1980}, +}, + +@article{Sh:72, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +journal = {Annals of Mathematical Logic}, +review = {MR 80b:03047a}, +pages = {57--72}, +title = {{Models with second-order properties. I. Boolean algebras with + no definable automorphisms}}, +volume = {14}, +year = {1978}, +}, + +@article{Sh:73, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +journal = {Annals of Mathematical Logic}, +review = {MR 80b:03047b}, +pages = {73--87}, +title = {{Models with second-order properties. II. Trees with no + undefined branches}}, +volume = {14}, +year = {1978}, +}, + +@article{Sh:74, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +journal = {Annals of Mathematical Logic}, +review = {MR 80b:03047c}, +pages = {223--226}, +title = {{Appendix to: ``Models with second-order properties. II. + Trees with no undefined branches'' (Annals of Mathematical Logic + 14(1978), no. 1, 73--87)}}, +volume = {14}, +year = {1978}, +}, + +@article{Sh:75, +author = {Shelah, Saharon}, +ams-subject = {(46B99)}, +journal = {Israel Journal of Mathematics}, +review = {MR 80b:46033}, +pages = {181--191}, +title = {{A Banach space with few operators}}, +volume = {30}, +year = {1978}, +}, + +@article{Sh:76, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 81k:03050}, +pages = {505--509}, +title = {{Independence of strong partition relation for small cardinals, + and the free-subset problem}}, +volume = {45}, +year = {1980}, +}, + +@article{Sh:77, +author = {Shelah, Saharon}, +ams-subject = {(03C60)}, +journal = {Bulletin de la Societe Mathematique de Grece. Nouvelle + Serie}, +review = {MR 80j:03047}, +note = {A special volume dedicated to the memory of Papakyriakopoulos}, +pages = {17--27}, +title = {{Existentially-closed groups in $\aleph _{1}$ with special + properties}}, +volume = {18}, +year = {1977}, +}, + +@article{Sh:78, +author = {Shelah, Saharon}, +ams-subject = {(03C50)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 80k:03031}, +pages = {319--324}, +title = {{Hanf number of omitting type for simple first-order + theories}}, +volume = {44}, +year = {1979}, +}, + +@article{Sh:79, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 80m:03066}, +pages = {215--220}, +title = {{On uniqueness of prime models}}, +volume = {44}, +year = {1979}, +}, + +@article{Sh:80, +author = {Shelah, Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:21606}, +pages = {297--306}, +title = {{A weak generalization of MA to higher cardinals}}, +volume = {30}, +year = {1978}, +}, + +@article{ADSh:81, +author = {Avraham (Abraham), Uri and Devlin, Keith J. and Shelah, + Saharon}, +ams-subject = {(02K05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 58:21602}, +pages = {19--33}, +title = {{The consistency with CH of some consequences of Martin's axiom + plus $2^{\aleph _{0}}>\aleph _{1}$}}, +volume = {31}, +year = {1978}, +}, + +@article{Sh:82, +author = {Shelah, Saharon}, +ams-subject = {(03C80)}, +journal = {Archiv fur Mathematische Logik und Grundlagenforschung}, +review = {MR 83a:03031}, +pages = {1--11}, +title = {{Models with second order properties. III. Omitting types for + $L(Q)$}}, +volume = {21}, +year = {1981}, +}, + +@article{GgSh:83, +author = {Giorgetta, Donato and Shelah, Saharon}, +ams-subject = {(03C60)}, +fromwhere = {D,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 86e:03035}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year.}, +pages = {123--148}, +title = {{Existentially closed structures in the power of the + continuum}}, +volume = {26}, +year = {1984}, +}, + +@article{RuSh:84, +author = {Rubin, Matatyahu and Shelah, Saharon}, +ams-subject = {(03C80)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 81h:03078}, +pages = {265--283}, +title = {{On the elementary equivalence of automorphism groups of + Boolean algebras; downward Skolem-Lowenheim theorems and compactness of + related quantifiers}}, +volume = {45}, +year = {1980}, +}, + +@article{DvSh:85, +author = {Devlin, Keith J. and Shelah, Saharon}, +ams-subject = {(54E30)}, +journal = {Canadian Journal of Mathematics. Journal Canadien de + Mathematiques}, +review = {MR 81d:54022}, +pages = {241--251}, +title = {{A note on the normal Moore space conjecture}}, +volume = {31}, +year = {1979}, +}, + +@article{DvSh:86, +author = {Devlin, Keith J. and Shelah, Saharon}, +ams-subject = {(54D15)}, +journal = {Proceedings of the London Mathematical Society. Third + Series}, +review = {MR 80m:54031}, +pages = {237--252}, +title = {{Souslin properties and tree topologies}}, +volume = {39}, +year = {1979}, +}, + +@article{Sh:87, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{See [Sh:87a] and [Sh:87b]}}, +}, + +@article{Sh:87a, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 85m:03024a}, +pages = {212--240}, +title = {{Classification theory for nonelementary classes, I. The number + of uncountable models of $\psi \in L_{\omega _{1},\omega }$. Part A}}, +volume = {46}, +year = {1983}, +}, + +@article{Sh:87b, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 85m:03024b}, +pages = {241--273}, +title = {{Classification theory for nonelementary classes, I. The number + of uncountable models of $\psi \in L_{\omega _{1},\omega }$. Part B}}, +volume = {46}, +year = {1983}, +}, + +@incollection{Sh:88, +author = {Shelah, Saharon}, +booktitle = {Classification theory (Chicago, IL, 1985)}, +ams-subject = {(03C75)}, +fromwhere = {IL}, +review = {MR 91h:03046}, +note = {Proceedings of the USA--Israel Conference on + Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.}, +pages = {419--497}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Classification of nonelementary classes. II. Abstract + elementary classes}}, +volume = {1292}, +year = {1987}, +}, + +@incollection{Sh:88a, +author = {Shelah, Saharon}, +booktitle = {Classification theory (Chicago, IL, 1985)}, +fromwhere = {IL}, +note = {Proceedings of the USA--Israel Conference on + Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.}, +pages = {483--495}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Appendix: on stationary sets (in ``Classification + of nonelementary classes. II. Abstract elementary classes'')}}, +volume = {1292}, +year = {1987}, +}, + +@inbook{Sh:88r, +author = {Shelah, Saharon}, +booktitle = {Classification theory for abstract elementary classes}, +fromwhere = {IL}, +note = {Chapter I. 0705.4137. arxiv:0705.4137 }, +title = {{Abstract elementary classes near $\aleph_1$}}, +}, + +@article{Sh:89, +author = {Shelah, Saharon}, +ams-subject = {(06E05)}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 82i:06017}, +pages = {135--142}, +title = {{Boolean algebras with few endomorphisms}}, +volume = {74}, +year = {1979}, +}, + +@article{Sh:90, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Topology Proceedings}, +review = {MR 81f:03060}, +nt = {Proceedings of the 1977 Topology Conference (Louisiana State + Univ., Baton Rouge, La., 1977), II.}, +pages = {583--592}, +title = {{Remarks on $\lambda $-collectionwise Hausdorff spaces}}, +volume = {2}, +year = {1977}, +}, + +@article{HHSh:91, +author = {Hiller, Howard L. and Huber, Martin and Shelah, Saharon}, +ams-subject = {(20K20)}, +journal = {Mathematische Zeitschrift}, +review = {MR 58:11171}, +pages = {39--50}, +title = {{The structure of ${\rm Ext}(A, {\bf Z})$ and $V=L$}}, +volume = {162}, +year = {1978}, +}, + +@article{Sh:92, +author = {Shelah, Saharon}, +ams-subject = {(06E05)}, +journal = {Algebra Universalis}, +review = {MR 82k:06016}, +pages = {77--89}, +title = {{Remarks on Boolean algebras}}, +volume = {11}, +year = {1980}, +}, + +@article{Sh:93, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +journal = {Annals of Mathematical Logic}, +review = {MR 82g:03055}, +pages = {177--203}, +title = {{Simple unstable theories}}, +volume = {19}, +year = {1980}, +}, + +@article{Sh:94, +author = {Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 81i:04009}, +pages = {559--562}, +title = {{Weakly compact cardinals: a combinatorial proof}}, +volume = {44}, +year = {1979}, +}, + +@article{Sh:95, +author = {Shelah, Saharon}, +ams-subject = {(04A20)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 83j:04007}, +pages = {345--353}, +title = {{Canonization theorems and applications}}, +volume = {46}, +year = {1981}, +}, + +@article{ShZi:96, +author = {Shelah, Saharon and Ziegler, Martin}, +ams-subject = {(03C60)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 80j:03048}, +note = { arxiv:arXiv }, +pages = {522--532}, +title = {{Algebraically closed groups of large cardinality}}, +volume = {44}, +year = {1979}, +}, + +@article{ShRd:97, +author = {Shelah, Saharon and Rudin, M. E. }, +ams-subject = {(04A20)}, +journal = {Topology Proceedings}, +review = {MR 80k:04002}, +nt = {Proceedings of the 1978 Topology Conference (Univ. Oklahoma, + Norman, Okla., 1978), I.}, +pages = {199--204}, +title = {{Unordered types of ultrafilters}}, +volume = {3}, +year = {1979}, +}, + +@article{Sh:98, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 82h:03055}, +pages = {257--285}, +title = {{Whitehead groups may not be free, even assuming CH. II}}, +volume = {35}, +year = {1980}, +}, + +@article{HrSh:99, +author = {Harrington, Leo and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 86g:03079}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {178--188}, +title = {{Some exact equiconsistency results in set theory}}, +volume = {26}, +year = {1985}, +}, + +@article{Sh:100, +author = {Shelah, Saharon}, +ams-subject = {(03E40)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 82b:03099}, +pages = {563--573}, +title = {{Independence results}}, +volume = {45}, +year = {1980}, +}, + +@article{MwSh:101, +author = {Makowsky, Johann A. and Shelah, Saharon}, +ams-subject = {(03C80)}, +journal = {Archiv fur Mathematische Logik und Grundlagenforschung}, +review = {MR 83g:03034}, +note = {Proceedings of a Workshop, Berlin, July 1977}, +pages = {13--35}, +title = {{The theorems of Beth and Craig in abstract model theory. II. + Compact logics}}, +volume = {21}, +year = {1981}, +}, + +@article{AbSh:102, +author = {Avraham (Abraham), Uri and Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 83h:03071}, +pages = {37--42}, +title = {{Forcing with stable posets}}, +volume = {47}, +year = {1982}, +}, + +@article{FrSh:103, +author = {Fremlin, David H. and Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 82b:03096}, +pages = {299--304}, +title = {{On partitions of the real line}}, +volume = {32}, +year = {1979}, +}, + +@article{LvSh:104, +author = {Laver, Richard and Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 82e:03049}, +pages = {411--417}, +title = {{The $\aleph _{2}$-Souslin Hypothesis}}, +volume = {264}, +year = {1981}, +}, + +@article{Sh:105, +author = {Shelah, Saharon}, +ams-subject = {(03E60)}, +journal = {Israel Journal of Mathematics}, +review = {MR 82h:03054}, +pages = {311--330}, +title = {{On uncountable abelian groups}}, +volume = {32}, +year = {1979}, +}, + +@article{AbSh:106, +author = {Avraham (Abraham), Uri and Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 82a:03048}, +pages = {161--176}, +title = {{Martin's axiom does not imply that every two $\aleph + _{1}$-dense sets of reals are isomorphic}}, +volume = {38}, +year = {1981}, +}, + +@article{Sh:107, +author = {Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 85j:03056}, +pages = {183--212}, +title = {{Models with second order properties. IV. A general method and + eliminating diamonds}}, +volume = {25}, +year = {1983}, +}, + +@incollection{Sh:108, +author = {Shelah, Saharon}, +booktitle = {Logic Colloquium '78 (Mons, 1978)}, +ams-subject = {(03E10)}, +review = {MR 82d:03079}, +pages = {357--380}, +publisher = {North-Holland, Amsterdam-New York}, +series = {Stud. Logic Foundations Math}, +title = {{On successors of singular cardinals}}, +volume = {97}, +year = {1979}, +}, + +@article{HoSh:109, +author = {Hodges, Wilfrid and Shelah, Saharon}, +ams-subject = {(03C20)}, +journal = {Annals of Mathematical Logic}, +review = {MR 82f:03025}, +pages = {77--108}, +title = {{Infinite games and reduced products}}, +volume = {20}, +year = {1981}, +}, + +@article{Sh:110, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 85b:03085}, +pages = {177--226}, +title = {{Better quasi-orders for uncountable cardinals}}, +volume = {42}, +year = {1982}, +}, + +@article{Sh:111, +author = {Shelah, Saharon}, +ams-subject = {(04A30)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87j:04006}, +pages = {263--299}, +title = {{On power of singular cardinals}}, +volume = {27}, +year = {1986}, +}, + +@article{ShSt:112, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 84h:03119}, +pages = {185--224}, +title = {{$S$-forcing. I. A ``black-box'' theorem for morasses, with + applications to super-Souslin trees}}, +volume = {43}, +year = {1982}, +}, + +@article{Sh:113, +author = {Shelah, Saharon}, +ams-subject = {(03C95)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91i:03078}, +pages = {193--213}, +title = {{The theorems of Beth and Craig in abstract model theory. III. + $\Delta$-logics and infinitary logics}}, +volume = {69}, +year = {1990}, +}, + +@article{AbSh:114, +author = {Abraham, Uri and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86i:03063}, +pages = {75--113}, +title = {{Isomorphism types of Aronszajn trees}}, +volume = {50}, +year = {1985}, +}, + +@article{ChSh:115, +author = {Cherlin, Gregory and Shelah, Saharon}, +ams-subject = {(03C60)}, +journal = {Annals of Mathematical Logic}, +review = {MR 82c:03045}, +pages = {227--270}, +title = {{Superstable fields and groups}}, +volume = {18}, +year = {1980}, +}, + +@article{MwSh:116, +author = {Makowsky, Johann A. and Shelah, Saharon}, +ams-subject = {(03C95)}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 85i:03125}, +pages = {263--299}, +title = {{Positive results in abstract model theory: a theory of compact + logics}}, +volume = {25}, +year = {1983}, +}, + +@article{RuSh:117, +author = {Rubin, Matatyahu and Shelah, Saharon}, +ams-subject = {(04A20)}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 88h:04005}, +pages = {43--81}, +title = {{Combinatorial problems on trees: partitions, $\Delta$-systems + and large free subtrees}}, +volume = {33}, +year = {1987}, +}, + +@article{RuSh:118, +author = {Rubin, Matatyahu and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 85e:03090}, +pages = {542--557}, +title = {{On the expressibility hierarchy of Magidor-Malitz + quantifiers}}, +volume = {48}, +year = {1983}, +}, + +@article{Sh:119, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 83g:03051}, +pages = {1--32}, +title = {{Iterated forcing and changing cofinalities}}, +volume = {40}, +year = {1981}, +}, + +@article{Sh:120, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 83a:03047}, +pages = {315--334}, +title = {{Free limits of forcing and more on Aronszajn trees}}, +volume = {38}, +year = {1981}, +}, + +@article{MShS:121, +author = {Magidor, Menachem and Shelah, Saharon and Stavi, Jonathan}, +ams-subject = {(03C62)}, +journal = {The Journal of Symbolic Logic}, +review = {MR 84m:03058}, +pages = {33--38}, +title = {{On the standard part of nonstandard models of set theory}}, +volume = {48}, +year = {1983}, +}, + +@article{Sh:122, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 83i:03075}, +pages = {29--35}, +title = {{On Fleissner's diamond}}, +volume = {22}, +year = {1981}, +}, + +@article{GuSh:123, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {1,IL}, +journal = {Annals of Mathematical Logic}, +review = {MR 85d:03080}, +pages = {179--198}, +title = {{Monadic theory of order and topology in ${\rm ZFC}$}}, +volume = {23}, +year = {1982}, +}, + +@article{Sh:124, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 83a:03048}, +pages = {283--288}, +title = {{$\aleph _{\omega }$ may have a strong partition relation}}, +volume = {38}, +year = {1981}, +}, + +@article{Sh:125, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 82k:03084}, +pages = {74--82}, +title = {{The consistency of ${\rm Ext}(G,\,{\bf Z})={\bf Q}$}}, +volume = {39}, +year = {1981}, +}, + +@article{Sh:126, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 83b:03036}, +pages = {239--248}, +title = {{On saturation for a predicate}}, +volume = {22}, +year = {1981}, +}, + +@article{Sh:127, +author = {Shelah, Saharon}, +ams-subject = {(03E50)}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 83d:03060}, +pages = {301--308}, +title = {{On uncountable Boolean algebras with no uncountable pairwise + comparable or incomparable sets of elements}}, +volume = {22}, +year = {1981}, +}, + +@article{Sh:128, +author = {Shelah, Saharon}, +ams-subject = {(03C50)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87d:03096}, +pages = {273--297}, +title = {{Uncountable constructions for B.A., e.c. groups and Banach + spaces}}, +volume = {51}, +year = {1985}, +}, + +@article{Sh:129, +author = {Shelah, Saharon}, +ams-subject = {(03C75)}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 82k:03054}, +pages = {5--10}, +title = {{On the number of nonisomorphic models of cardinality + $\lambda$, $L_{\infty \lambda }$-equivalent to a fixed model}}, +volume = {22}, +year = {1981}, +}, + +@article{PiSh:130, +author = {Pillay, Anand and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87d:03095}, +pages = {361--376}, +title = {{Classification theory over a predicate. I}}, +volume = {26}, +year = {1985}, +}, + +@article{Sh:131, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +journal = {Israel Journal of Mathematics}, +review = {MR 84j:03070a}, +pages = {324--356}, +title = {{The spectrum problem. I. $\aleph _{\varepsilon }$-saturated + models, the main gap}}, +volume = {43}, +year = {1982}, +}, + +@article{Sh:132, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +journal = {Israel Journal of Mathematics}, +review = {MR 84j:03070b}, +pages = {357--364}, +title = {{The spectrum problem. II. Totally transcendental and infinite + depth}}, +volume = {43}, +year = {1982}, +}, + +@article{Sh:133, +author = {Shelah, Saharon}, +ams-subject = {(03C80)}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 84h:03093}, +pages = {21--26}, +title = {{On the number of nonisomorphic models in $L_{\infty ,\kappa }$ + when $\kappa $ is weakly compact}}, +volume = {23}, +year = {1982}, +}, + +@incollection{GPShS:134, +author = {Gabbai, D. and Pnueli, A. and Shelah, Saharon and Stavi, + Jonathan}, +booktitle = {Proc.~of the seventh Annual SIG ACT --- SIG PLAN Symposium + on Principles of Programming Languages, January 23- 30, 1980}, +fromwhere = {IL}, +pages = {163--173}, +publisher = {Association Comp. Machinery, NY}, +title = {{On the temporal analysis of fairness}}, +year = {1980}, +}, + +@article{GGHSh:135, +author = {Glass, A. M. W. and Gurevich, Yuri and Holland, W. Charles and + Shelah, Saharon}, +ams-subject = {(06A05)}, +journal = {Mathematical Proceedings of the Cambridge Philosophical + Society}, +review = {MR 82c:06001}, +pages = {7--17}, +title = {{Rigid homogeneous chains}}, +volume = {89}, +year = {1981}, +}, + +@article{Sh:136, +author = {Shelah, Saharon}, +ams-subject = {(06E05)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86k:06010}, +pages = {100--146}, +title = {{Constructions of many complicated uncountable structures and + Boolean algebras}}, +volume = {45}, +year = {1983}, +}, + +@incollection{Sh:137, +author = {Shelah, Saharon}, +booktitle = {Surveys in set theory}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +review = {MR 87b:03114}, +note = {Proceedings of Symp. in Set Theory, Cambridge, August 1978; ed. + Mathias, A.R.D.}, +pages = {116--134}, +publisher = {Cambridge Univ. Press, Cambridge-New York}, +series = {London Math. Soc. Lecture Note Ser}, +title = {{The singular cardinals problem: independence results}}, +volume = {87}, +year = {1983}, +}, + +@article{SgSh:138, +author = {Sageev, Gershon and Shelah, Saharon}, +ams-subject = {(20K35)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 87c:20097}, +pages = {302--315}, +title = {{On the structure of ${\rm Ext}(A,{\bf Z})$ in ${\rm ZFC}^ + +$}}, +volume = {50}, +year = {1985}, +}, + +@article{Sh:139, +author = {Shelah, Saharon}, +ams-subject = {(20A15)}, +journal = {Algebra Universalis}, +review = {MR 84i:20005}, +pages = {131--146}, +title = {{On the number of nonconjugate subgroups}}, +volume = {16}, +year = {1983}, +}, + +@article{Sh:140, +author = {Shelah, Saharon}, +ams-subject = {(20K26)}, +journal = {Israel Journal of Mathematics}, +review = {MR 83f:20042}, +pages = {291--295}, +title = {{On endo-rigid, strongly $\aleph _{1}$-free abelian groups in + $\aleph _{1}$}}, +volume = {40}, +year = {1981}, +}, + +@article{GMSh:141, +author = {Gurevich, Yuri and Magidor, Menachem and Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {IL,IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 84i:03076}, +pages = {387--398}, +title = {{The monadic theory of $\omega _{2}$}}, +volume = {48}, +year = {1983}, +}, + +@article{BlSh:142, +author = {Baldwin, John T. and Shelah, Saharon}, +ams-subject = {(03C50)}, +fromwhere = {1,IL}, +journal = {Algebra Universalis}, +review = {MR 85h:03032}, +note = {A volume in honour of Tarski}, +pages = {191--199}, +title = {{The structure of saturated free algebras}}, +volume = {17}, +year = {1983}, +}, + +@article{GuSh:143, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86m:03064}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {55--68}, +title = {{The monadic theory and the ``next world''}}, +volume = {49}, +year = {1984}, +}, + +@article{MShS:144, +author = {Magidor, Menachem and Shelah, Saharon and Stavi, Jonathan}, +ams-subject = {(03C70)}, +fromwhere = {IL,IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 86i:03048}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {287--361}, +title = {{Countably decomposable admissible sets}}, +volume = {26}, +year = {1984}, +}, + +@article{EMSh:145, +author = {Eklof, Paul C. and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K20)}, +fromwhere = {IL,IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86m:20062}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {34--54}, +title = {{Almost disjoint abelian groups}}, +volume = {49}, +year = {1984}, +}, + +@article{AbSh:146, +author = {Abraham, Uri and Shelah, Saharon}, +ams-subject = {(03C62)}, +fromwhere = {IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 85i:03112}, +pages = {643--657}, +title = {{Forcing closed unbounded sets}}, +volume = {48}, +year = {1983}, +}, + +@article{HrSh:147, +author = {Harrington, Leo and Shelah, Saharon}, +ams-subject = {(03D25)}, +journal = {American Mathematical Society. Bulletin. New Series}, +review = {MR 83i:03067}, +pages = {79--80}, +title = {{The undecidability of the recursively enumerable degrees}}, +volume = {6}, +year = {1982}, +}, + +@incollection{SgSh:148, +author = {Sageev, Gershon and Shelah, Saharon}, +booktitle = {Abelian group theory (Oberwolfach, 1981)}, +ams-subject = {(20K40)}, +review = {MR 83e:20062}, +note = {ed. Goebel, R. and Walker, A.E.}, +pages = {87--92}, +publisher = {Springer, Berlin-New York}, +series = {Lecture Notes in Mathematics}, +title = {{Weak compactness and the structure of {\rm Ext}$(A,\,{\bf + Z})$}}, +volume = {874}, +year = {1981}, +}, + +@article{FdSh:149, +author = {Friedman, Sy D. and Shelah, Saharon}, +ams-subject = {(03C70)}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 85g:03057}, +pages = {672--678}, +title = {{Tall $\alpha $-recursive structures}}, +volume = {88}, +year = {1983}, +}, + +@article{ShKf:150, +author = {Shelah, Saharon and Kaufmann, Matt}, +ams-subject = {(03C80)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87d:03105}, +pages = {111--123}, +title = {{The Hanf number of stationary logic}}, +volume = {27}, +year = {1986}, +}, + +@article{GuSh:151, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03B15)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 85f:03007}, +pages = {816--828}, +title = {{Interpreting second-order logic in the monadic theory of + order}}, +volume = {48}, +year = {1983}, +}, + +@incollection{HrSh:152, +author = {Harrington, Leo and Shelah, Saharon}, +booktitle = {Logic Colloquium '80 (Prague, 1980)}, +ams-subject = {(03E15)}, +review = {MR 84c:03088}, +note = {eds. van Dalen, ~D., Lascar, D. and Smiley, T.J.}, +pages = {147--152}, +publisher = {North-Holland, Amsterdam-New York}, +series = {Stud. Logic Foundations Math}, +title = {{Counting equivalence classes for co-$\kappa $-Souslin + equivalence relations}}, +volume = {108}, +year = {1982}, +}, + +@article{ARSh:153, +author = {Abraham, Uri and Rubin, Matatyahu and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 87d:03132}, +pages = {123--206}, +title = {{On the consistency of some partition theorems for continuous + colorings, and the structure of $\aleph_ 1$-dense real order types}}, +volume = {29}, +year = {1985}, +}, + +@article{ShSt:154, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E35)}, +journal = {Israel Journal of Mathematics}, +review = {MR 84h:03120}, +note = {Corrections in [Sh:154a]}, +pages = {225--236}, +title = {{Generalized Martin's axiom and Souslin's hypothesis for higher + cardinals}}, +volume = {43}, +year = {1982}, +}, + +@article{ShSt:154a, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E35)}, +fromwhere = {IL,1}, +journal = {Israel Journal of Mathematics}, +review = {MR 87m:03069}, +pages = {304--314}, +title = {{Corrigendum to: ``Generalized Martin's axiom and Souslin's + hypothesis for higher cardinals'' [Israel Journal of Mathematics 43 + (1982), no. 3, 225--236; MR 84h:03120]}}, +volume = {53}, +year = {1986}, +}, + +@article{Sh:155, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90b:03048}, +pages = {229--256}, +title = {{The spectrum problem. III. Universal theories}}, +volume = {55}, +year = {1986}, +}, + +@article{BlSh:156, +author = {Baldwin, John T. and Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87h:03053}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {229--303}, +title = {{Second-order quantifiers and the complexity of theories}}, +volume = {26}, +year = {1985}, +}, + +@article{LaSh:157, +author = {Lachlan, Alistair H. and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87h:03047b}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {155--180}, +title = {{Stable structures homogeneous for a finite binary language}}, +volume = {49}, +year = {1984}, +}, + +@article{ShHM:158, +author = {Shelah, Saharon and Harrington, Leo and Makkai, Michael}, +ams-subject = {(03C15)}, +fromwhere = {IL,IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86j:03029b}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {259--280}, +title = {{A proof of Vaught's conjecture for $\omega$-stable theories}}, +volume = {49}, +year = {1984}, +}, + +@article{ShWd:159, +author = {Shelah, Saharon and Woodin, Hugh}, +ams-subject = {(03E35)}, +fromwhere = {IL,1}, +journal = {The Journal of Symbolic Logic}, +review = {MR 86h:03087}, +pages = {1185--1189}, +title = {{Forcing the failure of CH by adding a real}}, +volume = {49}, +year = {1984}, +}, + +@article{HoSh:160, +author = {Hodges, Wilfrid and Shelah, Saharon}, +ams-subject = {(03E75)}, +fromwhere = {4,1}, +journal = {Journal of the London Mathematical Society. Second Series}, +review = {MR 87i:03115}, +pages = {1--12}, +title = {{Naturality and definability. I}}, +volume = {33}, +year = {1986}, +}, + +@article{Sh:161, +author = {Shelah, Saharon}, +ams-subject = {(03C60)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87f:03095}, +pages = {195--228}, +title = {{Incompactness in regular cardinals}}, +volume = {26}, +year = {1985}, +}, + +@article{HLSh:162, +author = {Hart, Bradd and Laflamme, Claude and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9311211 }, +pages = {169--194}, +title = {{Models with second order properties, V: A General principle}}, +volume = {64}, +year = {1993}, +}, + +@incollection{GuSh:163, +author = {Gurevich, Yuri and Shelah, Saharon}, +booktitle = {Foundations of logic and linguistics (Salzburg, 1983)}, +ams-subject = {(03B45)}, +fromwhere = {1,IL}, +review = {MR 87b:03034}, +note = {Proceedings of the Seventh International Congress for Logic, + Methology and Philosophy of Science, Salzburg, July 1983; eds. Dorn, G. + and Weingartner, P.}, +pages = {181--198}, +publisher = {Plenum, New York-London}, +title = {{To the decision problem for branching time logic}}, +year = {1985}, +}, + +@article{JaSh:164, +author = {Jarden, Moshe and Shelah, Saharon}, +ams-subject = {(12F20)}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 84c:12015}, +pages = {223--228}, +title = {{Pseudo-algebraically closed fields over rational function + fields}}, +volume = {87}, +year = {1983}, +}, + +@article{ShWe:165, +author = {Shelah, Saharon and Weiss, Benjamin}, +ams-subject = {(28D05)}, +journal = {Israel Journal of Mathematics}, +review = {MR 84d:28025}, +pages = {154--160}, +title = {{Measurable recurrence and quasi-invariant measures}}, +volume = {43}, +year = {1982}, +}, + +@article{MkSh:166, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {3,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87c:03081a}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {129--138}, +title = {{Stationary logic and its friends. I}}, +volume = {26}, +year = {1985}, +}, + +@article{ShSt:167, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E35)}, +fromwhere = {IL,1}, +journal = {Israel Journal of Mathematics}, +review = {MR 88e:03077}, +nt = {With an appendix by John P. Burgess.}, +pages = {1--65}, +title = {{$S$-forcing. IIa. Adding diamonds and more applications: + coding sets, Arhangelskii's problem and ${\scr L}[Q^ {<\omega}_ 1,Q^ 1_ + 2]$}}, +volume = {56}, +year = {1986}, +}, + +@article{GuSh:168, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03F25)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90c:03053}, +pages = {305--323}, +title = {{On the strength of the interpretation method}}, +volume = {54}, +year = {1989}, +}, + +@article{EMSh:169, +author = {Eklof, Paul C. and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K30)}, +fromwhere = {1,3,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 89c:20080}, +pages = {283--298}, +title = {{On strongly nonreflexive groups}}, +volume = {59}, +year = {1987}, +}, + +@incollection{Sh:170, +author = {Shelah, Saharon}, +booktitle = {Logic colloquium '82 (Florence, 1982)}, +ams-subject = {(03F30)}, +fromwhere = {IL}, +review = {MR 86g:03097}, +pages = {145--160}, +publisher = {North-Holland, Amsterdam-New York}, +series = {Stud. Logic Found. Math}, +title = {{On logical sentences in {\rm PA}}}, +volume = {112}, +year = {1984}, +}, + +@incollection{Sh:171, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +pages = {1-46}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Classifying generalized quantifiers}}, +volume = {1182}, +year = {1986}, +}, + +@article{Sh:172, +author = {Shelah, Saharon}, +ams-subject = {(16A99)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86i:16044}, +note = {Proceedings of the 1980/1 Jerusalem Model Theory year}, +pages = {239--257}, +title = {{A combinatorial principle and endomorphism rings. I. On + $p$-groups}}, +volume = {49}, +year = {1984}, +}, + +@incollection{ANSh:173, +author = {Aharoni, R. and Nash Williams, C. St. J. A. and Shelah, + Saharon}, +booktitle = {Progress in graph theory (Waterloo, Ont., 1982)}, +ams-subject = {(04A20)}, +fromwhere = {IL,4,IL}, +review = {MR 86h:04002}, +note = {Proceedings of the Conference in Waterloo, July 1982}, +pages = {71--79}, +publisher = {Academic Press, Toronto, Ont.}, +title = {{Marriage in infinite societies}}, +year = {1984}, +}, + +@article{GrSh:174, +author = {Grossberg, Rami and Shelah, Saharon}, +ams-subject = {(20A15)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 85c:20001}, +pages = {289--302}, +title = {{On universal locally finite groups}}, +volume = {44}, +year = {1983}, +}, + +@article{Sh:175, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 85h:03054}, +note = {See also [Sh:175a]}, +pages = {75--87}, +title = {{On universal graphs without instances of CH}}, +volume = {26}, +year = {1984}, +}, + +@article{Sh:175a, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1}, +journal = {Israel Journal of Mathematics}, +review = {MR 94e:03048}, +pages = {69--81}, +title = {{Universal graphs without instances of {\rm CH}: revisited}}, +volume = {70}, +year = {1990}, +}, + +@article{Sh:176, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86g:03082a}, +pages = {1--47}, +title = {{Can you take Solovay's inaccessible away?}}, +volume = {48}, +year = {1984}, +}, + +@article{Sh:177, +author = {Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 86m:03082}, +pages = {1034--1038}, +title = {{More on proper forcing}}, +volume = {49}, +year = {1984}, +}, + +@article{GuSh:178, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03B25)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 85d:03019}, +pages = {1120--1124}, +title = {{Random models and the Godel case of the decision problem}}, +volume = {48}, +year = {1983}, +}, + +@article{ShSn:179, +author = {Shelah, Saharon and Steinhorn, Charles}, +ams-subject = {(03C80)}, +fromwhere = {IL,1}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87d:03104}, +pages = {1--11}, +title = {{On the nonaxiomatizability of some logics by finitely many + schemas}}, +volume = {27}, +year = {1986}, +}, + +@article{ShSn:180, +author = {Shelah, Saharon and Steinhorn, Charles}, +ams-subject = {(03C80)}, +fromwhere = {IL,1}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 91a:03084}, +pages = {1--13}, +title = {{The nonaxiomatizability of $L(Q^ 2_ {\aleph_ 1})$ by finitely + many schemata}}, +volume = {31}, +year = {1990}, +}, + +@article{KfSh:181, +author = {Kaufmann, Matt and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 86a:03037}, +pages = {209--214}, +title = {{A nonconservativity result on global choice}}, +volume = {27}, +year = {1984}, +}, + +@article{AbSh:182, +author = {Abraham, Uri and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 87e:03117}, +pages = {180--189}, +title = {{On the intersection of closed unbounded sets}}, +volume = {51}, +year = {1986}, +}, + +@article{GuSh:183, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03C65)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 85g:03055}, +pages = {1105--1119}, +title = {{Rabin's uniformization problem}}, +volume = {48}, +year = {1983}, +}, + +@article{GGSh:184, +author = {Goldfarb, Warren D. and Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03B10)}, +fromwhere = {1,1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 86g:03015b}, +pages = {1253--1261}, +title = {{A decidable subclass of the minimal Godel class with + identity}}, +volume = {49}, +year = {1984}, +}, + +@article{Sh:185, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 85b:03092}, +pages = {90--96}, +title = {{Lifting problem of the measure algebra}}, +volume = {45}, +year = {1983}, +}, + +@article{Sh:186, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 86g:03083}, +pages = {1022--1033}, +title = {{Diamonds, uniformization}}, +volume = {49}, +year = {1984}, +}, + +@article{MkSh:187, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {3,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 87c:03081b}, +pages = {39--50}, +title = {{Stationary logic and its friends. II}}, +volume = {27}, +year = {1986}, +}, + +@article{Sh:188, +author = {Shelah, Saharon}, +ams-subject = {(03C75)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 85j:03055}, +pages = {97--104}, +title = {{A pair of nonisomorphic $\equiv _{\infty \lambda }$ models of + power $\lambda $ for $\lambda $ singular with $\lambda ^{\omega + }=\lambda $}}, +volume = {25}, +year = {1984}, +}, + +@article{Sh:189, +author = {Shelah, Saharon}, +ams-subject = {(03C75)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 86h:03072}, +pages = {36--50}, +title = {{On the possible number ${\rm no}(M)=$ the number of + nonisomorphic models $L_ {\infty,\lambda}$-equivalent to $M$ of power + $\lambda$, for $\lambda$ singular}}, +volume = {26}, +year = {1985}, +}, + +@article{GbSh:190, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +ams-subject = {(20K20)}, +fromwhere = {D,IL}, +journal = {Journal of Algebra}, +review = {MR 86d:20061}, +pages = {136--150}, +title = {{Semirigid classes of cotorsion-free abelian groups}}, +volume = {93}, +year = {1985}, +}, + +@article{GiSh:191, +author = {Gitik, Moti and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87c:03104}, +pages = {148--158}, +title = {{On the $\bbfI$-condition}}, +volume = {48}, +year = {1984}, +}, + +@article{Sh:192, +author = {Shelah, Saharon}, +ams-subject = {(20A15)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89d:20001}, +pages = {153--206}, +title = {{Uncountable groups have many nonconjugate subgroups}}, +volume = {36}, +year = {1987}, +}, + +@article{LhSh:193, +author = {Lehmann, Daniel and Shelah, Saharon}, +ams-subject = {(68Q55)}, +fromwhere = {IL,IL}, +journal = {Information and Control}, +review = {MR 85c:68046}, +pages = {165--198}, +title = {{Reasoning with time and chance}}, +volume = {53}, +year = {1982}, +}, + +@article{ANSh:194, +author = {Aharoni, R. and Nash Williams, C. St. J. A. and Shelah, + Saharon}, +ams-subject = {(04A20)}, +journal = {Proceedings of the London Mathematical Society. Third + Series}, +review = {MR 85g:04001}, +pages = {43--68}, +title = {{A general criterion for the existence of transversals}}, +volume = {47}, +year = {1983}, +}, + +@article{DrSh:195, +author = {Droste, Manfred and Shelah, Saharon}, +ams-subject = {(20F29)}, +fromwhere = {D,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87d:20055}, +pages = {223--261}, +title = {{A construction of all normal subgroup lattices of + $2$-transitive automorphism groups of linearly ordered sets}}, +volume = {51}, +year = {1985}, +}, + +@article{ANSh:196, +author = {Aharoni, R. and Nash Williams, C. St. J. A. and Shelah, + Saharon}, +ams-subject = {(04A20)}, +fromwhere = {IL,4,IL}, +journal = {Journal of the London Mathematical Society. Second Series}, +review = {MR 85i:04004}, +pages = {193--203}, +title = {{Another form of a criterion for the existence of + transversals}}, +volume = {29}, +year = {1984}, +}, + +@incollection{Sh:197, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-26}, +pages = {203--223}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Monadic logic: Hanf numbers}}, +volume = {1182}, +year = {1986}, +}, + +@article{LMSh:198, +author = {Levinski, Jean Pierre and Magidor, Menachem and Shelah, + Saharon}, +ams-subject = {(03C52)}, +fromwhere = {1,IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91g:03071}, +pages = {161--172}, +title = {{Chang's conjecture for $\aleph_ \omega$}}, +volume = {69}, +year = {1990}, +}, + +@article{Sh:199, +author = {Shelah, Saharon}, +ams-subject = {(03C95)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 87g:03040}, +pages = {255--288}, +title = {{Remarks in abstract model theory}}, +volume = {29}, +year = {1985}, +}, + +@article{Sh:200, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {American Mathematical Society. Bulletin. New Series}, +review = {MR 86h:03058}, +pages = {227--232}, +title = {{Classification of first order theories which have a structure + theorem}}, +volume = {12}, +year = {1985}, +}, + +@article{KfSh:201, +author = {Kaufmann, Matt and Shelah, Saharon}, +ams-subject = {(03C13)}, +fromwhere = {1,IL}, +journal = {Discrete Mathematics}, +review = {MR 86m:03049}, +pages = {285--293}, +title = {{On random models of finite power and monadic logic}}, +volume = {54}, +year = {1985}, +}, + +@article{Sh:202, +author = {Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 86a:03054}, +pages = {139--153}, +title = {{On co-$\kappa $-Souslin relations}}, +volume = {47}, +year = {1984}, +}, + +@article{BdSh:203, +author = {Ben David, Shai and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 87h:03078}, +pages = {207--217}, +title = {{Souslin trees and successors of singular cardinals}}, +volume = {30}, +year = {1986}, +}, + +@article{MgSh:204, +author = {Magidor, Menachem and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of the American Mathematical Society}, +pages = {769--830}, +title = {{When does almost free imply free? (For groups, transversal + etc.)}}, +volume = {7}, +year = {1994}, +}, + +@article{Sh:205, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 87i:03075}, +pages = {203--216}, +title = {{Monadic logic and Lowenheim numbers}}, +volume = {28}, +year = {1985}, +}, + +@article{Sh:206, +author = {Shelah, Saharon}, +ams-subject = {(54G99)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90e:54088}, +pages = {183--211}, +title = {{Decomposing topological spaces into two rigid homeomorphic + subspaces}}, +volume = {63}, +year = {1988}, +}, + +@incollection{Sh:207, +author = {Shelah, Saharon}, +booktitle = {Axiomatic set theory (Boulder, Colo., 1983)}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +review = {MR 86b:03064}, +note = {Proceedings of the Conference in Set Theory, Boulder, June 1983; + ed. Baumgartner J., Martin, D. and Shelah, S.}, +pages = {183--207}, +publisher = {Amer. Math. Soc., Providence, RI}, +series = {Contemp. Mathematics}, +title = {{On cardinal invariants of the continuum}}, +volume = {31}, +year = {1984}, +}, + +@article{Sh:208, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 87d:03136}, +pages = {315--318}, +title = {{More on the weak diamond}}, +volume = {28}, +year = {1985}, +}, + +@article{ShTo:209, +author = {Shelah, Saharon and Todorcevic, Stevo}, +ams-subject = {(54A35)}, +fromwhere = {IL,1}, +journal = {Canadian Journal of Mathematics. Journal Canadien de + Mathematiques}, +review = {MR 88c:54005}, +pages = {659--665}, +title = {{A note on small Baire spaces}}, +volume = {38}, +year = {1986}, +}, + +@article{BoSh:210, +author = {Bonnet, Robert and Shelah, Saharon}, +ams-subject = {(06E99)}, +fromwhere = {F,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 86g:06024}, +pages = {1--12}, +title = {{Narrow Boolean algebras}}, +volume = {28}, +year = {1985}, +}, + +@article{Sh:211, +author = {Shelah, Saharon}, +ams-subject = {(03C75)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 93h:03054}, +note = { arxiv:math.LO/9201243 }, +pages = {1--12}, +title = {{The Hanf numbers of stationary logic. II. Comparison with + other logics}}, +volume = {33}, +year = {1992}, +}, + +@incollection{Sh:212, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-27}, +pages = {188--202}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{The existence of coding sets}}, +volume = {1182}, +year = {1986}, +}, + +@article{DGSh:213, +author = {Denenberg, Larry and Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03G05)}, +fromwhere = {1,1,IL}, +journal = {Information and Control}, +review = {MR 88b:03094}, +pages = {216--240}, +title = {{Definability by constant-depth polynomial-size circuits}}, +volume = {70}, +year = {1986}, +}, + +@article{MkSh:214, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K10)}, +fromwhere = {3,IL}, +journal = {Pacific Journal of Mathematics}, +review = {MR 87f:20073a}, +note = {See also [MkSh:214a]}, +pages = {121--132}, +title = {{$\omega$-elongations and Crawley's problem}}, +volume = {121}, +year = {1986}, +}, + +@article{MkSh:214a, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K10)}, +fromwhere = {3,IL}, +journal = {Pacific Journal of Mathematics}, +review = {MR 87f:20073b}, +pages = {133--134}, +title = {{The solution to Crawley's problem}}, +volume = {121}, +year = {1986}, +}, + +@article{HMSh:215, +author = {Harrington, Leo and Marker, David and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {1,1,IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 90c:03041}, +pages = {293--302}, +title = {{Borel orderings}}, +volume = {310}, +year = {1988}, +}, + +@article{HMSh:216, +author = {Holland, W. Charles and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(06F15)}, +fromwhere = {3,3,IL}, +journal = {Order}, +review = {MR 86m:06032}, +note = {See also [HMSh:216a]}, +pages = {383--397}, +title = {{Lawless order}}, +volume = {1}, +year = {1985}, +}, + +@incollection{HMSh:216a, +author = {Holland, W. Charles and Mekler, Alan H. and Shelah, Saharon}, +booktitle = {Algebra and order (Luminy-Marseille, 1984)}, +ams-subject = {(06F15)}, +fromwhere = {1,3,IL}, +review = {MR 88h:06023}, +note = {Proceedings of the First International Symposium on Ordered + Algebraic Structures, Luminy-Marseilles, July 1984; ed. Wolfenstein, + S.}, +pages = {29--33}, +publisher = {Heldermann, Berlin}, +series = {R \& E Res. Exp. Math}, +title = {{Total orders whose carried groups satisfy no laws}}, +volume = {14}, +year = {1986}, +}, + +@article{SgSh:217, +author = {Sageev, Gershon and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Abstracts of the American Mathematical Society}, +note = { arxiv:0705.4132 }, +pages = {369}, +title = {{Noetherian ring with free additive groups}}, +volume = {7}, +year = {1986}, +}, + +@article{Sh:218, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87h:03080}, +pages = {110--114}, +title = {{On measure and category}}, +volume = {52}, +year = {1985}, +}, + +@article{GbSh:219, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +ams-subject = {(13C13)}, +fromwhere = {D,IL}, +journal = {Mathematische Zeitschrift}, +review = {MR 86d:13011}, +pages = {325--337}, +title = {{Modules over arbitrary domains}}, +volume = {188}, +year = {1985}, +}, + +@article{Sh:220, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89c:03058}, +note = {Proceedings of the Model Theory Conference, Trento, June 1986}, +nt = {Stability in model theory (Trento, 1984).}, +pages = {291--310}, +title = {{Existence of many $L_ {\infty,\lambda}$-equivalent, + nonisomorphic models of $T$ of power $\lambda$}}, +volume = {34}, +year = {1987}, +}, + +@article{AShS:221, +author = {Abraham, Uri and Shelah, Saharon and Solovay, R. M. }, +ams-subject = {(03E05)}, +fromwhere = {IL,IL,1}, +journal = {Fundamenta Mathematicae}, +review = {MR 88d:03092}, +pages = {133--162}, +title = {{Squares with diamonds and Souslin trees with special + squares}}, +volume = {127}, +year = {1987}, +}, + +@article{GrSh:222, +author = {Grossberg, Rami and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 87j:03037}, +pages = {302--322}, +title = {{On the number of nonisomorphic models of an infinitary theory + which has the infinitary order property. I}}, +volume = {51}, +year = {1986}, +}, + +@article{DrSh:223, +author = {Droste, Manfred and Shelah, Saharon}, +ams-subject = {(20F10)}, +fromwhere = {D,IL}, +journal = {Pacific Journal of Mathematics}, +review = {MR 88b:20055}, +pages = {321--328}, +title = {{On the universality of systems of words in permutation + groups}}, +volume = {127}, +year = {1987}, +}, + +@article{GbSh:224, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +ams-subject = {(13C13)}, +fromwhere = {D,IL}, +journal = {Fundamenta Mathematicae}, +review = {MR 88d:13021}, +pages = {217--243}, +title = {{Modules over arbitrary domains. II}}, +volume = {126}, +year = {1986}, +}, + +@article{Sh:225, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89b:03057}, +note = {See also [Sh:225a]}, +pages = {279--287}, +title = {{On the number of strongly $\aleph_ \epsilon$-saturated models + of power $\lambda$}}, +volume = {36}, +year = {1987}, +}, + +@article{Sh:225a, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89i:03060}, +pages = {89--91}, +title = {{Number of strongly $\aleph_ \epsilon$ saturated models---an + addition}}, +volume = {40}, +year = {1988}, +}, + +@article{FMSh:226, +author = {Foreman, Matthew and Magidor, Menachem and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {1,IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 87i:03102}, +pages = {39--46}, +title = {{$0^ \sharp$ and some forcing principles}}, +volume = {51}, +year = {1986}, +}, + +@incollection{Sh:227, +author = {Shelah, Saharon}, +booktitle = {Abelian groups and modules (Udine, 1984)}, +ams-subject = {(20K30)}, +fromwhere = {IL}, +review = {MR 86i:20075}, +note = {Proceedings of the Conference on Abelian Groups, Undine, April + 9-14, 1984); ed. Goebel, R., Metelli, C., Orsatti, A. and Solce, L.}, +pages = {37--86}, +publisher = {Springer, Vienna}, +series = {CISM Courses and Lectures}, +title = {{A combinatorial theorem and endomorphism rings of abelian + groups. II}}, +volume = {287}, +year = {1984}, +}, + +@incollection{Sh:228, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-30}, +pages = {120--134}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{On the ${\rm no}(M)$ for $M$ of singular power}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:229, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-31}, +note = { arxiv:math.LO/9201238 }, +pages = {91--119}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Existence of endo-rigid Boolean Algebras}}, +volume = {1182}, +year = {1986}, +}, + +@article{GuSh:230, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03B45)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 87c:03033}, +pages = {668--681}, +title = {{The decision problem for branching time logic}}, +volume = {50}, +year = {1985}, +}, + +@article{JuSh:231, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {H,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87f:03143}, +pages = {355--364}, +title = {{How large can a hereditarily separable or hereditarily + Lindelof space be?}}, +volume = {53}, +year = {1986}, +}, + +@incollection{Sh:232, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-29}, +pages = {135--150}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Nonstandard uniserial module over a uniserial domain exists}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:233, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-28}, +pages = {151--187}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Remarks on the numbers of ideals of Boolean algebra and open + sets of a topology}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:234, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-32}, +pages = {47--90}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Classification over a predicate. II}}, +volume = {1182}, +year = {1986}, +}, + +@article{ShSf:235, +author = {Shelah, Saharon and Soifer, Alexander}, +ams-subject = {(20K35)}, +fromwhere = {IL,1}, +journal = {Journal of Algebra}, +review = {MR 87f:20078}, +pages = {359--369}, +title = {{Two problems on $\aleph_ 0$-indecomposable abelian groups}}, +volume = {99}, +year = {1986}, +}, + +@article{BdSh:236, +author = {Ben David, Shai and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 87k:03051}, +pages = {93--96}, +title = {{Nonspecial Aronszajn trees on $\aleph_ {\omega+1}$}}, +volume = {53}, +year = {1986}, +}, + +@article{Sh:237, +author = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{See 237a, 237b, 237c, 237d, 237e}}, +}, + +@incollection{Sh:237a, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-24}, +pages = {247--259}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{On normal ideals and Boolean algebras}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:237b, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-23}, +pages = {260--268}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{A note on $\kappa$-freeness of abelian groups}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:237c, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-22}, +pages = {269--271}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{On countable theories with models---homogeneous models only}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:237d, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-21}, +pages = {272--275}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{On decomposable sentences for finite models}}, +volume = {1182}, +year = {1986}, +}, + +@incollection{Sh:237e, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-20}, +pages = {276--279}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Remarks on squares}}, +volume = {1182}, +year = {1986}, +}, + +@article{GrSh:238, +author = {Grossberg, Rami and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL,IL}, +journal = {Illinois Journal of Mathematics}, +review = {MR 87j:03036}, +note = {Volume dedicated to the memory of W.W.~Boone; ed. Appel, K., + Higman, G., Robinson, D. and Jockush, C.}, +pages = {364--390}, +title = {{A nonstructure theorem for an infinitary theory which has the + unsuperstability property}}, +volume = {30}, +year = {1986}, +}, + +@article{ShSf:239, +author = {Shelah, Saharon and Soifer, Alexander}, +ams-subject = {(20K21)}, +fromwhere = {IL,1}, +journal = {Journal of Algebra}, +review = {MR 87k:20092}, +pages = {421--429}, +title = {{Countable $\aleph_ 0$-indecomposable mixed abelian groups of + finite torsion-free rank}}, +volume = {100}, +year = {1986}, +}, + +@article{FMSh:240, +author = {Foreman, Matthew and Magidor, Menachem and Shelah, Saharon}, +ams-subject = {(03E50)}, +fromwhere = {1,IL,IL}, +journal = {Annals of Mathematics. Second Series}, +review = {MR 89f:03043}, +note = {See also ANN. of Math. (2) 129 (1989)}, +pages = {1--47}, +title = {{Martin's maximum, saturated ideals, and nonregular + ultrafilters. I}}, +volume = {127}, +year = {1988}, +}, + +@article{ShWd:241, +author = {Shelah, Saharon and Woodin, Hugh}, +ams-subject = {(03E55)}, +fromwhere = {IL,1}, +journal = {Israel Journal of Mathematics}, +review = {MR 92m:03087}, +pages = {381--394}, +title = {{Large cardinals imply that every reasonably definable set of + reals is Lebesgue measurable}}, +volume = {70}, +year = {1990}, +}, + +@article{BsSh:242, +author = {Blass, Andreas and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 88e:03073}, +pages = {213--243}, +title = {{There may be simple $P_ {\aleph_ 1}$- and $P_ {\aleph_ + 2}$-points and the Rudin-Keisler ordering may be downward directed}}, +volume = {33}, +year = {1987}, +}, + +@article{GuSh:243, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(05C80)}, +fromwhere = {1,IL}, +journal = {SIAM Journal on Computing}, +review = {MR 88i:05162}, +pages = {486--502}, +title = {{Expected computation time for Hamiltonian path problem}}, +volume = {16}, +year = {1987}, +}, + +@incollection{GuSh:244, +author = {Gurevich, Yuri and Shelah, Saharon}, +booktitle = {Proceedings of 26th Annual Symp. on Foundation of Computer + Science}, +fromwhere = {1,IL}, +note = {See also [GuSh:244a] below}, +pages = {346--353}, +publisher = {IEEE Computer Science Society Press}, +title = {{The fix point extensions of first order logic}}, +year = {1985}, +}, + +@article{GuSh:244a, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 88b:03056}, +pages = {265--280}, +title = {{Fixed-point extensions of first-order logic}}, +volume = {32}, +year = {1986}, +}, + +@article{CHSh:245, +author = {Compton, Kevin J. and Henson, C. Ward and Shelah, Saharon}, +ams-subject = {(03C13)}, +fromwhere = {1,1,1}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89f:03021}, +pages = {207--224}, +title = {{Nonconvergence, undecidability, and intractability in + asymptotic problems}}, +volume = {36}, +year = {1987}, +}, + +@incollection{Sh:246, +author = {Shelah, Saharon}, +booktitle = {Algebraic logic (Budapest, 1988)}, +ams-subject = {(03G15)}, +fromwhere = {IL}, +review = {MR 93a:03073}, +note = {Proceedings of Conference of Cylindrical Algebras, Budapest, + 8.1988}, +pages = {645--664}, +publisher = {North-Holland, Amsterdam}, +series = {Colloq. Math. Soc. Janos Bolyai}, +title = {{On a problem in cylindric algebra}}, +volume = {54}, +year = {1991}, +}, + +@incollection{Sh:247, +author = {Shelah, Saharon}, +booktitle = {Around classification theory of models}, +fromwhere = {IL}, +review = {MR 18-15-25}, +pages = {224--246}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{More on stationary coding}}, +volume = {1182}, +year = {1986}, +}, + +@article{Sh:248, +author = {Shelah, Saharon}, +fromwhere = {IL}, +note = {moved to F45}, +title = {{TBA}}, +}, + +@article{HJSh:249, +author = {Hajnal, Andras and Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Hajnal, Andras and Juh\'asz, Istv\'an and Shelah, + Saharon}, +ams-subject = {(03E05)}, +fromwhere = {H,H,IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 87i:03098}, +pages = {369--387}, +title = {{Splitting strongly almost disjoint families}}, +volume = {295}, +year = {1986}, +}, + +@article{Sh:250, +author = {Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 89a:03093}, +pages = {1--17}, +title = {{Some notes on iterated forcing with $2^ {\aleph_ 0}>\aleph_ + 2$}}, +volume = {29}, +year = {1988}, +}, + +@incollection{MkSh:251, +author = {Mekler, Alan H. and Shelah, Saharon}, +booktitle = {Abelian group theory (Oberwolfach, 1985)}, +ams-subject = {(20K20)}, +fromwhere = {3,IL}, +review = {MR 90f:20082}, +note = {Proceedings of the third conference on Abelian Groups Theory, + Oberwolfach}, +pages = {137--148}, +publisher = {Gordon and Breach, New York}, +title = {{When $\kappa$-free implies strongly $\kappa$-free}}, +year = {1987}, +}, + +@article{FMSh:252, +author = {Foreman, Matthew and Magidor, Menachem and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL,IL}, +journal = {Annals of Mathematics. Second Series}, +review = {MR 90a:03077}, +pages = {521--545}, +title = {{Martin's maximum, saturated ideals and nonregular + ultrafilters. II}}, +volume = {127}, +year = {1988}, +}, + +@article{Sh:253, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90g:03050}, +note = {reappeared (in a revised form) in chapter XIII of [Sh:f]}, +pages = {345--380}, +title = {{Iterated forcing and normal ideals on $\omega_ 1$}}, +volume = {60}, +year = {1987}, +}, + +@article{BaSh:254, +author = {Baumgartner, James E. and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 88d:03100}, +pages = {109--129}, +title = {{Remarks on superatomic Boolean algebras}}, +volume = {33}, +year = {1987}, +}, + +@incollection{EkSh:255, +author = {Eklof, Paul C. and Shelah, Saharon}, +booktitle = {Abelian group theory (Oberwolfach, 1985)}, +ams-subject = {(20K25)}, +fromwhere = {1,IL}, +review = {MR 91d:20063}, +note = {Proceedings of the third conference on Abelian Groups Theory, + Oberwolfach, Aug. 1983}, +pages = {149--163}, +publisher = {Gordon and Breach, New York}, +title = {{On groups $A$ such that $A\oplus {\bf Z}^ n\cong A$}}, +year = {1987}, +}, + +@article{Sh:256, +author = {Shelah, Saharon}, +ams-subject = {(03E10)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 89h:03082}, +pages = {299--326}, +title = {{More on powers of singular cardinals}}, +volume = {59}, +year = {1987}, +}, + +@article{BsSh:257, +author = {Blass, Andreas and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,1}, +journal = {Israel Journal of Mathematics}, +review = {MR 90e:03057}, +pages = {259--271}, +title = {{Ultrafilters with small generating sets}}, +volume = {65}, +year = {1989}, +}, + +@article{ShSt:258, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E05)}, +fromwhere = {IL,1}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89d:03045}, +pages = {119--152}, +title = {{A theorem and some consistency results in partition + calculus}}, +volume = {36}, +year = {1987}, +}, + +@article{GrSh:259, +author = {Grossberg, Rami and Shelah, Saharon}, +fromwhere = {1,L}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9809196 }, +title = {{On Hanf numbers of the infinitary order property}}, +volume = {submitted}, +}, + +@article{ShSr:260, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +ams-subject = {(20F24)}, +fromwhere = {IL,3}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 88d:20058}, +pages = {87--97}, +title = {{Extraspecial $p$-groups}}, +volume = {34}, +year = {1987}, +}, + +@article{Sh:261, +author = {Shelah, Saharon}, +ams-subject = {(05C99)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 89k:05104}, +pages = {171--183}, +title = {{A graph which embeds all small graphs on any large set of + vertices}}, +volume = {38}, +year = {1988}, +}, + +@article{Sh:262, +author = {Shelah, Saharon}, +ams-subject = {(03C52)}, +fromwhere = {IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 91h:03042}, +pages = {1431--1455}, +title = {{The number of pairwise non-elementarily-embeddable models}}, +volume = {54}, +year = {1989}, +}, + +@article{Sh:263, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 89g:03072}, +note = {Represented in [Sh:f], Chapter 17}, +pages = {360--367}, +title = {{Semiproper forcing axiom implies Martin maximum but not ${\rm + PFA}^ +$}}, +volume = {52}, +year = {1987}, +}, + +@article{ShSr:264, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +ams-subject = {(46B99)}, +fromwhere = {IL,3}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 90a:46047}, +pages = {101--105}, +title = {{A Banach space on which there are few operators}}, +volume = {104}, +year = {1988}, +}, + +@article{DFSh:265, +author = {Dugas, M. and Fay, T. H. and Shelah, Saharon}, +ams-subject = {(20K99)}, +fromwhere = {1,1,IL}, +journal = {Journal of Algebra}, +review = {MR 88g:20120}, +pages = {127--137}, +title = {{Singly cogenerated annihilator classes}}, +volume = {109}, +year = {1987}, +}, + +@article{Sh:266, +author = {Shelah, Saharon}, +fromwhere = {IL}, +note = { arxiv:math.LO/1401.3175 }, +title = {{Compactness in singular cardinals revisited}}, +}, + +@article{FlSh:267, +author = {Fleissner, William G. and Shelah, Saharon}, +ams-subject = {(54D15)}, +fromwhere = {1,IL}, +journal = {Topology and its Applications}, +review = {MR 90d:54043}, +pages = {101--107}, +title = {{Collectionwise Hausdorff: incompactness at singulars}}, +volume = {31}, +year = {1989}, +}, + +@article{HKSh:268, +author = {Hajnal, Andras and Kanamori, Akihiro and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {H,1,IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 88f:03041}, +pages = {145--154}, +title = {{Regressive partition relations for infinite cardinals}}, +volume = {299}, +year = {1987}, +}, + +@article{Sh:269, +author = {Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91a:03083}, +pages = {133--152}, +title = {{``Gap $1$'' two-cardinal principles and the omitting types + theorem for ${\scr L} (Q)$}}, +volume = {65}, +year = {1989}, +}, + +@article{Sh:270, +author = {Shelah, Saharon}, +ams-subject = {(54A35)}, +fromwhere = {IL}, +journal = {Topology and its Applications}, +review = {MR 91c:54009}, +pages = {217--221}, +title = {{Baire irresolvable spaces and lifting for a layered ideal}}, +volume = {33}, +year = {1989}, +}, + +@article{HoSh:271, +author = {Hodges, Wilfrid and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {4,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 93h:03055}, +pages = {300--322}, +title = {{There are reasonably nice logics}}, +volume = {56}, +year = {1991}, +}, + +@incollection{Sh:272, +author = {Shelah, Saharon}, +booktitle = {Classification theory (Chicago, IL, 1985)}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +review = {MR 90m:03071}, +note = {Proceedings of the USA--Israel Conference on Classification + Theory, Chicago, December 1985; ed. Baldwin, J.T.}, +pages = {498--500}, +publisher = {Springer, Berlin-New York}, +series = {Lecture Notes in Mathematics}, +title = {{On almost categorical theories}}, +volume = {1292}, +year = {1987}, +}, + +@article{Sh:273, +author = {Shelah, Saharon}, +ams-subject = {(55Q05)}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 89g:55021}, +pages = {627--632}, +title = {{Can the fundamental (homotopy) group of a space be the + rationals?}}, +volume = {103}, +year = {1988}, +}, + +@article{MkSh:274, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {3,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90j:03089}, +pages = {441--459}, +title = {{Uniformization principles}}, +volume = {54}, +year = {1989}, +}, + +@article{MkSh:275, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(08B20)}, +fromwhere = {3,IL}, +journal = {Algebra Universalis}, +review = {MR 91j:08011}, +pages = {351--366}, +title = {{$L_ {\infty\omega}$-free algebras}}, +volume = {26}, +year = {1989}, +}, + +@article{Sh:276, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 89m:03037}, +pages = {355--380}, +title = {{Was Sierpi\'nski right? I}}, +volume = {62}, +year = {1988}, +}, + +@incollection{GuSh:277, +author = {Gurevich, Yuri and Shelah, Saharon}, +booktitle = {Logic at Botik '89 (Pereslavl-Zalesskiy, 1989)}, +ams-subject = {(68Q15)}, +fromwhere = {1}, +review = {MR 91a:68091}, +pages = {108--118}, +publisher = {Springer, Berlin-New York}, +series = {Lecture Notes in Comput. Sci}, +title = {{Nearly linear time}}, +volume = {363}, +year = {1989}, +}, + +@incollection{CCShSW:278, +author = {Chatzidakis, Z. and Cherlin, G. and Shelah, Saharon and Srour, + G. and Wood, C. }, +booktitle = {Classification theory (Chicago, IL, 1985)}, +ams-subject = {(03C60)}, +fromwhere = {1,1,IL,3,1}, +review = {MR 91f:03074}, +note = {Proceedings of the USA--Israel Conference on Classification + Theory, Chicago, December 1985; ed. Baldwin, J.T.}, +pages = {72--88}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Orthogonality of types in separably closed fields}}, +volume = {1292}, +year = {1987}, +}, + +@article{ShSt:279, +author = {Shelah, Saharon and Stanley, Lee}, +ams-subject = {(03E05)}, +fromwhere = {IL,1}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 90e:03060}, +pages = {887--897}, +title = {{Weakly compact cardinals and nonspecial Aronszajn trees}}, +volume = {104}, +year = {1988}, +}, + +@article{Sh:280, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 91b:03083}, +pages = {21--31}, +title = {{Strong negative partition above the continuum}}, +volume = {55}, +year = {1990}, +}, + +@article{DzSh:281, +author = {Drezner, Zvi and Shelah, Saharon}, +ams-subject = {(90B10)}, +fromwhere = {1,IL}, +journal = {Mathematics of Operations Research}, +review = {MR 88e:90030}, +pages = {255--261}, +title = {{On the complexity of the Elzinga-Hearn algorithm for the + $1$-center problem}}, +volume = {12}, +year = {1987}, +}, + +@article{Sh:282, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90c:03040}, +pages = {213--256}, +title = {{Successors of singulars, cofinalities of reduced products of + cardinals and productivity of chain conditions}}, +volume = {62}, +year = {1988}, +}, + +@incollection{Sh:282a, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Colorings}}, +volume = {29}, +year = {1994}, +}, + +@article{Sh:283, +author = {Shelah, Saharon}, +ams-subject = {(20K10)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90g:20079}, +pages = {146--166}, +title = {{On reconstructing separable reduced $p$-groups with a given + socle}}, +volume = {60}, +year = {1987}, +}, + +@article{Sh:284, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +note = {See [Sh:284a] [Sh:284b] [Sh:284c] [Sh:284d] below}, +title = {{}}, +}, + +@article{Sh:284a, +author = {Shelah, Saharon}, +ams-subject = {(03F25)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90b:03088}, +pages = {335--352}, +title = {{Notes on monadic logic. Part A. Monadic theory of the real + line}}, +volume = {63}, +year = {1988}, +}, + +@article{Sh:284b, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91m:03041}, +pages = {94--116}, +title = {{Notes on monadic logic. B. Complexity of linear orders in + ZFC}}, +volume = {69}, +year = {1990}, +}, + +@article{Sh:284c, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 92e:03046}, +pages = {353--364}, +title = {{More on monadic logic. Part C. Monadically interpreting in + stable unsuperstable ${\scr T}$ and the monadic theory of ${}^ + \omega\lambda$}}, +volume = {70}, +year = {1990}, +}, + +@article{Sh:284d, +author = {Shelah, Saharon}, +ams-subject = {(03C85)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91c:03035}, +pages = {302--306}, +title = {{More on monadic logic. D. A note on addition of theories}}, +volume = {68}, +year = {1989}, +}, + +@article{MaSh:285, +author = {Makkai, Michael and Shelah, Saharon}, +ams-subject = {(03C75)}, +fromwhere = {IL,3}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 92a:03054}, +pages = {41--97}, +title = {{Categoricity of theories in $L_ {\kappa\omega},$ with $\kappa$ + a compact cardinal}}, +volume = {47}, +year = {1990}, +}, + +@article{JdSh:286, +author = {Ihoda (Haim Judah), Jaime and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 89a:03091}, +pages = {681--683}, +title = {{$Q$-sets do not necessarily have strong measure zero}}, +volume = {102}, +year = {1988}, +}, + +@article{BsSh:287, +author = {Blass, Andreas and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +review = {MR 90m:03087}, +pages = {530--538}, +title = {{Near coherence of filters. III. A simplified consistency + proof}}, +volume = {30}, +year = {1989}, +}, + +@incollection{Sh:288, +author = {Shelah, Saharon}, +booktitle = {Proceedings of the Conference on Set Theory and its + Applications in honor of A.Hajnal and V.T.Sos, Budapest, 1/91}, +fromwhere = {IL}, +note = { arxiv:math.LO/9201244 }, +pages = {637--668}, +series = {Colloquia Mathematica Societatis Janos Bolyai. Sets, Graphs, + and Numbers}, +title = {{Strong Partition Relations Below the Power Set: Consistency, + Was Sierpi\'nski Right, II?}}, +volume = {60}, +year = {1991}, +}, + +@incollection{Sh:289, +author = {Shelah, Saharon}, +booktitle = {Set theory and its applications (Toronto, ON, 1987)}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +review = {MR 91a:03102}, +note = {ed. Steprans, J. and Watson, S.}, +pages = {167--193}, +publisher = {Springer, Berlin-New York}, +series = {Lecture Notes in Mathematics}, +title = {{Consistency of positive partition theorems for graphs and + models}}, +volume = {1401}, +year = {1989}, +}, + +@article{BiSh:290, +author = {Biro, B. and Shelah, Saharon}, +ams-subject = {(03G15)}, +fromwhere = {H,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 89k:03084}, +pages = {846--853}, +title = {{Isomorphic but not lower base-isomorphic cylindric set + algebras}}, +volume = {53}, +year = {1988}, +}, + +@article{MNSh:291, +author = {Mekler, Alan H. and Nelson, E. and Shelah, Saharon}, +ams-subject = {(03B25)}, +fromwhere = {1,?,IL}, +journal = {Proceedings of the London Mathematical Society}, +review = {MR 93m:03018}, +note = { arxiv:math.LO/9301203 }, +pages = {225-256}, +title = {{A variety with solvable, but not uniformly solvable, word + problem}}, +volume = {66}, +year = {1993}, +}, + +@article{JdSh:292, +author = {Ihoda (Haim Judah), Jaime and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {RCH,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90h:03035}, +pages = {1188--1207}, +title = {{Souslin forcing}}, +volume = {53}, +year = {1988}, +}, + +@article{ShSt:293, +author = {Shelah, Saharon and Stanley, Lee}, +fromwhere = {IL,1}, +journal = {Israel Journal of Mathematics}, +pages = {97--110}, +title = {{More consistency results in partition calculus}}, +volume = {81}, +year = {1993}, +}, + +@incollection{ShSt:294, +author = {Shelah, Saharon and Stanley, Lee}, +booktitle = {Set Theory of the Continuum}, +fromwhere = {IL,1}, +note = {ed. Judah, H., Just, W. and Woodin, H.. arxiv:math.LO/9201249 + }, +pages = {407--416}, +publisher = {Springer Verlag}, +series = {Mathematical Sciences Research Institute Publications}, +title = {{Coding and reshaping when there are no sharps}}, +volume = {26}, +year = {1992}, +}, + +@article{Sh:295, +author = {Shelah, Saharon}, +fromwhere = {A, IL}, +journal = {in preparation}, +title = {{Projective measurability does not imply projective Baire + property}}, +}, + +@article{ShSr:296, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +ams-subject = {(54C05)}, +fromwhere = {IL,3}, +journal = {Fundamenta Mathematicae}, +review = {MR 90h:54015}, +pages = {135--141}, +title = {{Nontrivial homeomorphisms of $\beta {\bf N}\setminus {\bf N}$ + without the continuum hypothesis}}, +volume = {132}, +year = {1989}, +}, + +@article{HdSh:297, +author = {Hodkinson, Ion and Shelah, Saharon}, +fromwhere = {?,IL}, +journal = {Proceedings of the London Mathematical Society}, +pages = {449--492}, +title = {{A construction of many uncountable rings using SFP domains and + Aronszajn trees}}, +volume = {67}, +year = {1993}, +}, + +@article{EkSh:298, +author = {Eklof, Paul C. and Shelah, Saharon}, +ams-subject = {(13D05)}, +fromwhere = {1,IL}, +journal = {Rendiconti del Seminario Matematico dell'Universita di + Padova}, +review = {MR 89c:13017}, +pages = {279--284}, +title = {{A calculation of injective dimension over valuation domains}}, +volume = {78}, +year = {1987}, +}, + +@incollection{Sh:299, +author = {Shelah, Saharon}, +booktitle = {Proceedings of the International Congress of Mathematicians + (Berkeley, Calif., 1986)}, +ams-subject = {(03-02)}, +fromwhere = {IL}, +review = {MR 89e:03006}, +note = {ed. Gleason, A.M.}, +pages = {154--162}, +publisher = {Amer. Math. Soc., Providence, RI}, +title = {{Taxonomy of universal and other classes}}, +volume = {1}, +year = {1987}, +}, + +@incollection{Sh:300, +author = {Shelah, Saharon}, +booktitle = {Classification theory (Chicago, IL, 1985)}, +ams-subject = {(03C52)}, +fromwhere = {IL}, +review = {MR 91k:03088}, +note = {Proceedings of the USA--Israel Conference on Classification + Theory, Chicago, December 1985; ed. Baldwin, J.T.}, +pages = {264--418}, +publisher = {Springer, Berlin}, +series = {Lecture Notes in Mathematics}, +title = {{Universal classes}}, +volume = {1292}, +year = {1987}, +}, + +@inbook{Sh:300a, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (A), in series Studies in Logic, vol. 20, + College Publications}, +title = {{Stability theory for a model}}, +}, + +@inbook{Sh:300b, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (B)}, +title = {{Universal Classes: Axiomatic Framework [Sh:h]}}, +}, + +@inbook{Sh:300c, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (C)}, +title = {{Universal Classes: A frame is not smooth or not + $\chi$-based}}, +}, + +@inbook{Sh:300d, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (D)}, +title = {{Universal Classes: Non-Forking and Prime Modes}}, +}, + +@inbook{Sh:300e, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (E)}, +title = {{Universal Classes: Types of finite sequences}}, +}, + +@inbook{Sh:300f, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (F)}, +title = {{Universal Classes: the heart of the matter}}, +}, + +@inbook{Sh:300g, +author = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes II}, +fromwhere = {IL}, +note = {Chapter V (G)}, +title = {{Universal Classes: Changing the framework}}, +}, + +@inbook{Sh:300x, +author = {Shelah, Saharon}, +booktitle = {Universal Classes [Sh:h]}, +fromwhere = {IL}, +title = {{Bibliography}}, +}, + +@inbook{Sh:300y, +author = {Shelah, Saharon}, +booktitle = {Universal Classes [Sh:h]}, +fromwhere = {IL}, +title = {{Glossary}}, +}, + +@inbook{Sh:300z, +author = {Shelah, Saharon}, +booktitle = {Universal Classes [Sh:h]}, +fromwhere = {IL}, +title = {{Annotated Contents}}, +}, + +@article{HoSh:301, +author = {Hodges, Wilfrid and Shelah, Saharon}, +fromwhere = {4,IL}, +journal = {Preprint}, +note = { arxiv:math.LO/0102060 }, +title = {{Naturality and Definability II}}, +}, + +@article{GrSh:302, +author = {Grossberg, Rami and Shelah, Saharon}, +ams-subject = {(20K35)}, +fromwhere = {1,1}, +journal = {Journal of Algebra}, +review = {MR 90d:20101}, +note = {See also [GrSh:302a] below}, +pages = {117--128}, +title = {{On the structure of ${\rm Ext}_ p(G,{\Bbb Z})$}}, +volume = {121}, +year = {1989}, +}, + +@article{GrSh:302a, +author = {Grossberg, Rami and Shelah, Saharon}, +trueauthor = {Grossberg, Rami and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9911225 }, +pages = {189--197}, +title = {{On cardinalities in quotients of inverse limits of groups}}, +volume = {47}, +year = {1998}, +}, + +@article{KoSh:303, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {H,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 89m:03044}, +pages = {696--707}, +title = {{Forcing constructions for uncountably chromatic graphs}}, +volume = {53}, +year = {1988}, +}, + +@article{ShSp:304, +author = {Shelah, Saharon and Spencer, Joel}, +ams-subject = {(05C80)}, +fromwhere = {IL,1}, +journal = {Journal of the American Mathematical Society}, +review = {MR 89i:05249}, +pages = {97--115}, +title = {{Zero-one laws for sparse random graphs}}, +volume = {1}, +year = {1988}, +}, + +@article{ShTh:305, +author = {Shelah, Saharon and Thomas, Simon}, +ams-subject = {(03E05)}, +fromwhere = {IL,1}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90b:03065}, +pages = {95--99}, +title = {{Subgroups of small index in infinite symmetric groups. II}}, +volume = {54}, +year = {1989}, +}, + +@article{MkSh:306, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K10)}, +fromwhere = {3,IL}, +journal = {Communications in Algebra}, +review = {MR 91b:20074}, +pages = {287--307}, +title = {{Determining abelian $p$-groups from their $n$-socles}}, +volume = {18}, +year = {1990}, +}, + +@article{BeSh:307, +author = {Buechler, Steven and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL,1}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 91f:03068}, +pages = {277--308}, +title = {{On the existence of regular types}}, +volume = {45}, +year = {1989}, +}, + +@article{JdSh:308, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 91g:03097}, +pages = {909--927}, +title = {{The Kunen-Miller chart (Lebesgue measure, the Baire property, + Laver reals and preservation theorems for forcing)}}, +volume = {55}, +year = {1990}, +}, + +@article{Sh:309, +author = {Shelah, Saharon}, +fromwhere = {IL}, +note = {0812.0656. 0812.0656. arxiv:0812.0656 }, +title = {{Black Boxes}}, +}, + +@article{GiSh:310, +author = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9605234 }, +pages = {1527--1551}, +title = {{Cardinal preserving ideals}}, +volume = {64}, +year = {1999}, +}, + +@article{Sh:311, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +note = { arxiv:math.LO/0404221 }, +title = {{A more general iterable condition ensuring $\aleph_1$ is not + collapsed}}, +}, + +@article{Sh:312, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +note = { arxiv:math.LO/1102.5578v2 }, +title = {{Existentially closed locally finite groups}}, +}, + +@article{MkSh:313, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {3,IL}, +journal = {Fundamenta Mathematicae}, +review = {MR 90i:03055}, +pages = {45--51}, +title = {{Diamond and $\lambda$-systems}}, +volume = {131}, +year = {1988}, +}, + +@article{MRSh:314, +author = {Mekler, Alan H. and Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Mekler, Alan H. and Ros{\l}anowski, Andrzej and Shelah, + Saharon}, +fromwhere = {3,PL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9806165 }, +pages = {327--356}, +title = {{On the $p$-rank of Ext}}, +volume = {112}, +year = {1999}, +}, + +@article{ShSr:315, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +ams-subject = {(03E05)}, +fromwhere = {1,3}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 89e:03080}, +pages = {1220--1225}, +title = {{PFA implies all automorphisms are trivial}}, +volume = {104}, +year = {1988}, +}, + +@article{FuSh:316, +author = {Fuchs, Laszlo and Shelah, Saharon}, +ams-subject = {(13L05)}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 89e:13030}, +pages = {25--30}, +title = {{Kaplansky's problem on valuation rings}}, +volume = {105}, +year = {1989}, +}, + +@article{BFSh:317, +author = {Becker, Thomas and Fuchs, Laszlo and Shelah, Saharon}, +ams-subject = {(13C05)}, +fromwhere = {1,1,IL}, +journal = {Forum Mathematicum}, +review = {MR 90a:13017}, +pages = {53--68}, +title = {{Whitehead modules over domains}}, +volume = {1}, +year = {1989}, +}, + +@article{MMSh:318, +author = {Macpherson, Dugald and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03C55)}, +fromwhere = {4,3,IL}, +journal = {Mathematical Proceedings of the Cambridge Philosophical + Society}, +review = {MR 92a:03049}, +pages = {193--209}, +title = {{The number of infinite substructures}}, +volume = {109}, +year = {1991}, +}, + +@article{JdSh:319, +author = {Ihoda (Haim Judah), Jaime and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90f:03083}, +pages = {78--94}, +title = {{Martin's axioms, measurability and equiconsistency results}}, +volume = {54}, +year = {1989}, +}, + +@article{JShS:320, +author = {Juhasz, Istvan and Shelah, Saharon and Soukup, Lajos}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon and Soukup, Lajos}, +ams-subject = {(03E35)}, +fromwhere = {H,IL,H}, +journal = {Israel Journal of Mathematics}, +review = {MR 89i:03097}, +pages = {302--310}, +title = {{More on countably compact, locally countable spaces}}, +volume = {62}, +year = {1988}, +}, + +@article{JdSh:321, +author = {Ihoda (Haim Judah), Jaime and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 90f:03081}, +pages = {207--223}, +title = {{$\Delta^ 1_ 2$-sets of reals}}, +volume = {42}, +year = {1989}, +}, + +@article{Sh:322, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Classification over a predicate}}, +}, + +@article{HaSh:323, +author = {Hart, Bradd and Shelah, Saharon}, +ams-subject = {(03C35)}, +fromwhere = {IL,1}, +journal = {Israel Journal of Mathematics}, +review = {MR 91m:03033}, +note = { arxiv:math.LO/9201240 }, +pages = {219--235}, +title = {{Categoricity over $P$ for first order $T$ or categoricity for + $\phi\in{\rm L}_ {\omega_ 1\omega}$ can stop at $\aleph_ k$ while + holding for $\aleph_ 0,\cdots,\aleph_ {k-1}$}}, +volume = {70}, +year = {1990}, +}, + +@article{MgSh:324, +author = {Magidor, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +note = {A special volume dedicated to Prof. Azriel Levy. + arxiv:math.LO/9501220 }, +pages = {385--404}, +title = {{The tree property at successors of singular cardinals}}, +volume = {35}, +year = {1996}, +}, + +@incollection{DgSh:325, +author = {Dugas, M. and Shelah, Saharon}, +booktitle = {Abelian group theory (Perth, 1987)}, +ams-subject = {(20K30)}, +fromwhere = {1,IL}, +review = {MR 90i:20060}, +pages = {191--199}, +publisher = {Amer. Math. Soc., Providence, RI}, +series = {Contemp. Mathematics}, +title = {{$E$-transitive groups in $L$}}, +volume = {87}, +year = {1989}, +}, + +@incollection{Sh:326, +author = {Shelah, Saharon}, +booktitle = {Set Theory of the Continuum}, +fromwhere = {IL}, +note = { arxiv:math.LO/9201245 }, +pages = {357--405}, +publisher = {Springer Verlag}, +series = {Mathematical Sciences Research Institute Publications}, +title = {{Vive la diff\'erence I: Nonisomorphism of ultrapowers of + countable models}}, +volume = {26}, +year = {1992}, +}, + +@article{Sh:327, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +review = {MR 93d:03052}, +pages = {95--100}, +title = {{Strong negative partition relations below the continuum}}, +volume = {58}, +year = {1991}, +}, + +@article{ShTh:328, +author = {Shelah, Saharon and Thomas, Simon}, +ams-subject = {(20B35)}, +fromwhere = {IL,1}, +journal = {Bulletin of the London Mathematical Society}, +review = {MR 90a:20009}, +pages = {313--318}, +title = {{Implausible subgroups of infinite symmetric groups}}, +volume = {20}, +year = {1988}, +}, + +@article{Sh:329, +author = {Shelah, Saharon}, +ams-subject = {(05A17)}, +fromwhere = {IL}, +journal = {Journal of the American Mathematical Society}, +review = {MR 89a:05017}, +pages = {683--697}, +title = {{Primitive recursive bounds for van der Waerden numbers}}, +volume = {1}, +year = {1988}, +}, + +@article{BlSh:330, +author = {Baldwin, John T. and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 92i:03033}, +note = { arxiv:math.LO/9201241 }, +pages = {235--264}, +title = {{The primal framework. I}}, +volume = {46}, +year = {1990}, +}, + +@article{Sh:331, +author = {Shelah, Saharon}, +fromwhere = {IL}, +note = { arxiv:new }, +title = {{A complicated family of members of trees with $ \omega +1 $ + levels}}, +}, + +@article{GuSh:332, +author = {Gurevich, Yuri and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the 1988 ACM STOC Symp. on Theory of + Computation}, +note = {See also [GuSh:332a] below}, +title = {{Non-deterministic linear time task may require substantially + non linear determinate work}}, +}, + +@article{GuSh:332a, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(68Q15)}, +fromwhere = {1,IL}, +journal = {Journal of the Association for Computing Machinery}, +review = {MR 92d:68054}, +pages = {674--687}, +title = {{Nondeterministic linear-time tasks may require substantially + nonlinear deterministic time in the case of sublinear work space}}, +volume = {37}, +year = {1990}, +}, + +@incollection{Sh:333, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Bounds on Power of singulars: Induction}}, +volume = {29}, +year = {1994}, +}, + +@article{HuSh:334, +author = {Hrushovski, Ehud and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 92m:03049}, +pages = {289--321}, +title = {{Stability and omitting types}}, +volume = {74}, +year = {1991}, +}, + +@article{JdSh:335, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E50)}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91a:03106}, +pages = {1--17}, +title = {{${\rm MA}(\sigma$-centered): Cohen reals, strong measure zero + sets and strongly meager sets}}, +volume = {68}, +year = {1989}, +}, + +@article{JdSh:336, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 91f:03105}, +pages = {821--832}, +title = {{$Q$-sets, Sierpi\'nski sets, and rapid filters}}, +volume = {111}, +year = {1991}, +}, + +@article{JdSh:337, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +review = {MR 94c:03067}, +pages = {72--80}, +title = {{$\Delta ^1_3$-sets of reals}}, +volume = {58}, +year = {1993}, +}, + +@article{JdSh:338, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E45)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 93b:03085}, +pages = {769--782}, +title = {{Forcing minimal degree of constructibility}}, +volume = {56}, +year = {1991}, +}, + +@article{JShW:339, +author = {Judah, Haim and Shelah, Saharon and Woodin, Hugh}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL,1}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 91m:03052}, +note = {Correction of third section has appeared in the book by + Bartoszynski and Judah}, +pages = {255--269}, +title = {{The Borel conjecture}}, +volume = {50}, +year = {1990}, +}, + +@article{ShSt:340, +author = {Shelah, Saharon and Stanley, Lee}, +fromwhere = {IL,1}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9311204 }, +pages = {1--35}, +title = {{A combinatorial forcing for coding the universe by a real when + there are no sharps}}, +volume = {60}, +year = {1995}, +}, + +@article{JuSh:341, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +ams-subject = {(54A25)}, +fromwhere = {H,IL}, +journal = {Topology and its Applications}, +review = {MR 90h:54007}, +note = {Note: Proof in local case is a mistake}, +pages = {289--294}, +title = {{$\pi (X)=\delta(X)$ for compact $X$}}, +volume = {32}, +year = {1989}, +}, + +@article{HuSh:342, +author = {Hrushovski, Ehud and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 91g:03068}, +nt = {Stability in mode l theory, II (Trento, 1987).}, +pages = {157--169}, +title = {{A dichotomy theorem for regular types}}, +volume = {45}, +year = {1989}, +}, + +@article{GuSh:343, +author = {Gurevich, Yuri and Shelah, Saharon}, +ams-subject = {(03D15)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90f:03071}, +pages = {1083--1088}, +title = {{Time polynomial in input or output}}, +volume = {54}, +year = {1989}, +}, + +@article{GiSh:344, +author = {Gitik, Moti and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 90e:03063}, +pages = {35--42}, +title = {{On certain indestructibility of strong cardinals and a + question of Hajnal}}, +volume = {28}, +year = {1989}, +}, + +@article{Sh:345, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91i:03102}, +pages = {129--187}, +title = {{Products of regular cardinals and cardinal invariants of + products of Boolean algebras}}, +volume = {70}, +year = {1990}, +}, + +@incollection{Sh:345a, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Basic: Cofinalities of small reduced products}}, +volume = {29}, +year = {1994}, +}, + +@incollection{Sh:345b, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +note = {Appendix 2}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Entangled Orders and Narrow Boolean Algebras}}, +volume = {29}, +year = {1994}, +}, + +@article{KoSh:346, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Acta Mathematica Hungarica}, +note = { arxiv:math.LO/9402213 }, +pages = {217--225}, +title = {{On Taylor's Problem}}, +volume = {70}, +year = {1996}, +}, + +@incollection{Sh:347, +author = {Shelah, Saharon}, +booktitle = {A tribute to Paul Erd\H{o}s}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +review = {MR 92j:03045}, +pages = {361--371}, +publisher = {Cambridge Univ. Press, Cambridge}, +title = {{Incompactness for chromatic numbers of graphs}}, +year = {1990}, +}, + +@article{BJSh:348, +author = {Bartoszynski, Tomek and Ihoda (Haim Judah), Jaime and Shelah, + Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Ihoda (Haim Judah), Jaime and + Shelah, Saharon }, +ams-subject = {(03E35)}, +fromwhere = {1,IL,1}, +journal = {The Journal of Symbolic Logic}, +review = {MR 90f:03082}, +pages = {719--726}, +title = {{The cofinality of cardinal invariants related to measure and + category}}, +volume = {54}, +year = {1989}, +}, + +@article{Sh:349, +author = {Shelah, Saharon}, +ams-subject = {(54G20)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90e:54087}, +pages = {219--224}, +title = {{A consistent counterexample in the theory of collectionwise + Hausdorff spaces}}, +volume = {65}, +year = {1989}, +}, + +@article{FOSh:350, +author = {Dror Farjoun, E. and Orr, K. and Shelah, Saharon}, +ams-subject = {(55P60)}, +fromwhere = {IL,1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90j:55016}, +pages = {143--153}, +title = {{Bousfield localization as an algebraic closure of groups}}, +volume = {66}, +year = {1989}, +}, + +@article{Sh:351, +author = {Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 93h:03072}, +pages = {25--53}, +title = {{Reflecting stationary sets and successors of singular + cardinals}}, +volume = {31}, +year = {1991}, +}, + +@article{EFSh:352, +author = {Eklof, Paul C. and Fuchs, Laszlo and Shelah, Saharon}, +ams-subject = {(13C13)}, +fromwhere = {1,1,IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 91c:13006}, +pages = {547--560}, +title = {{Baer modules over domains}}, +volume = {322}, +year = {1990}, +}, + +@article{ShSr:353, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL,3}, +journal = {Algebra Universalis}, +pages = {196--203}, +title = {{Homogeneous almost disjoint families}}, +volume = {31}, +year = {1994}, +}, + +@article{PeSh:354, +author = {Perles, M. A. and Shelah, Saharon}, +ams-subject = {(52A30)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91m:52006}, +pages = {305--312}, +title = {{A closed $(n+1)$-convex set in ${\bf R}^ 2$ is a union of $n^ + 6$ convex sets}}, +volume = {70}, +year = {1990}, +}, + +@incollection{Sh:355, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{$\aleph _{\omega +1}$ has a Jonsson Algebra}}, +volume = {29}, +year = {1994}, +}, + +@incollection{MlSh:356, +author = {Milner, Eric C. and Shelah, Saharon}, +booktitle = {A tribute to Paul Erdos}, +ams-subject = {(05C99)}, +fromwhere = {3,IL}, +review = {MR 92g:05176}, +pages = {373--384}, +publisher = {Cambridge Univ. Press, Cambridge}, +title = {{Graphs with no unfriendly partitions}}, +year = {1990}, +}, + +@article{GiSh:357, +author = {Gitik, Moti and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91g:03104}, +pages = {129--160}, +title = {{Forcings with ideals and simple forcing notions}}, +volume = {68}, +year = {1989}, +}, + +@article{JdSh:358, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 91i:03099}, +pages = {129--138}, +title = {{Around random algebra}}, +volume = {30}, +year = {1990}, +}, + +@article{BoSh:359, +author = {Bonnet, Robert and Shelah, Saharon}, +fromwhere = {?,IL}, +journal = {Israel Journal of Mathematics}, +pages = {??}, +title = {{On HCO Spaces, An uncountable compact $T_2$-space different + form $\aleph _1$ which is homeomorphic to every of its uncountable + closed subspaces}}, +volume = {84}, +year = {1993}, +}, + +@article{BlSh:360, +author = {Baldwin, John T. and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 92m:03045}, +note = {Note: See also 360a below. arxiv:math.LO/9201246 }, +pages = {1--34}, +title = {{The primal framework. II. Smoothness}}, +volume = {55}, +year = {1991}, +}, + +@article{Sh:360a, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {1,IL}, +journal = {notes}, +title = {{The primal framework. Part C: Premature Minimality}}, +}, + +@article{ShTh:361, +author = {Shelah, Saharon and Thomas, Simon}, +ams-subject = {(03E35)}, +fromwhere = {IL,1}, +journal = {Archive for Mathematical Logic}, +review = {MR 90g:03051}, +pages = {143--147}, +title = {{Homogeneity of infinite permutation groups}}, +volume = {28}, +year = {1989}, +}, + +@article{KlSh:362, +author = {Kolman, Oren and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9602216 }, +pages = {209--240}, +title = {{Categoricity of Theories in $L_{\kappa,\omega}$, when $\kappa$ + is a measurable cardinal. Part 1}}, +volume = {151}, +year = {1996}, +}, + +@article{Sh:363, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{On spectrum of $\kappa $-resplendent models}}, +}, + +@article{JuSh:364, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {H,IL}, +journal = {Topology and its Applications}, +review = {MR 93k:03046}, +nt = {Proceedings of the Symposium on General Topology and Applications + (Oxford, 1989).}, +pages = {203--208}, +title = {{On partitioning the triples of a topological space}}, +volume = {44}, +year = {1992}, +}, + +@incollection{Sh:365, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{There are Jonsson algebras in many inaccessible cardinals}}, +volume = {29}, +year = {1994}, +}, + +@article{MkSh:366, +author = {Mekler, Alan H. and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9408213 }, +pages = {237--259}, +title = {{Almost free algebras }}, +volume = {89}, +year = {1995}, +}, + +@article{MkSh:367, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03E55)}, +fromwhere = {3,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 91b:03090}, +pages = {353--366}, +title = {{The consistency strength of ``every stationary set + reflects''}}, +volume = {67}, +year = {1989}, +}, + +@article{BJSh:368, +author = {Bartoszynski, Tomek and Judah, Haim and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Judah, Haim and Shelah, Saharon + }, +fromwhere = {1,IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9905122 }, +pages = {401--423}, +title = {{The Cicho\'n diagram}}, +volume = {58}, +year = {1993}, +}, + +@article{GJSh:369, +author = {Goldstern, Martin and Judah, Haim and Shelah, Saharon}, +ams-subject = {(54A25)}, +fromwhere = {1,IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 91g:54008}, +pages = {1151--1159}, +title = {{A regular topological space having no closed subsets of + cardinality $\aleph_ 2$}}, +volume = {111}, +year = {1991}, +}, + +@article{ShSo:370, +author = {Shelah, Saharon and Soukup, Lajos}, +fromwhere = {Il,H}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9401210 }, +pages = {349--371}, +title = {{On the number of non-isomorphic subgraphs}}, +volume = {86}, +year = {1994}, +}, + +@incollection{Sh:371, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Advanced: cofinalities of small reduced products}}, +volume = {29}, +year = {1994}, +}, + +@article{JMSh:372, +author = {Judah, Haim and Miller, Arnold W. and Shelah, Saharon}, +ams-subject = {(03E50)}, +fromwhere = {IL,1,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 93e:03074}, +pages = {145--161}, +title = {{Sacks forcing, Laver forcing, and Martin's axiom}}, +volume = {31}, +year = {1992}, +}, + +@article{JRSh:373, +author = {Judah, Haim and Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Judah, Haim and Ros{\l}anowski, Andrzej and Shelah, + Saharon}, +fromwhere = {IL,PL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9310224 }, +pages = {23--42}, +title = {{Examples for Souslin Forcing}}, +volume = {144}, +year = {1994}, +}, + +@article{JdSh:374, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 93k:03049}, +pages = {267--273}, +title = {{Adding dominating reals with the random algebra}}, +volume = {119}, +year = {1993}, +}, + +@article{MkSh:375, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03C80)}, +fromwhere = {3,IL}, +journal = {Annals of Mathematics}, +review = {MR 94b:03068}, +note = {Dedicated to the memory of Alan. arxiv:math.LO/9301204 }, +pages = {221-248}, +title = {{Some compact logics --- results in ZFC}}, +volume = {137}, +year = {1993}, +}, + +@article{ShSo:376, +author = {Shelah, Saharon and Soukup, Lajos}, +fromwhere = {IL,H}, +journal = {Periodica Hung. Mathematica}, +pages = {155--163}, +title = {{Some remarks on a question of Monk}}, +volume = {30}, +year = {1995}, +}, + +@article{ShTV:377, +author = {Shelah, Saharon and Tuuri, Heikki and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and Tuuri, Heikki and + V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF,SF}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9301205 }, +pages = {1402--1418}, +title = {{On the number of automorphisms of uncountable models}}, +volume = {58}, +year = {1993}, +}, + +@article{JeSh:378, +author = {Jech, Thomas and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 90m:03088}, +note = { arxiv:math.LO/9201239 }, +pages = {376--380}, +title = {{A note on canonical functions}}, +volume = {68}, +year = {1989}, +}, + +@article{EkSh:379, +author = {Eklof, Paul C. and Shelah, Saharon}, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Journal of Algebra}, +review = {MR 92h:03077}, +pages = {492--510}, +title = {{On Whitehead modules}}, +volume = {142}, +year = {1991}, +}, + +@incollection{Sh:380, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Jonsson Algebras in an inaccessible $\lambda $ not $\lambda + $-Mahlo}}, +volume = {29}, +year = {1994}, +}, + +@article{Sh:381, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 93e:03048}, +pages = {91--127}, +title = {{Kaplansky test problem for $R$-modules}}, +volume = {74}, +year = {1991}, +}, + +@article{ShSp:382, +author = {Shelah, Saharon and Spencer, Joel}, +fromwhere = {IL,1}, +journal = {Random Structures and Algorithms}, +note = {Proceedings of the Random Graph Conference, Pozna\'n. + arxiv:math.LO/9401211 }, +pages = {191--204}, +title = {{Can You Feel the Double Jump?}}, +volume = {5}, +year = {1994}, +}, + +@article{JeSh:383, +author = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {American Journal of Mathematics}, +note = { arxiv:math.LO/9204218 }, +pages = {435-455}, +title = {{Full reflection of stationary sets at regular cardinals}}, +volume = {115}, +year = {1993}, +}, + +@incollection{Sh:384, +author = {Shelah, Saharon}, +booktitle = {Non structure theory, Ch X}, +fromwhere = {IL}, +title = {{Compact logics in ZFC: Constructing complete embeddings of + atomless Boolean rings}}, +}, + +@article{JeSh:385, +author = {Jech, Thomas and Shelah, Saharon}, +ams-subject = {(03E10)}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 91j:03066}, +note = { arxiv:math.LO/9201247 }, +pages = {1117--1124}, +title = {{On a conjecture of Tarski on products of cardinals}}, +volume = {112}, +year = {1991}, +}, + +@incollection{Sh:386, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Bounding $pp(\mu )$ when $cf(\mu ) > \mu > \aleph _0$ using + ranks and normal ideals}}, +volume = {29}, +year = {1994}, +}, + +@article{JeSh:387, +author = {Jech, Thomas and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,IL}, +journal = {The Journal of Symbolic Logic}, +review = {MR 91i:03096}, +note = { arxiv:math.LO/9201242 }, +pages = {822--830}, +title = {{Full reflection of stationary sets below $\aleph_ \omega$}}, +volume = {55}, +year = {1990}, +}, + +@article{GoSh:388, +author = {Goldstern, Martin and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 91m:03050}, +pages = {121--142}, +title = {{Ramsey ultrafilters and the reaping number---${\rm Con}({\germ + r}<{\germ u})$}}, +volume = {49}, +year = {1990}, +}, + +@article{ShSo:389, +author = {Shelah, Saharon and Soukup, Lajos}, +fromwhere = {IL,H}, +journal = {Journal of the London Mathematical Society}, +pages = {193--203}, +title = {{The Existence of large $\omega_1$-homogeneous but not + $\omega$-homogeneous permutation groups is consistent with ZFC + GCH}}, +volume = {48}, +year = {1993}, +}, + +@article{KaSh:390, +author = {Kanamori, Akihiro and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9401212 }, +pages = {1963--1979}, +title = {{Complete quotient Boolean Algebras}}, +volume = {347}, +year = {1995}, +}, + +@article{HHLSh:391, +author = {Hodges, Wilfrid and Hodkinson, Ion and Lascar, Daniel and + Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {4,?,F,IL}, +journal = {Journal of the London Mathematical Society}, +review = {MR 94d:03063}, +pages = {204--218}, +title = {{The small index property for $\omega $-stable, + $\omega$-categorical structures and the random graph}}, +volume = {48}, +year = {1993}, +}, + +@article{JeSh:392, +author = {Jech, Thomas and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,IL}, +journal = {Journal of the American Mathematical Society}, +review = {MR 93a:03049}, +note = { arxiv:math.LO/9201248 }, +pages = {647--656}, +title = {{A partition theorem for pairs of finite sets}}, +volume = {4}, +year = {1991}, +}, + +@article{BlSh:393, +author = {Baldwin, John T. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9502231 }, +pages = {246--265}, +title = {{Abstract classes with few models have `homogeneous-universal' + models}}, +volume = {60}, +year = {1995}, +}, + +@article{Sh:394, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9809197 }, +pages = {261--294}, +title = {{Categoricity for abstract classes with amalgamation}}, +volume = {98}, +year = {1999}, +}, + +@incollection{Sh:395, +author = {Shelah, Saharon}, +booktitle = {Open problems in topology}, +fromwhere = {IL}, +note = {ed. van Mill, J. and Reed, G.M.}, +pages = {217--218}, +publisher = {Elsvier Science Publishers, B.V. North Holland}, +title = {{$\germ{d} \leq \germ{i} ( = Min \{|P| : P \subseteq [ \omega + ]^\omega$ maximal independent $\}$); Appendix to J.E.~Vaughan, ``Small + Uncountable Cardinals in Topology''}}, +year = {1990}, +}, + +@article{FShZ:396, +author = {Frankiewicz, Ryszard and Shelah, Saharon and Zbierski, Pawel}, +trueauthor = {Frankiewicz, Ryszard and Shelah, Saharon and Zbierski, + Pawe{\l}}, +fromwhere = {PL,IL,PL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9303207 }, +pages = {1171--1176}, +title = {{On closed $P$-sets with ccc in the space $\omega ^*$}}, +volume = {58}, +year = {1993}, +}, + +@article{Sh:397, +author = {Shelah, Saharon}, +ams-subject = {(06E05)}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +review = {MR 93e:06011}, +note = { arxiv:math.LO/9201250 }, +pages = {385--400}, +title = {{Factor = quotient, uncountable Boolean algebras, number of + endomorphism and width}}, +volume = {37}, +year = {1992}, +}, + +@article{MkSh:398, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {3,IL}, +journal = {Canadian Journal of Mathematics. Journal Canadien de + Mathematiques}, +review = {MR 94d:03102}, +note = { arxiv:math.LO/9308210 }, +pages = {209-215}, +title = {{The canary tree}}, +volume = {36}, +year = {1993}, +}, + +@article{GJSh:399, +author = {Goldstern, Martin and Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 91g:03093}, +pages = {1095--1104}, +title = {{Saturated families}}, +volume = {111}, +year = {1991}, +}, + +@incollection{Sh:400, +author = {Shelah, Saharon}, +booktitle = {Cardinal Arithmetic}, +fromwhere = {IL}, +note = {Note: See also [Sh400a] below}, +nt = {General Editors: Dov M. Gabbai, Angus Macintyre, Dana Scott}, +publisher = {Oxford University Press}, +series = {Oxford Logic Guides}, +title = {{Cardinal Arithmetic}}, +volume = {29}, +year = {1994}, +}, + +@article{Sh:400a, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {American Mathematical Society. Bulletin. New Series}, +review = {MR 92h:03071}, +note = { arxiv:math.LO/9201251 }, +pages = {197--210}, +title = {{Cardinal arithmetic for skeptics}}, +volume = {26}, +year = {1992}, +}, + +@article{Sh:401, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9609215 }, +pages = {61--111}, +title = {{Characterizing an $\aleph_\epsilon $-saturated model of + superstable NDOP theories by its $\Bbb + L_{\infty,\aleph_\epsilon}$-theory}}, +volume = {140}, +year = {2004}, +}, + +@article{Sh:402, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9809198 }, +pages = {121--130}, +title = {{Borel Whitehead groups}}, +volume = {50}, +year = {1999}, +}, + +@article{AbSh:403, +author = {Abraham, Uri and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 94b:03085}, +note = { arxiv:math.LO/9812115 }, +pages = {1-32}, +title = {{A $\Delta ^2_2$ well-order of the reals and incompactness of + $L(Q^{MM})$}}, +volume = {59}, +year = {1993}, +}, + +@article{GvSh:404, +author = {Givant, Steven and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9401213 }, +pages = {27--51}, +title = {{Universal theories categorical in power and $\kappa$-generated + models}}, +volume = {69}, +year = {1994}, +}, + +@article{Sh:405, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9304207 }, +pages = {351--390}, +title = {{Vive la diff\'erence II. The Ax-Kochen isomorphism theorem}}, +volume = {85}, +year = {1994}, +}, + +@article{FrSh:406, +author = {Fremlin, David H. and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9209218 }, +pages = {435--455}, +title = {{Pointwise compact and stable sets of measurable functions}}, +volume = {58}, +year = {1993}, +}, + +@unpublished{FrSh:406a, +author = {Fremlin, David H. and Shelah, Saharon}, +fromwhere = {IL}, +title = {{Postscript to Shelah \& Fremlin [FrSh:406]}}, +}, + +@article{Sh:407, +author = {Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 93i:03066}, +pages = {433--443}, +title = {{${\rm CON}({\germ u}>{\germ i})$}}, +volume = {31}, +year = {1992}, +}, + +@article{KPSh:408, +author = {Kojman, Menachem and Perles, M. A. and Shelah, Saharon}, +ams-subject = {(52A27)}, +fromwhere = {IL,IL,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 92e:52006}, +pages = {313--342}, +title = {{Sets in a Euclidean space which are not a countable union + of convex subsets}}, +volume = {70}, +year = {1990}, +}, + +@article{KjSh:409, +author = {Kojman, Menachem and Shelah, Saharon}, +ams-subject = {(03C55)}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +review = {MR 94b:03064}, +note = { arxiv:math.LO/9209201 }, +pages = {875--891}, +title = {{Non-existence of Universal Orders in Many Cardinals}}, +volume = {57}, +year = {1992}, +}, + +@article{Sh:410, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0406550 }, +pages = {399--428}, +title = {{More on Cardinal Arithmetic}}, +volume = {32}, +year = {1993}, +}, + +@article{LeSh:411, +author = {Lifsches, Shmuel and Shelah, Saharon}, +ams-subject = {(03D15)}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 93b:03064}, +pages = {207--213}, +title = {{The monadic theory of $(\omega_ 2,<)$ may be complicated}}, +volume = {31}, +year = {1992}, +}, + +@article{GiSh:412, +author = {Gitik, Moti and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 94c:03070}, +pages = {219--238}, +title = {{More on simple forcing notions and forcings with ideals}}, +volume = {59}, +year = {1993}, +}, + +@article{Sh:413, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9809199 }, +pages = {1--44}, +title = {{More Jonsson Algebras}}, +volume = {42}, +year = {2003}, +}, + +@article{KoSh:414, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +pages = {115--120}, +title = {{A consistent partition theorem for infinite graphs}}, +volume = {61}, +year = {1993}, +}, + +@article{KpSh:415, +author = {Koppelberg, Sabine and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Canadian Journal Of Mathematics. Journal Canadien de + Mathematiques}, +note = { arxiv:math.LO/9404226 }, +pages = {132--145}, +title = {{Densities of ultraproducts of Boolean algebras}}, +volume = {47}, +year = {1995}, +}, + +@article{MShV:416, +author = {Mekler, Alan H. and Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Mekler, Alan H. and Shelah, Saharon and + V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +ams-subject = {(03C55)}, +fromwhere = {3,IL,SF}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 94a:03058}, +note = { arxiv:math.LO/9305204 }, +pages = {567--580}, +title = {{The Ehrenfeucht-Fra{\"\i}ss{\'e}-game of length $\omega_1$}}, +volume = {339}, +year = {1993}, +}, + +@article{MShS:417, +author = {Mekler, Alan H. and Shelah, Saharon and Spinas, Otmar}, +fromwhere = {3,IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9411234 }, +pages = {1--8}, +title = {{The essentially free spectrum of a variety}}, +volume = {93}, +year = {1996}, +}, + +@article{MkSh:418, +author = {Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K40)}, +fromwhere = {3,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 94e:20074}, +note = { arxiv:math.LO/9305205 }, +pages = {161--178}, +title = {{Every coseparable group may be free}}, +volume = {81}, +year = {1993}, +}, + +@article{ShSt:419, +author = {Shelah, Saharon and Stanley, Lee}, +fromwhere = {IL,1}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9709228 }, +pages = {259--271}, +title = {{Filters, Cohen Sets and Consistent Extensions of + the Erd\H{o}s-Dushnik-Miller Theorem}}, +volume = {65}, +year = {2000}, +}, + +@incollection{Sh:420, +author = {Shelah, Saharon}, +booktitle = {Finite and Infinite Combinatorics in Sets and Logic}, +fromwhere = {IL}, +note = {N.W. Sauer et al (eds.). arxiv:0708.1979 }, +pages = {355-383}, +publisher = {Kluwer Academic Publishers}, +title = {{Advances in Cardinal Arithmetic}}, +year = {1993}, +}, + +@incollection{Sh:421, +author = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{Kaplansky test problem for $R$-modules in ZFC}}, +}, + +@article{EkSh:422, +author = {Eklof, Paul C. and Shelah, Saharon}, +ams-subject = {(13C13)}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +review = {MR 94a:13007}, +note = { arxiv:math.LO/9308211 }, +pages = {337--351}, +title = {{On a conjecture regarding nonstandard uniserial modules}}, +volume = {340}, +year = {1993}, +}, + +@article{BnSh:423, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +note = {2013.12.03 ealier was a paper with Brelndle incorporated + into [BnSh:642] We intend to replace it with [F13]}, +title = {{Compactness spectrum}}, +}, + +@incollection{Sh:424, +author = {Shelah, Saharon}, +booktitle = {Logic Colloquium'90. ASL Summer Meeting in Helsinki}, +fromwhere = {IL}, +note = { arxiv:math.LO/9308212 }, +nt = {J.~Oikkonen, J.~V{\"{a}}{\"{a}}n{\"{a}}nen, eds}, +pages = {281--289}, +publisher = {Springer Verlag}, +series = {Lecture Notes in Logic}, +title = {{On $CH + 2^{\aleph_1}\rightarrow(\alpha)^2_2$ for + $\alpha<\omega_2$}}, +volume = {2}, +year = {1993}, +}, + +@article{ShSt:425, +author = {Shelah, Saharon and Stanley, Lee}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9402214 }, +pages = {36--57}, +title = {{The combinatorics of combinatorial coding by a real}}, +volume = {60}, +year = {1995}, +}, + +@article{EMSh:426, +author = {Eklof, Paul C. and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K20)}, +fromwhere = {1,1,IL}, +journal = {Communications in Algebra}, +review = {MR 93k:20078}, +note = { arxiv:math.LO/9308213 }, +pages = {343--353}, +title = {{On coherent systems of projections for $\aleph_1$ separable + groups}}, +volume = {21}, +year = {1993}, +}, + +@article{ShSr:427, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL,3}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/9308214 }, +pages = {569--580}, +title = {{Somewhere trivial automorphisms}}, +volume = {49}, +year = {1994}, +}, + +@article{HShT:428, +author = {Hyttinen, Tapani and Shelah, Saharon and Tuuri, Heikki}, +fromwhere = {SF,IL,SF}, +journal = {Notre Dame Journal of Formal Logic}, +pages = {157--168}, +title = {{Remarks on Strong Nonstructure Theorems}}, +volume = {34}, +year = {1993}, +}, + +@article{Sh:429, +author = {Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 92j:03032}, +pages = {281--288}, +title = {{Multi-dimensionality}}, +volume = {74}, +year = {1991}, +}, + +@article{Sh:430, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9610226 }, +pages = {61--114}, +title = {{Further cardinal arithmetic}}, +volume = {95}, +year = {1996}, +}, + +@article{KoSh:431, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Periodica Mathematica Hungarica}, +pages = {39--42}, +title = {{A note on a set-mapping problem of Hajnal and Mate}}, +volume = {28}, +year = {1994}, +}, + +@article{ShSp:432, +author = {Shelah, Saharon and Spencer, Joel}, +fromwhere = {IL,1}, +journal = {Random Structures \& Algorithms}, +note = { arxiv:math.LO/9401214 }, +pages = {375--394}, +title = {{Random Sparse Unary Predicates}}, +volume = {5}, +year = {1994}, +}, + +@article{MgSh:433, +author = {Magidor, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9805145 }, +pages = {301--307}, +title = {{Length of Boolean algebras and ultraproducts}}, +volume = {48}, +year = {1998}, +}, + +@article{BGJSh:434, +author = {Bartoszynski, Tomek and Goldstern, Martin and Judah, Haim and + Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Goldstern, Martin and Judah, + Haim and Shelah, Saharon }, +ams-subject = {(03E35)}, +fromwhere = {1,IL,IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 93d:03055}, +note = { arxiv:math.LO/9301206 }, +pages = {515--521}, +title = {{All meager filters may be null}}, +volume = {117}, +year = {1993}, +}, + +@article{LuSh:435, +author = {Luczak, Tomasz and Shelah, Saharon}, +trueauthor = {{\L}uczak, Tomasz and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Random Structures \& Algorithms}, +note = { arxiv:math.LO/9501221 }, +pages = {371--391}, +title = {{Convergence in homogeneous random graphs}}, +volume = {6}, +year = {1995}, +}, + +@article{BrSh:436, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon }, +ams-subject = {(03E35)}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 93e:03073}, +note = { arxiv:math.LO/9904068 }, +pages = {221--226}, +title = {{Intersection of $<2^{\aleph_0}$ ultrafilters may have measure + zero}}, +volume = {31}, +year = {1992}, +}, + +@article{BuSh:437, +author = {Burke, Max R. and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9201252 }, +pages = {289--296}, +title = {{Linear liftings for non complete probability space}}, +volume = {79}, +year = {1992}, +}, + +@article{GJSh:438, +author = {Goldstern, Martin and Judah, Haim and Shelah, Saharon}, +fromwhere = {IL,IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9306214 }, +pages = {1323--1341}, +title = {{Strong measure zero sets without Cohen reals}}, +volume = {58}, +year = {1993}, +}, + +@article{BrSh:439, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 94b:03084}, +note = { arxiv:math.LO/9905123 }, +pages = {93--110}, +title = {{Closed measure zero sets}}, +volume = {58}, +year = {1992}, +}, + +@incollection{CKSh:440, +author = {Comfort, W. Wistar and Kato, Akio and Shelah, Saharon}, +booktitle = {Proceedings of the Seventh Summer Conference at the + University of Wisconsin, Papers on General Topology and Applications}, +fromwhere = {1, J, IL}, +note = { arxiv:math.LO/9305206 }, +pages = {70--80}, +publisher = {New York Acad. Sci.}, +series = {Annals New York Acad. Sciences}, +title = {{Topological Partition Relations to the Form + $\omega^*\rightarrow(Y)^1_2$}}, +volume = {704}, +year = {1993}, +}, + +@article{EMSh:441, +author = {Eklof, Paul C. and Mekler, Alan H. and Shelah, Saharon}, +ams-subject = {(20K20)}, +fromwhere = {1,1,IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 94f:20105}, +note = { arxiv:math.LO/9204219 }, +pages = {301--321}, +title = {{Uniformization and the diversity of Whitehead groups}}, +volume = {80}, +year = {1992}, +}, + +@article{EMSh:442, +author = {Eklof, Paul C. and Mekler, Alan H. and Shelah, Saharon}, +fromwhere = {1,3,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0406552 }, +pages = {213--235}, +title = {{Hereditarily separable groups and monochromatic + uniformization}}, +volume = {88}, +year = {1994}, +}, + +@article{DShS:443, +author = {Diestel, Reinhard and Shelah, Saharon and Steprans, Juris}, +trueauthor = {Diestel, Reinhard and Shelah, Saharon and Stepr\={a}ns, + Juris}, +fromwhere = {D,IL,3}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/9308215 }, +pages = {16--24}, +title = {{Dominating Functions and Graphs}}, +volume = {49}, +year = {1994}, +}, + +@article{HNSh:444, +author = {Huck, A. and Niedermeyer, F. and Shelah, Saharon}, +fromwhere = {D,D,IL}, +journal = {Journal of Graph Theory}, +pages = {413--426}, +title = {{Large $\kappa$-preserving sets in infinite graphs}}, +volume = {18}, +year = {1994}, +}, + +@article{Sh:445, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9406228 }, +pages = {357--376}, +title = {{Every null additive set of reals is meager additive}}, +volume = {89}, +year = {1995}, +}, + +@article{JdSh:446, +author = {Judah, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9211213 }, +pages = {435--450}, +title = {{Withdrawn, was: Baire Property and Axiom of Choice}}, +volume = {84}, +year = {1993}, +}, + +@article{KjSh:447, +author = {Kojman, Menachem and Shelah, Saharon}, +ams-subject = {(03C45)}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 93h:03043}, +note = { arxiv:math.LO/9201253 }, +pages = {57--72}, +title = {{The universality spectrum of stable unsuperstable theories}}, +volume = {58}, +year = {1992}, +}, + +@article{GoSh:448, +author = {Goldstern, Martin and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {D,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 94c:03064}, +note = { arxiv:math.LO/9205208 }, +pages = {203--221}, +title = {{Many simple cardinal invariants}}, +volume = {32}, +year = {1993}, +}, + +@article{KjSh:449, +author = {Kojman, Menachem and Shelah, Saharon}, +ams-subject = {(03E05)}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +review = {MR 94e:03045}, +note = { arxiv:math.LO/9306215 }, +pages = {195--201}, +title = {{$\mu $-complete Suslin trees on $\mu ^+$}}, +volume = {32}, +year = {1993}, +}, + +@article{MeSh:450, +author = {Melles, Garvin and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the London Mathematical Society}, +note = { arxiv:math.LO/9308216 }, +pages = {449--463}, +title = {{A saturated model of an unsuperstable theory of cardinality + greater than its theory has the small index property}}, +volume = {69}, +year = {1994}, +}, + +@article{LsSh:451, +author = {Lascar, Daniel and Shelah, Saharon}, +ams-subject = {(03C50)}, +fromwhere = {?,IL}, +journal = {Bulletin of the London Mathematical Society}, +review = {MR 94d:03068}, +pages = {125--131}, +title = {{Uncountable saturated structures have the small index + property}}, +volume = {25}, +year = {1993}, +}, + +@article{MeSh:452, +author = {Melles, Garvin and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:math.LO/9304201 }, +pages = {339--344}, +title = {{$Aut(M)$ has a large dense free subgroup for saturated $M$}}, +volume = {26}, +year = {1994}, +}, + +@article{MSShT:453, +author = {Mekler, Alan H. and Schipperus, R. and Shelah, Saharon and + Truss, J.K.}, +ams-subject = {(20B27)}, +fromwhere = {2, ?, IL, GB}, +journal = {Bulletin of the London Mathematical Society}, +review = {MR 94a:20010}, +pages = {343--346}, +title = {{The Random Graph and Automorphisms of the Rational World}}, +volume = {25}, +year = {1993}, +}, + +@article{Sh:454, +author = {Shelah, Saharon}, +ams-subject = {(54A25)}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +review = {MR 94f:54007}, +note = {Note: See also [Sh454a] below. arxiv:math.LO/9308217 }, +pages = {369--374}, +title = {{Number of open sets for a topology with a countable basis}}, +volume = {83}, +year = {1993}, +}, + +@article{Sh:454a, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9403219 }, +pages = {95--113}, +title = {{Cardinalities of topologies with small base}}, +volume = {68}, +year = {1994}, +}, + +@article{KjSh:455, +author = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9409207 }, +pages = {113--124}, +title = {{Universal Abelian Groups}}, +volume = {92}, +year = {1995}, +}, + +@article{Sh:456, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9509225 }, +pages = {1--11}, +title = {{Universal in $(<\lambda)$-stable abelian group}}, +volume = {43}, +year = {1996}, +}, + +@incollection{Sh:457, +author = {Shelah, Saharon}, +booktitle = {Combinatorics, Paul Erd\H{o}s is Eighty}, +fromwhere = {IL}, +note = {Proceedings of the Meeting in honour of P.Erd\H{o}s, Keszthely, + Hungary 7.1993; A corrected version available as ftp: + //ftp.math.ufl.edu/pub/settheory/shelah/457.tex. arxiv:math.LO/9412229 + }, +pages = {403--420}, +publisher = {Bolyai Society Mathematical Studies}, +title = {{The Universality Spectrum: Consistency for more classes}}, +volume = {1}, +year = {1993}, +}, + +@article{AbSh:458, +author = {Abraham, Uri and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +note = {A special issue in honour of Prof. Azriel Levy. + arxiv:math.LO/9408214 }, +title = {{Martin's Axiom and $\Delta ^2_1$ well-ordering of the reals}}, +volume = {36}, +year = {1997}, +}, + +@article{BShT:459, +author = {Baumgartner, James E. and Shelah, Saharon and Thomas, Simon}, +fromwhere = {1,IL,1}, +journal = {Notre Dame Journal of Formal Logic}, +pages = {1--11}, +title = {{Maximal subgroups of infinite symmetric groups}}, +volume = {34}, +year = {1993}, +}, + +@article{Sh:460, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9809200 }, +pages = {285--321}, +title = {{The Generalized Continuum Hypothesis revisited}}, +volume = {116}, +year = {2000}, +}, + +@article{EkSh:461, +author = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Algebra}, +note = { arxiv:math.LO/9301207 }, +pages = {35--50}, +title = {{Explicitly nonstandard uniserial modules}}, +volume = {86}, +year = {1993}, +}, + +@article{Sh:462, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9609216 }, +pages = {199--275}, +title = {{$\sigma $-entangled linear orders and narrowness of + products of Boolean algebras}}, +volume = {153}, +year = {1997}, +}, + +@article{Sh:463, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Logic and Computation}, +note = { arxiv:math.LO/9507221 }, +pages = {137--159}, +title = {{On the very weak $0-1$ law for random graphs with orders}}, +volume = {6}, +year = {1996}, +}, + +@article{BLSh:464, +author = {Baldwin, John T. and Laskowski, Michael C. and Shelah, + Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9301208 }, +pages = {1291--1301}, +title = {{Forcing Isomorphism}}, +volume = {58}, +year = {1993}, +}, + +@article{ShSr:465, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL,3}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9204205 }, +pages = {305--319}, +title = {{Maximal Chains in ${}^\omega\omega$ and Ultrapowers of the + Integers}}, +volume = {32}, +year = {1993}, +}, + +@article{ShSr:465a, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL,3}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9308202 }, +pages = {167--168}, +title = {{Erratum: ``Maximal Chains in ${}^\omega\omega$ and Ultrapowers + of the Integers''}}, +volume = {33}, +year = {1994}, +}, + +@article{JiSh:466, +author = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9308218 }, +pages = {1--16}, +title = {{A model in which there are Jech-Kunen trees but there are no + Kurepa trees}}, +volume = {84}, +year = {1993}, +}, + +@article{Sh:467, +author = {Shelah, Saharon}, +ams-subject = {(03C13); (60F20); (03C10)}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9606226 }, +pages = {195--239}, +title = {{Zero-one laws for graphs with edge probabilities decaying with + distance. Part I}}, +volume = {175}, +year = {2002}, +}, + +@article{ShSi:468, +author = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL,CH}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9510215 }, +pages = {4257--4277}, +title = {{On Gross Spaces}}, +volume = {348}, +year = {1996}, +}, + +@article{JiSh:469, +author = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9211214 }, +pages = {287--296}, +title = {{Planting Kurepa trees and killing Jech-Kunen trees in a model + by using one inaccessible cardinal}}, +volume = {141}, +year = {1992}, +}, + +@article{RoSh:470, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Memoirs of the American Mathematical Society}, +note = { arxiv:math.LO/9807172 }, +pages = {xii + 167}, +title = {{Norms on possibilities I: forcing with trees and creatures}}, +volume = {141}, +year = {1999}, +}, + +@article{LeSh:471, +author = {Lifsches, Shmuel and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9308219 }, +pages = {848--872}, +title = {{Peano Arithmetic may not be interpretable in the + monadic theory of linear orders}}, +volume = {62}, +year = {1997}, +}, + +@article{Sh:472, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9604241 }, +pages = {165--196}, +title = {{Categoricity of Theories in $L_{\kappa^* \omega}$, + when $\kappa^*$ is a measurable cardinal. Part II}}, +volume = {170}, +year = {2001}, +}, + +@article{Sh:473, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Publications de L'Institute Math\'ematique - Beograd, + Nouvelle S\'erie}, +note = { arxiv:math.LO/9511220 }, +pages = {47--60}, +title = {{Possibly every real function is continuous on a non--meagre + set}}, +volume = {57(71)}, +year = {1995}, +}, + +@article{HySh:474, +author = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0406587 }, +pages = {984--996}, +title = {{Constructing strongly equivalent nonisomorphic models for + unsuperstable theories, Part A}}, +volume = {59}, +year = {1994}, +}, + +@article{RoSh:475, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9408215 }, +pages = {299--313}, +title = {{More forcing notions imply diamond}}, +volume = {35}, +year = {1996}, +}, + +@article{JeSh:476, +author = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9412208 }, +pages = {313--317}, +title = {{Possible pcf algebras}}, +volume = {61}, +year = {1996}, +}, + +@article{BJSh:477, +author = {Brendle, Joerg and Judah, Haim and Shelah, Saharon}, +trueauthor = {Brendle, J{\"{o}}rg and Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E40)}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +review = {MR 93k:03048}, +note = { arxiv:math.LO/9211202 }, +pages = {185--199}, +title = {{Combinatorial properties of Hechler forcing}}, +volume = {58}, +year = {1992}, +}, + +@article{JdSh:478, +author = {Judah, Haim and Shelah, Saharon}, +ams-subject = {(03E15)}, +fromwhere = {IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +review = {MR 94e:03046}, +note = { arxiv:math.LO/9401215 }, +pages = {917--920}, +title = {{Killing Luzin and Sierpi\'nski sets}}, +volume = {120}, +year = {1994}, +}, + +@article{Sh:479, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9601218 }, +pages = {1-19}, +title = {{On Monk's questions}}, +volume = {151}, +year = {1996}, +}, + +@article{Sh:480, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9303208 }, +pages = {159--174}, +title = {{How special are Cohen and random forcings i.e. Boolean + algebras of the family of subsets of reals modulo meagre or null}}, +volume = {88}, +year = {1994}, +}, + +@article{Sh:481, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9509226 }, +pages = {259--269}, +title = {{Was Sierpi\'nski right? III Can continuum--c.c. times c.c.c. + be continuum--c.c.?}}, +volume = {78}, +year = {1996}, +}, + +@incollection{Sh:482, +author = {Shelah, Saharon}, +fromwhere = {IL}, +note = { arxiv:math.LO/1601.03596 }, +title = {{Compactness of the Quantifier on ``Complete embedding of + BA's''}}, +}, + +@article{LVSh:483, +author = {Louveau, Alain and Velickovic, Boban and Shelah, Saharon}, +trueauthor = {Louveau, Alain and Shelah, Saharon and Veli\v{c}kovi\'c, + Boban}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9301209 }, +pages = {271--281}, +title = {{Borel partitions of infinite subtrees of a perfect tree}}, +volume = {63}, +year = {1993}, +}, + +@article{LiSh:484, +author = {Liu, Kecheng and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9604242 }, +pages = {189-205}, +title = {{Cofinalities of elementary substructures of structures on + $\aleph_\omega$}}, +volume = {99}, +year = {1997}, +}, + +@article{AbSh:485, +author = {Abraham, Uri and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0104195 }, +pages = {579--597}, +title = {{Coding with ladders a well ordering of the reals}}, +volume = {67}, +year = {2002}, +}, + +@article{Sh:486, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Uniformization}}, +}, + +@article{GRShS:487, +author = {Goldstern, Martin and Repicky, Miroslav and Shelah, Saharon + and Spinas, Otmar}, +trueauthor = {Goldstern, Martin and Repick\'y, Miroslav and Shelah, + Saharon and Spinas, Otmar}, +fromwhere = {D,SL,CH,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9311212 }, +pages = {1573--1581}, +title = {{On tree ideals}}, +volume = {123}, +year = {1995}, +}, + +@article{HlSh:488, +author = {Halbeisen, Lorenz and Shelah, Saharon}, +fromwhere = {CH, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9308220 }, +pages = {30--40}, +title = {{Consequences of arithmetic for Set theory}}, +volume = {59}, +year = {1994}, +}, + +@article{LwSh:489, +author = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9301210 }, +pages = {1189--1194}, +title = {{On the existence of atomic models}}, +volume = {58}, +year = {1993}, +}, + +@article{BRSh:490, +author = {Bartoszynski, Tomek and Roslanowski, Andrzej and Shelah, + Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Ros{\l}anowski, Andrzej and + Shelah, Saharon }, +fromwhere = {1,PL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9406229 }, +pages = {80--90}, +title = {{Adding one random real}}, +volume = {61}, +year = {1996}, +}, + +@article{GcSh:491, +author = {Gilchrist, Martin and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9505215 }, +pages = {780--787}, +title = {{Identities on cardinals less than $\aleph_\omega$}}, +volume = {61}, +year = {1996}, +}, + +@article{KoSh:492, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Journal of Combinatorial Theory. Ser. B}, +note = { arxiv:math.LO/9308221 }, +pages = {125--135}, +title = {{Universal graphs without large cliques}}, +volume = {63}, +year = {1995}, +}, + +@article{JiSh:493, +author = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9401216 }, +pages = {292--301}, +title = {{The strength of the isomorphism property}}, +volume = {59}, +year = {1994}, +}, + +@article{ShSi:494, +author = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL,CH}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9606227 }, +pages = {2023--2047}, +title = {{The distributivity numbers of ${\cal P}(\omega)$/fin and its + square}}, +volume = {352}, +year = {2000}, +}, + +@article{ApSh:495, +author = {Apter, Arthur W. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9502232 }, +pages = {103-128}, +title = {{On the Strong Equality between Supercompactness and Strong + Compactness''}}, +volume = {349}, +year = {1997}, +}, + +@article{ApSh:496, +author = {Apter, Arthur and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9512226 }, +pages = {2007-2034}, +title = {{Menas' Result is Best Possible}}, +volume = {349}, +year = {1997}, +}, + +@article{Sh:497, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = {A special volume dedicated to Prof. Azriel Levy. + arxiv:math.LO/9512227 }, +pages = {81-125}, +title = {{Set Theory without choice: not everything on cofinality is + possible}}, +volume = {36}, +year = {1997}, +}, + +@article{JiSh:498, +author = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9401217 }, +pages = {107--131}, +title = {{Essential Kurepa trees versus essential Jech---Kunen trees}}, +volume = {69}, +year = {1994}, +}, + +@article{KjSh:499, +author = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/9409205 }, +pages = {303--317}, +title = {{Homogeneous families and their automorphism groups}}, +volume = {52}, +year = {1995}, +}, + +@article{Sh:500, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9508205 }, +pages = {229--255}, +title = {{Toward classifying unstable theories}}, +volume = {80}, +year = {1996}, +}, + +@article{RoSh:501, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Archive for Mathematical Logic}, +note = {A special volume dedicated to Prof. Azriel Levy. + arxiv:math.LO/9506222 }, +pages = {315--339}, +title = {{Localizations of infinite subsets of $\omega$}}, +volume = {35}, +year = {1996}, +}, + +@article{KoSh:502, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Real Analysis Exchange}, +note = { arxiv:math.LO/9308222 }, +pages = {218--225}, +title = {{On uniformly antisymmetric functions}}, +volume = {19}, +year = {1993-1994}, +}, + +@article{Sh:503, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9312212 }, +pages = {1--5}, +title = {{The number of independent elements in the product of interval + Boolean algebras}}, +volume = {39}, +year = {1994}, +}, + +@incollection{KpSh:504, +author = {Koppelberg, Sabine and Shelah, Saharon}, +booktitle = {Logic: from Foundations to Applications}, +fromwhere = {D,IL}, +note = {Proceedings of the ASL Logic Colloquium 1993 in Keele (Great + Britain); W. Hodges, M. Hyland, Ch. Steinhorn, J. Truss, editors. + arxiv:math.LO/9610227 }, +pages = {261--275}, +publisher = {Clarendon Press, Oxford}, +series = {Oxford Science Publications}, +title = {{Subalgebras of Cohen algebras need not be Cohen}}, +year = {1996}, +}, + +@incollection{EkSh:505, +author = {Eklof, Paul C. and Shelah, Saharon}, +booktitle = {Abelian group theory and related topics}, +fromwhere = {1,IL}, +note = {edited by R. Goebel, P. Hill and W. Liebert, Oberwolfach + proceedings. arxiv:math.LO/9403220 }, +pages = {79--98}, +publisher = {American Mathematical Society, Providence, RI}, +series = {Contemporary Mathematics}, +title = {{A Combinatorial Principle Equivalent to the Existence of + Non-free Whitehead Groups}}, +volume = {171}, +year = {1994}, +}, + +@incollection{Sh:506, +author = {Shelah, Saharon}, +booktitle = {The Mathematics of Paul Erd\H{o}s, II}, +fromwhere = {IL}, +note = {Graham, Ne\v set\v ril, eds.. arxiv:math.LO/9502233 }, +pages = {420-459}, +publisher = {Springer}, +series = {Algorithms and Combinatorics}, +title = {{The pcf-theorem revisited}}, +volume = {14}, +year = {1997}, +}, + +@article{GoSh:507, +author = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9501222 }, +pages = {58--73}, +title = {{The Bounded Proper Forcing Axiom}}, +volume = {60}, +year = {1995}, +}, + +@article{RoSh:508, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon }, +fromwhere = {PL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9606228 }, +pages = {1297--1314}, +title = {{Simple forcing notions and forcing axioms}}, +volume = {62}, +year = {1997}, +}, + +@article{Sh:509, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0112237 }, +pages = {61--96}, +title = {{Vive la diff\'erence III}}, +volume = {166}, +year = {2008}, +}, + +@article{ShSr:510, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {3,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9401218 }, +pages = {171--180}, +title = {{Decomposing Baire class 1 functions into continuous + functions}}, +volume = {145}, +year = {1994}, +}, + +@article{Sh:511, +author = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{Building complicated index models and Boolean algebras}}, +}, + +@article{BRSh:512, +author = {Balcerzak, Marek and Roslanowski, Andrzej and Shelah, + Saharon}, +trueauthor = {Balcerzak, Marek and Ros{\l}anowski, Andrzej and Shelah, + Saharon}, +fromwhere = {PL,PL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9610219 }, +pages = {128--147}, +title = {{Ideals without ccc}}, +volume = {63}, +year = {1998}, +}, + +@article{Sh:513, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9807177 }, +pages = {321--359}, +title = {{PCF and infinite free subsets in an algebra}}, +volume = {41}, +year = {2002}, +}, + +@incollection{MgSh:514, +author = {Magidor, Menachem and Shelah, Saharon}, +booktitle = {Abelian group theory and related topics}, +fromwhere = {IL,IL}, +note = {edited by R. Goebel, P. Hill and W. Liebert, Oberwolfach + proceedings. arxiv:math.LO/9405214 }, +pages = {287--294}, +publisher = {American Mathematical Society, Providence, RI}, +series = {Contemporary Mathematics}, +title = {{$Bext^2(G,T)$ can be nontrivial, even assuming GCH}}, +volume = {171}, +year = {1994}, +}, + +@incollection{Sh:515, +author = {Shelah, Saharon}, +booktitle = {The Mathematics of Paul Erd\H{o}s, II}, +fromwhere = {IL}, +note = {Graham, Ne\v set\v ril, eds.. arxiv:math.CO/9502234 }, +pages = {240-246}, +publisher = {Springer}, +series = {Algorithms and Combinatorics}, +title = {{A finite partition theorem with double exponential bounds}}, +volume = {14}, +year = {1997}, +}, + +@article{KoSh:516, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9505216 }, +pages = {3501-3505}, +title = {{Coloring finite subsets of uncountable sets}}, +volume = {124}, +year = {1996}, +}, + +@article{Sh:517, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0404239 }, +pages = {211--245}, +title = {{Zero-one laws for graphs with edge probabilities decaying with + distance. Part II}}, +volume = {185}, +year = {2005}, +}, + +@article{LwSh:518, +author = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0011169 }, +pages = {1305--1320}, +title = {{Forcing Isomorphism II}}, +volume = {61}, +year = {1996}, +}, + +@incollection{GbSh:519, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Abelian Groups and Modules}, +note = { arxiv:math.LO/0104194 }, +nt = {Proceedings of the Padova Conference, Padova, Italy, June 23 -- + July 1, 1994. Editors: A. Facchini and C. Menini}, +pages = {227--237}, +publisher = {Kluwer, New York}, +title = {{On the existence of rigid $\aleph_1$-free abelian groups + of cardinality $\aleph_1$}}, +year = {1995}, +}, + +@article{EFSh:520, +author = {Eklof, Paul C. and Foreman, Matthew and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9501223 }, +pages = {4385--4402}, +title = {{On invariants for $\omega _1$-separable groups}}, +volume = {347}, +year = {1995}, +}, + +@article{Sh:521, +author = {Shelah, Saharon}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9503226 }, +pages = {1261-1278}, +title = {{If there is an exactly $\lambda$-free abelian group then there + is an exactly $\lambda$-separable one}}, +volume = {61}, +year = {1996}, +}, + +@article{Sh:522, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9802134 }, +pages = {1--50}, +title = {{Borel sets with large squares}}, +volume = {159}, +year = {1999}, +}, + +@article{Sh:523, +author = {Shelah, Saharon}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9606229 }, +pages = {1--14}, +title = {{Existence of Almost Free Abelian groups and reflection of + stationary set}}, +volume = {45}, +year = {1997}, +}, + +@article{ShTh:524, +author = {Shelah, Saharon and Thomas, Simon}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9412230 }, +pages = {902--916}, +title = {{The Cofinality Spectrum of The Infinite Symmetric Group}}, +volume = {62}, +year = {1997}, +}, + +@incollection{GISh:525, +author = {Gurevich, Yuri and Immerman, Neil and Shelah, Saharon}, +booktitle = {Symposium on Logic in Computer Science}, +fromwhere = {1,1,IL}, +note = { arxiv:math.LO/9411235 }, +pages = {10--19}, +publisher = {IEEE Computer Society Press}, +title = {{McColm Conjecture}}, +year = {1994}, +}, + +@article{GuSh:526, +author = {Gurevich, Yuri and Shelah, Saharon}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9411236 }, +pages = {549--562}, +title = {{On Finite Rigid Structures}}, +volume = {61}, +year = {1996}, +}, + +@article{LeSh:527, +author = {Lifsches, Shmuel and Shelah, Saharon}, +fromwhere = {Il,Il}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9701219 }, +pages = {273--312}, +title = {{Random Graphs in the monadic theory of order}}, +volume = {38}, +year = {1999}, +}, + +@article{BlSh:528, +author = {Baldwin, John T. and Shelah, Saharon}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9607226 }, +pages = {1359-1376}, +title = {{Randomness and Semigenericity}}, +volume = {349}, +year = {1997}, +}, + +@article{HySh:529, +author = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9202205 }, +pages = {1260--1272}, +title = {{Constructing strongly equivalent nonisomorphic models for + unsuperstable theories. Part B}}, +volume = {60}, +year = {1995}, +}, + +@article{CuSh:530, +author = {Cummings, James and Shelah, Saharon}, +fromwhere = {UK,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9509227 }, +pages = {992--1004}, +title = {{A model in which every infinite Boolean algebra has many + subalgebras}}, +volume = {60}, +year = {1995}, +}, + +@article{ShSi:531, +author = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL,CH}, +journal = {Fund. Math.}, +note = { arxiv:math.LO/9801151 }, +pages = {81--93}, +title = {{The distributivity numbers of finite products of ${\cal + P}(\omega)$/fin}}, +volume = {158}, +year = {1998}, +}, + +@article{Sh:532, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {in preparation}, +title = {{Borel rectangles}}, +}, + +@article{BGSh:533, +author = {Blass, Andreas and Gurevich, Yuri and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9705225 }, +pages = {141--187}, +title = {{Choiceless Polynomial Time}}, +volume = {100}, +year = {1999}, +}, + +@article{RoSh:534, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9703218 }, +pages = {101--151}, +title = {{Cardinal invariants of ultrapoducts of Boolean algebras}}, +volume = {155}, +year = {1998}, +}, + +@article{EiSh:535, +author = {Eisworth, Todd and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9808138 }, +pages = {597--618}, +title = {{Successors of singular cardinals and coloring theorems. I}}, +volume = {44}, +year = {2005}, +}, + +@inproceedings{GuSh:536, +author = {Gurevich, Yuri and Shelah, Saharon}, +booktitle = {Proceedings of the 18th Annual IEEE Symposium on Logic in + Computer Science}, +fromwhere = {1,IL}, +note = { arxiv:math.LO/0404150 }, +pages = {291--300}, +title = {{Spectra of Monadic Second-Order Formulas with One Unary + Function}}, +year = {2003}, +}, + +@article{AbSh:537, +author = {Abraham, Uri and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9807178 }, +pages = {97--103}, +title = {{Lusin sequences under CH and under Martin's Axiom}}, +volume = {169}, +year = {2001}, +}, + +@article{Sh:538, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9607227 }, +title = {{Historic iteration with $\aleph_\varepsilon$-support}}, +volume = {accepted}, +}, + +@article{LeSh:539, +author = {Lifsches, Shmuel and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9404227 }, +pages = {1206-1227}, +title = {{Uniformization, choice functions and well orders in the class + of trees}}, +volume = {61}, +year = {1996}, +}, + +@article{BnSh:540, +author = {Brendle, Joerg and Shelah, Saharon}, +trueauthor = {Brendle, J{\"{o}}rg and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/9407207 }, +pages = {19--27}, +title = {{Evasion and prediction II}}, +volume = {53}, +year = {1996}, +}, + +@article{CuSh:541, +author = {Cummings, James and Shelah, Saharon}, +fromwhere = {UK, IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9509228 }, +pages = {251--268}, +title = {{Cardinal invariants above the continuum}}, +volume = {75}, +year = {1995}, +}, + +@article{Sh:542, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9406219 }, +pages = {341--347}, +title = {{Large Normal Ideals Concentrating on a Fixed Small + Cardinality}}, +volume = {35}, +year = {1996}, +}, + +@article{FShS:543, +author = {Fuchino, Sakae and Shelah, Saharon and Soukup, Lajos}, +trueauthor = {Fuchino, Saka\'e and Shelah, Saharon and Soukup, Lajos}, +fromwhere = {J,IL,H}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9405215 }, +pages = {199--206}, +title = {{On a theorem of Shapiro}}, +volume = {40}, +year = {1994}, +}, + +@article{FShS:544, +author = {Fuchino, Sakae and Shelah, Saharon and Soukup, Lajos}, +trueauthor = {Fuchino, Saka\'e and Shelah, Saharon and Soukup, Lajos}, +fromwhere = {J,IL,H}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9804153 }, +pages = {57--77}, +title = {{Sticks and clubs}}, +volume = {90}, +year = {1997}, +}, + +@article{DjSh:545, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {BiH,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9601219 }, +pages = {289--316}, +title = {{Saturated filters at successors of singulars, weak reflection + and yet another weak club principle}}, +volume = {79}, +year = {1996}, +}, + +@article{Sh:546, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9712282 }, +pages = {1031--1054}, +title = {{Was Sierpi\'nski right? IV}}, +volume = {65}, +year = {2000}, +}, + +@incollection{GbSh:547, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Abelian groups, module theory, and topology (Padua, 1997)}, +fromwhere = {D,IL}, +note = { arxiv:math.RA/0011186 }, +pages = {235--248}, +publisher = {Dekker, New York}, +series = {Lecture Notes in Pure and Appl. Math.}, +title = {{Endomorphism Rings of Modules whose cardinality is cofinal + to $\omega$}}, +volume = {201}, +year = {1998}, +}, + +@article{Sh:548, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Random Structures \& Algorithms}, +note = { arxiv:math.LO/9606230 }, +pages = {351-358}, +title = {{Very weak zero one law for random graphs with order and random + binary functions}}, +volume = {9}, +year = {1996}, +}, + +@article{FKSh:549, +author = {Fuchino, Sakae and Koppelberg, Sabine and Shelah, Saharon}, +trueauthor = {Fuchino, Saka\'e and Koppelberg, Sabine and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9508220 }, +pages = {35--54}, +title = {{Partial orderings with the weak Freese-Nation property}}, +volume = {80}, +year = {1996}, +}, + +@article{Sh:550, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +note = { arxiv:math.LO/9804154 }, +title = {{0--1 laws}}, +}, + +@article{Sh:551, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9512228 }, +pages = {97-102}, +title = {{In the random graph $G(n,p),p=n^{-a}$: if $\psi$ has + probability $0(n^{-\varepsilon})$ for every $\varepsilon > 0$ then it + has probability $0(e^{-n^\varepsilon})$ for some $\varepsilon > 0$}}, +volume = {82}, +year = {1996}, +}, + +@incollection{Sh:552, +author = {Shelah, Saharon}, +booktitle = {Advances in Algebra and Model Theory. Editors: Manfred + Droste and Ruediger Goebel}, +fromwhere = {IL}, +note = { arxiv:math.LO/9609217 }, +pages = {229--286}, +publisher = {Gordon and Breach}, +series = {Algebra, Logic and Applications}, +title = {{Non-existence of universals for classes like reduced torsion + free abelian groups under embeddings which are not necessarily pure}}, +volume = {9}, +year = {1997}, +}, + +@article{SaSh:553, +author = {Shafir, Ofer and Shelah, Saharon}, +trueauthor = {Shafir, Ofer and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9711220 }, +pages = {1823--1832}, +title = {{More on entangled orders}}, +volume = {65}, +year = {2000}, +}, + +@article{GoSh:554, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {A, IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9707202 }, +pages = {255--265}, +title = {{A Partial Order Where All Monotone Maps Are Definable}}, +volume = {152}, +year = {1997}, +}, + +@article{SmSh:555, +author = {Scheepers, Marion and Shelah, Saharon}, +trueauthor = {Scheepers, Marion and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {in preparation}, +title = {{Embeddings of partial orders into $\omega^\omega$}}, +}, + +@article{FKSh:556, +author = {Fuchino, Sakae and Koppelberg, Sabine and Shelah, Saharon}, +trueauthor = {Fuchino, Saka\'e and Koppelberg, Sabine and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Topology and its Applications}, +note = {A special issue: Proceedings of Matsuyama Topological + Conference. arxiv:math.LO/9505212 }, +pages = {141-148}, +title = {{A game on partial orderings}}, +volume = {74}, +year = {1996}, +}, + +@article{NShS:557, +author = {Niedermeyer, Frank and Shelah, Saharon and Steffens, Karsten}, +trueauthor = {Niedermeyer, Frank and Shelah, Saharon and Steffens, + Karsten}, +fromwhere = {D, IL, D}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.XX/012454 }, +pages = {665--672}, +title = {{The $f$-Factor Problem for Graphs and the Hereditary + Property}}, +volume = {45}, +year = {2006}, +}, + +@article{GeSh:558, +author = {Geschke, Stefan and Shelah, Saharon}, +trueauthor = {Geschke, Stefan and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0702600 }, +pages = {151--164}, +title = {{The number of openly generated Boolean algebras}}, +volume = {73}, +year = {2008}, +}, + +@incollection{EkSh:559, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +booktitle = {Abelian Groups and Modules}, +fromwhere = {1,IL}, +note = {ed. by Arnold \& Rangaswamy}, +pages = {15--22}, +publisher = {Marcel Dekker}, +title = {{New non-free Whitehead groups by coloring}}, +volume = {Mistake in proof --- corrected version in [EkSh 559a]}, +year = {1996}, +}, + +@article{EkSh:559a, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {preprint}, +note = { arxiv:math.LO/9711221 }, +title = {{New non-free Whitehead groups (corrected version)}}, +}, + +@article{LwSh:560, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0011167 }, +pages = {69--88}, +title = {{The Karp complexity of unstable classes}}, +volume = {40}, +year = {2001}, +}, + +@article{ShZa:561, +author = {Shelah, Saharon and Zapletal, Jindrich}, +trueauthor = {Shelah, Saharon and Zapletal, Jind\v{r}ich}, +fromwhere = {IL,1}, +journal = {Advances in Mathematics}, +note = { arxiv:math.LO/9502230 }, +pages = {93--118}, +title = {{Embeddings of Cohen algebras}}, +volume = {126}, +year = {1997}, +}, + +@article{DjSh:562, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {BiH,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9510216 }, +pages = {165--198}, +title = {{On squares, outside guessing of clubs and $I_{<f}[\lambda]$}}, +volume = {148}, +year = {1995}, +}, + +@article{JiSh:563, +author = {Jin, Renling and Shelah, Saharon}, +trueauthor = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9504220 }, +pages = {47--68}, +title = {{Can a small forcing create Kurepa trees?}}, +volume = {85}, +year = {1997}, +}, + +@article{Sh:564, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Commentationes Mathematicae Universitatis Carolinae}, +note = { arxiv:math.CO/9509229 }, +pages = {445-456}, +title = {{Finite Canonization}}, +volume = {37}, +year = {1996}, +}, + +@article{JeSh:565, +author = {Jech, Thomas and Shelah, Saharon}, +trueauthor = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9502203 }, +pages = {1380--1386}, +title = {{On countably closed complete Boolean algebras}}, +volume = {61}, +year = {1996}, +}, + +@article{JeSh:566, +author = {Jech, Thomas and Shelah, Saharon}, +trueauthor = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Algebra}, +note = { arxiv:math.LO/9501206 }, +title = {{A complete Boolean algebra that has no proper atomless + complete subalgebra}}, +volume = {182}, +year = {1996}, +}, + +@article{BlSh:567, +author = {Baldwin, John and Shelah, Saharon}, +trueauthor = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9607228 }, +pages = {427--438}, +title = {{DOP and FCP in Generic Structures}}, +volume = {63}, +year = {1998}, +}, + +@article{GbSh:568, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Mathematische Zeitschrift}, +note = { arxiv:math.LO/0003164 }, +pages = {547--559}, +title = {{Some nasty reflexive groups}}, +volume = {237}, +year = {2001}, +}, + +@article{SzSh:569, +author = {Shami, Ziv and Shelah, Saharon}, +trueauthor = {Shami, Ziv and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9908158 }, +pages = {37--46}, +title = {{Rigid $\aleph_\epsilon$--saturated models of + superstable theories}}, +volume = {162}, +year = {199}, +}, + +@article{BGSh:570, +author = {Baldwin, John and Grossberg, Rami and Shelah, Saharon}, +trueauthor = {Baldwin, John and Grossberg, Rami and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9511205 }, +pages = {678--684}, +title = {{Transfering saturation, the finite cover property, + and stability}}, +volume = {64}, +year = {2000}, +}, + +@article{CDSh:571, +author = {Cummings, James and Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {Cummings, James and D\v{z}amonja, Mirna and Shelah, + Saharon}, +fromwhere = {UK,1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9504221 }, +pages = {91--100}, +title = {{A consistency result on weak reflection}}, +volume = {148}, +year = {1995}, +}, + +@article{Sh:572, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9609218 }, +pages = {153-174}, +title = {{Colouring and non-productivity of $\aleph_2$-cc}}, +volume = {84}, +year = {1997}, +}, + +@article{LeSh:573, +author = {Lifsches, Shmuel and Shelah, Saharon}, +trueauthor = {Lifsches, Shmuel and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9412231 }, +pages = {103--127}, +title = {{Uniformization and Skolem Functions in the Class of Trees}}, +volume = {63}, +year = {1998}, +}, + +@article{DjSh:574, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {BiH,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9710215 }, +pages = {180--198}, +title = {{Similar but not the same: various versions of $\clubsuit$ do + not coincide}}, +volume = {64}, +year = {1999}, +}, + +@article{Sh:575, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematica}, +note = { arxiv:math.LO/9508221 }, +pages = {153--208}, +title = {{Cellularity of free products of Boolean algebras (or + topologies)}}, +volume = {166}, +year = {2000}, +}, + +@article{Sh:576, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9805146 }, +pages = {29--128}, +title = {{Categoricity of an abstract elementary class in two + successive cardinals}}, +volume = {126}, +year = {2001}, +}, + +@article{GiSh:577, +author = {Gitik, Moti and Shelah, Saharon}, +trueauthor = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9503203 }, +pages = {1523--1530}, +title = {{Less saturated ideals}}, +volume = {125}, +year = {1997}, +}, + +@incollection{MlSh:578, +author = {Milner, Eric C. and Shelah, Saharon}, +trueauthor = {Milner, Eric C. and Shelah, Saharon}, +booktitle = {Set Theory: Techniques and Applications, (J. Bagaria, C. + Di Prisco, J. Larson, A.R.D. Mathias, eds.)}, +fromwhere = {3,IL}, +note = { arxiv:math.LO/9708210 }, +pages = {175--182}, +publisher = {Kluwer Acad. Publ.}, +title = {{A tree--arrowing graph}}, +year = {1998}, +}, + +@incollection{GbSh:579, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Proceedings of the Conference on Abelian Groups in Colorado + Springs, 1995}, +fromwhere = {D,IL}, +note = { arxiv:math.GR/0011185 }, +pages = {253--271}, +publisher = {Marcel Dekker}, +series = {Lecture Notes in Pure and Applied Math.}, +title = {{G.C.H. implies existence of many rigid almost free abelian + groups}}, +volume = {182}, +year = {1996}, +}, + +@article{Sh:580, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9604243 }, +pages = {87--107}, +title = {{Strong covering without squares}}, +volume = {166}, +year = {2000}, +}, + +@article{Sh:581, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {in preparation}, +title = {{When 0--1 law hold for $G_{n,\bar{p}}$, $\bar{p}$ monotonic}}, +}, + +@article{GiSh:582, +author = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9507208 }, +pages = {221--242}, +title = {{More on real-valued measurable cardinals and forcing with + ideals}}, +volume = {124}, +year = {2001}, +}, + +@article{GcSh:583, +author = {Gilchrist, Martin and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9603219 }, +pages = {1151--1160}, +title = {{The Consistency of ${\rm + ZFC}+2^{\aleph_{0}}>\aleph_{\omega}+ {\cal I}(\aleph_2)={\cal + I}(\aleph_{\omega})$}}, +volume = {62}, +year = {1997}, +}, + +@article{ShST:584, +author = {Shelah, Saharon and Saxl, Jan and Thomas, Simon}, +fromwhere = {IL,1}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.IG/9605202 }, +pages = {4611-4641}, +title = {{Infinite products of finite simple groups}}, +volume = {348}, +year = {1996}, +}, + +@article{RbSh:585, +author = {Rabus, Mariusz and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9706223 }, +pages = {229--240}, +title = {{Covering a function on the plane by two continuous + functions on an uncountable square - the consistency}}, +volume = {103}, +year = {2000}, +}, + +@article{Sh:586, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9706224 }, +pages = {153-160}, +title = {{A polarized partition relation and failure of GCH }}, +volume = {155}, +year = {1998}, +}, + +@article{Sh:587, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9707225 }, +pages = {29--115}, +title = {{Not collapsing cardinals $\leq\kappa$ in $(<\kappa)$--support + iterations}}, +volume = {136}, +year = {2003}, +}, + +@article{Sh:588, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Periodica Mathematica Hungarica}, +pages = {131--137}, +title = {{Large weight does not yield an irreducible base}}, +volume = {66}, +year = {2013}, +}, + +@article{Sh:589, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9804155 }, +pages = {1624--1674}, +title = {{Applications of PCF theory}}, +volume = {65}, +year = {2000}, +}, + +@article{Sh:590, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9705226 }, +pages = {137--151}, +title = {{On a problem of Steve Kalikow}}, +volume = {166}, +year = {2000}, +}, + +@article{GbSh:591, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Canadian Journal of Mathematics}, +note = { arxiv:math.RA/0011182 }, +pages = {719--738}, +title = {{Indecomposable almost free modules - the local case}}, +volume = {50}, +year = {1998}, +}, + +@article{Sh:592, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9810181 }, +pages = {109--136}, +title = {{Covering of the null ideal may have countable cofinality}}, +volume = {166}, +year = {2000}, +}, + +@article{FMShV:593, +author = {Fuchino, Sakae and Mildenberger, Heike and Shelah, Saharon and + Vojtas, Peter}, +trueauthor = {Fuchino, Saka\'e and Mildenberger, Heike and Shelah, + Saharon and Peter Vojt\'a\v{s}}, +fromwhere = {J,D,IL,SL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9903114 }, +pages = {255--268}, +title = {{On absolutely divergent series}}, +volume = {160}, +year = {1999}, +}, + +@incollection{Sh:594, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Proceedings of the Logic Colloquium Haifa'95}, +fromwhere = {IL}, +note = { arxiv:math.LO/9611221 }, +pages = {305--324}, +publisher = {Springer}, +series = {Lecture Notes in Logic}, +title = {{There may be no nowhere dense ultrafilter}}, +volume = {11}, +year = {1998}, +}, + +@article{Sh:595, +author = {Shelah, Saharon}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9508201 }, +pages = {83--86}, +title = {{Embedding Cohen algebras using pcf theory}}, +volume = {166}, +year = {2000}, +}, + +@article{CuSh:596, +author = {Cummings, James and Shelah, Saharon}, +trueauthor = {Cummings, James and Shelah, Saharon}, +fromwhere = {UK,IL}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/9703219 }, +pages = {37--49}, +title = {{Some independence results on reflection}}, +volume = {59}, +year = {1999}, +}, + +@article{GiSh:597, +author = {Gitik, Moti and Shelah, Saharon}, +trueauthor = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.LO/9603206 }, +pages = {219--237}, +title = {{On densities of box products}}, +volume = {88}, +year = {1998}, +}, + +@article{AbSh:598, +author = {Abraham, Uri and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0404151 }, +pages = {518--532}, +title = {{Ladder gaps over stationary sets}}, +volume = {69, 2}, +year = {2004}, +}, + +@article{RoSh:599, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9808056 }, +pages = {1--37}, +title = {{More on cardinal invariants of Boolean algebras}}, +volume = {103}, +year = {2000}, +}, + +@inbook{Sh:600, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes}, +fromwhere = {IL}, +note = { arxiv:math.LO/0011215 }, +title = {{Categoricity in abstract elementary classes: going up + inductively}}, +}, + +@article{KKSh:601, +author = {Kuhlmann, Franz--Viktor and Kuhlmann, Salma and Shelah, + Saharon}, +trueauthor = {Kuhlmann, Franz--Viktor and Kuhlmann, Salma and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.RA/9608214 }, +pages = {3177--3183}, +title = {{Exponentiation in power series fields}}, +volume = {125}, +year = {1997}, +}, + +@article{HySh:602, +author = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9709229 }, +pages = {634--642}, +title = {{Constructing strongly equivalent nonisomorphic models + for unsuperstable theories, Part C}}, +volume = {64}, +year = {1999}, +}, + +@incollection{Sh:603, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Proceedings of the 11 International Congress of + Logic, Methodology and Philosophy of Science, Krakow August'99; In the + Scope of Logic, Methodology and Philosophy of Science}, +fromwhere = {IL}, +note = { arxiv:math.LO/9906023 }, +pages = {29--53}, +publisher = {Kluwer Academic Publishers}, +title = {{Few non minimal types and non-structure}}, +volume = {1}, +year = {2002}, +}, + +@incollection{Sh:604, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Proceedings of LC'2001}, +fromwhere = {IL}, +note = { arxiv:math.LO/0404240 }, +pages = {402--433}, +publisher = {ASL}, +series = {Lecture Notes in Logic}, +title = {{The pair $(\aleph_n,\aleph_0)$ may fail + $\aleph_0$--compactness}}, +volume = {20}, +year = {2005}, +}, + +@article{ShTr:605, +author = {Shelah, Saharon and Truss, John}, +trueauthor = {Shelah, Saharon and Truss, John}, +fromwhere = {UK,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9805147 }, +pages = {47--83}, +title = {{On distinguishing quotients of symmetric groups}}, +volume = {97}, +year = {1999}, +}, + +@article{Sh:606, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Periodica Math. Hungarica}, +note = { arxiv:math.LO/9811177 }, +pages = {87--98}, +title = {{On $T_3$--topological space omitting many cardinals}}, +volume = {38}, +year = {1999}, +}, + +@article{BrSh:607, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/9805148 }, +pages = {1--34}, +title = {{Strongly meager sets do not form an ideal}}, +volume = {1}, +year = {2001}, +}, + +@article{ShSt:608, +author = {Shelah, Saharon and Stanley, Lee}, +fromwhere = {IL, 1}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9710216 }, +pages = {1359--1370}, +title = {{Forcing Many Positive Polarized Partition Relations Between a + Cardinal and its Powerset}}, +volume = {66}, +year = {2001}, +}, + +@article{KjSh:609, +author = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9512202 }, +pages = {2459--2465}, +title = {{A ZFC Dowker space in $\aleph_{\omega+1}$: an application of + pcf theory to topology.}}, +volume = {126}, +year = {1998}, +}, + +@article{ShZa:610, +author = {Shelah, Saharon and Zapletal, Jindrich}, +fromwhere = {IL,1}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9806166 }, +pages = {217--259}, +title = {{Canonical models for $\aleph_1$ combinatorics}}, +volume = {98}, +year = {1999}, +}, + +@incollection{RShW:611, +author = {Rosen, Eric and Shelah, Saharon and Weinstein, Scott}, +booktitle = {Logic and Random Structures: DIMACS Workshop, November 5-7, + 1995}, +fromwhere = {IL, IL, 1}, +note = { arxiv:math.LO/9604244 }, +pages = {65-77}, +publisher = {American Mathematical Society}, +series = {DIMACS Series in Discrete Mathematics and Theoretical Computer + Science}, +title = {{$k$--Universal Finite Graphs}}, +volume = {33}, +year = {1997}, +}, + +@article{JuSh:612, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9703220 }, +pages = {91--94}, +title = {{On the cardinality and weight spectra of compact spaces, II}}, +volume = {155}, +year = {1998}, +}, + +@article{JiSh:613, +author = {Jin, Renling and Shelah, Saharon}, +trueauthor = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9604211 }, +pages = {1371--1392}, +title = {{Compactness of Loeb Spaces}}, +volume = {63}, +year = {1998}, +}, + +@article{DjSh:614, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9805149 }, +pages = {901--936}, +title = {{On the existence of universal models}}, +volume = {43}, +year = {2004}, +}, + +@article{KKSh:615, +author = {Kuhlmann, Franz--Viktor and Kuhlmann, Salma and Shelah, + Saharon}, +trueauthor = {Kuhlmann, Franz--Viktor and Kuhlmann, Salma and Shelah, + Saharon}, +fromwhere = {2,2,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0107206 }, +pages = {2969--2976}, +title = {{Functorial Equations for Lexicographic Products}}, +volume = {131}, +year = {2003}, +}, + +@article{BRSh:616, +author = {Bartoszynski, Tomek and Roslanowski, Andrzej and Shelah, + Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Ros{\l}anowski, Andrzej and + Shelah, Saharon }, +fromwhere = {1,PL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9711222 }, +pages = {803--816}, +title = {{After all, there are some inequalities which are provable in + ZFC}}, +volume = {65}, +year = {2000}, +}, + +@article{EHSh:617, +author = {Eklof, Paul C. and Huisgen--Zimmermann, Birge and Shelah, + Saharon}, +fromwhere = {1,IL,1}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:math.LO/9703221 }, +pages = {547--555}, +title = {{Torsion modules, lattices and $p$-points}}, +volume = {29}, +year = {1997}, +}, + +@article{HmSh:618, +author = {Hamkins, Joel David and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9612227 }, +pages = {549--554}, +title = {{Superdestructibility: A Dual to Laver Indestructibility}}, +volume = {63}, +year = {1998}, +}, + +@article{Sh:619, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9705213 }, +pages = {97--129}, +title = {{The null ideal restricted to some non-null set may + be $\aleph_1$-saturated}}, +volume = {179}, +year = {2003}, +}, + +@article{Sh:620, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Topology and its Applications}, +note = {8th Prague Topological Symposium on General Topology and its + Relations to Modern Analysis and Algebra, Part II (1996). + arxiv:math.LO/9804156 }, +pages = {135--235}, +title = {{Special Subsets of ${}^{{\rm cf}(\mu)}\mu$, Boolean + Algebras and Maharam measure Algebras}}, +volume = {99}, +year = {1999}, +}, + +@article{EkSh:621, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Pure and Applied Algebra}, +note = { arxiv:math.LO/9908157 }, +pages = {199--214}, +title = {{A non-reflexive Whitehead group}}, +volume = {156}, +year = {2001}, +}, + +@article{Sh:622, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Group Theory}, +note = { arxiv:math.LO/9808139 }, +pages = {169--191}, +title = {{Non-existence of universal members in classes of Abelian + groups}}, +volume = {4}, +year = {2001}, +}, + +@article{BlSh:623, +author = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Theoretical Computer Science}, +note = { arxiv:math.LO/9801152 }, +pages = {117--129}, +title = {{On the classifiability of cellular automata}}, +volume = {230}, +year = {2000}, +}, + +@article{Sh:624, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:math.LO/9608215 }, +pages = {1--7}, +title = {{On full Suslin trees}}, +volume = {79}, +year = {1999}, +}, + +@article{EkSh:625, +author = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9709230 }, +pages = {1901--1907}, +title = {{The Kaplansky test problems for $\aleph_1$-separable groups}}, +volume = {126}, +year = {1998}, +}, + +@article{JiSh:626, +author = {Jin, Renling and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9801153 }, +pages = {61--77}, +title = {{Possible Size of an ultrapower of $\omega$}}, +volume = {38}, +year = {1999}, +}, + +@article{Sh:627, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Combinatorial Theory. Ser. A}, +note = { arxiv:math.CO/9707226 }, +pages = {179--185}, +title = {{Erdos and Renyi Conjecture}}, +volume = {82}, +year = {1998}, +}, + +@article{RoSh:628, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9703222 }, +pages = {103--127}, +title = {{Norms on possibilities II: More ccc ideals on + $2^{\textstyle\omega}$}}, +volume = {3}, +year = {1997}, +}, + +@article{HySh:629, +author = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9911229 }, +pages = {201--228}, +title = {{Strong splitting in stable homogeneous models}}, +volume = {103}, +year = {2000}, +}, + +@article{Sh:630, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9712283 }, +pages = {168--289}, +title = {{Properness Without Elementaricity}}, +volume = {10}, +year = {2004}, +}, + +@article{RbSh:631, +author = {Rabus, Mariusz and Shelah, Saharon}, +trueauthor = {Rabus, Mariusz and Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9709231 }, +pages = {2573--2581}, +title = {{Topological density of ccc Boolean algebras---every + cardinality occurs.}}, +volume = {127}, +year = {1999}, +}, + +@article{HySh:632, +author = {Hyttinen, Tapani and Shelah, Saharon}, +trueauthor = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/9702228 }, +pages = {354--358}, +title = {{On the Number of Elementary Submodels of an Unsuperstable + Homogeneous Structure}}, +volume = {44}, +year = {1998}, +}, + +@article{GoSh:633, +author = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {A, IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/9707203 }, +pages = {197--209}, +title = {{Order-polynomially complete lattices must be LARGE}}, +volume = {39}, +year = {1998}, +}, + +@incollection{Sh:634, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Computer Science Logic, 14th International Workshop, + CSL 2000, Annual Conference of the EACSL, Fischbachau, Germany, August + 21--26, 2000, Proceedings}, +fromwhere = {IL}, +note = { arxiv:math.LO/9807179 }, +pages = {72--125}, +publisher = {Springer}, +series = {Lecture Notes in Computer Science}, +title = {{Choiceless Polynomial Time Logic: Inability to express}}, +volume = {1862}, +year = {2000}, +}, + +@article{ShVi:635, +author = {Shelah, Saharon and Villaveces, Andres}, +trueauthor = {Shelah, Saharon and Villaveces, Andr\'es}, +fromwhere = {IL, COL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9707227 }, +pages = {1--25}, +title = {{Toward Categoricity for Classes with no Maximal Models}}, +volume = {97}, +year = {1999}, +}, + +@article{Sh:636, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9712284 }, +pages = {1--17}, +title = {{The lifting problem with the full ideal}}, +volume = {4}, +year = {1998}, +}, + +@article{Sh:637, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {in preparation}, +title = {{0.1 Laws: Putting together two contexts randomly }}, +}, + +@article{Sh:638, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {The East-West Journal of Mathematics}, +note = { arxiv:math.LO/9807180 }, +title = {{More on Weak Diamond}}, +volume = {accepted}, +}, + +@article{Sh:639, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9809201 }, +pages = {1055--1075}, +title = {{On quantification with a finite universe}}, +volume = {65}, +year = {2000}, +}, + +@article{BzSh:640, +author = {Blaszczyk, Aleksander and Shelah, Saharon}, +trueauthor = {B{\l}aszczyk, Aleksander and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9712285 }, +pages = {792--800}, +title = {{Regular subalgebras of complete Boolean algebras}}, +volume = {66}, +year = {2001}, +}, + +@article{Sh:641, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/9712286 }, +pages = {353--373}, +title = {{Constructing Boolean algebras for cardinal invariants}}, +volume = {45}, +year = {2001}, +}, + +@article{BnSh:642, +author = {Brendle, Joerg and Shelah, Saharon}, +trueauthor = {Brendle, J{\"{o}}rg and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9710217 }, +pages = {2643--2674}, +title = {{Ultrafilters on $\omega$ --- their ideals and their cardinal + characteristics}}, +volume = {351}, +year = {1999}, +}, + +@article{ShSj:643, +author = {Shelah, Saharon and Spasojevic, Zoran}, +trueauthor = {Shelah, Saharon and Spasojevi{\' c}, Zoran}, +fromwhere = {1,IL}, +journal = {Publications de L'Institute Math\'ematique - Beograd, + Nouvelle S\'erie}, +note = { arxiv:math.LO/0003141 }, +pages = {1--9}, +title = {{Cardinal invariants $\frak{b}_\kappa$ and $\frak{t}_\kappa$}}, +volume = {72}, +year = {2002}, +}, + +@article{ShVs:644, +author = {Shelah, Saharon and Vaisanen, Pauli}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli}, +fromwhere = {IL, SF}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9807181 }, +pages = {272--284}, +title = {{On inverse $\gamma$-systems and the number + of $L_{\infty,\lambda}$-equivalent, non-isomorphic models for + $\lambda$ singular}}, +volume = {65}, +year = {2000}, +}, + +@article{KoSh:645, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9807182 }, +pages = {333--338}, +title = {{Two consistency results on set mappings}}, +volume = {65}, +year = {2000}, +}, + +@article{ShVs:646, +author = {Shelah, Saharon and Vaisanen, Pauli}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli}, +fromwhere = {IL,SF}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9908160 }, +pages = {1781--1817}, +title = {{On the number of + $L_{\infty,\omega_1}$-equivalent non-isomorphic models}}, +volume = {353}, +year = {2001}, +}, + +@article{GbSh:647, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9910159 }, +pages = {5357--5379}, +title = {{Cotorsion theories and splitters}}, +volume = {352}, +year = {2000}, +}, + +@article{ShVi:648, +author = {Shelah, Saharon and Villaveces, Andres}, +trueauthor = {Shelah, Saharon and Villaveces, Andr\'es}, +fromwhere = {IL,COL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0404258 }, +title = {{Dimension blocking categoricity in higher logics}}, +volume = {submitted}, +}, + +@article{KjSh:649, +author = {Kojman, Menachem and Shelah, Saharon}, +trueauthor = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Journal of Combinatorial Theory, Series A}, +note = { arxiv:math.CO/9805150 }, +pages = {177--181}, +title = {{Regressive Ramsey numbers are Ackermannian}}, +volume = {86}, +year = {1999}, +}, + +@incollection{GbSh:650, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Proceedings of the Algebra Conference at Venice, June 2002; + in the series: Lecture Notes in Pure and Appl. Math.}, +fromwhere = {D,IL}, +note = { arxiv:math.LO/0404259 }, +pages = {271--290}, +title = {{Uniquely Transitive Torsion-free Abelian Groups}}, +volume = {236}, +year = {2004}, +}, + +@article{RoSh:651, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:math.LO/9808104 }, +pages = {273--310}, +title = {{Forcing for hL and hd}}, +volume = {88}, +year = {2001}, +}, + +@article{Sh:652, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9605235 }, +pages = {401--441}, +title = {{More constructions for Boolean algebras}}, +volume = {41}, +year = {2002}, +}, + +@article{CiSh:653, +author = {Ciesielski, Krzysztof and Shelah, Saharon}, +trueauthor = {Ciesielski, Krzysztof and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9801154 }, +pages = {1467--1490}, +title = {{A model with no magic sets}}, +volume = {64}, +year = {1999}, +}, + +@article{JShT:654, +author = {Just, Winfried and Shelah, Saharon and Thomas, Simon}, +trueauthor = {Just, Winfried and Shelah, Saharon and Thomas, Simon}, +fromwhere = {1,IL,1}, +journal = {Advances in Mathematics}, +note = { arxiv:math.LO/0003120 }, +pages = {243--265}, +title = {{The automorphism tower problem revisited}}, +volume = {148}, +year = {1999}, +}, + +@article{RoSh:655, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {International Journal of Mathematics and Mathematical + Sciences}, +note = { arxiv:math.LO/9906024 }, +pages = {63--82}, +title = {{Iteration of $\lambda$-complete forcing notions not collapsing + $\lambda^+$.}}, +volume = {28}, +year = {2001}, +}, + +@article{Sh:656, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +note = { arxiv:math.LO/0003115 }, +title = {{NNR Revisited}}, +}, + +@article{ShVa:657, +author = {Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9706225 }, +pages = {1311--1320}, +title = {{Stationary Sets and Infinitary Logic}}, +volume = {65}, +year = {2000}, +}, + +@article{BrSh:658, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9907137 }, +pages = {245--250}, +title = {{Strongly meager and strong measure zero sets}}, +volume = {41}, +year = {2002}, +}, + +@article{DjSh:659, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0102043 }, +pages = {366--388}, +title = {{Universal graphs at the successor of a singular cardinal}}, +volume = {68}, +year = {2003}, +}, + +@article{Sh:660, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Real Analysis Exchange}, +note = { arxiv:math.LO/9711223 }, +pages = {205--213}, +title = {{Covering Numbers Associated with Trees Branching into a + Countably Generated Set of Possibilities}}, +volume = {24}, +year = {1998/99}, +}, + +@article{KlSh:661, +author = {Kolman, Oren and Shelah, Saharon}, +fromwhere = {IR,IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9712287 }, +pages = {161--165}, +title = {{A result related to the problem CN of Fremlin}}, +volume = {4}, +year = {1998}, +}, + +@article{HkSh:662, +author = {Halko, Aapo and Shelah, Saharon}, +trueauthor = {Halko, Aapo and Shelah, Saharon}, +fromwhere = {SF,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9710218 }, +pages = {219--229}, +title = {{On strong measure zero subsets of ${}^\kappa 2$.}}, +volume = {170}, +year = {2001}, +}, + +@article{ShSi:663, +author = {Shelah, Saharon and Spinas, Otmar}, +trueauthor = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL,CH}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9802135 }, +pages = {3475--3480}, +title = {{On tightness and depth in superatomic Boolean algebras}}, +volume = {127}, +year = {1999}, +}, + +@article{Sh:664, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Results in Mathematics}, +note = { arxiv:math.LO/9807183 }, +pages = {131--154}, +title = {{Strong dichotomy of cardinality}}, +volume = {39}, +year = {2001}, +}, + +@article{ShSr:665, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9712288 }, +pages = {707--718}, +title = {{The covering numbers of Mycielski ideals are all equal}}, +volume = {66}, +year = {2001}, +}, + +@article{Sh:666, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9906113 }, +pages = {1--82}, +title = {{On what I do not understand (and have something to say:) Part + I}}, +volume = {166}, +year = {2000}, +}, + +@article{Sh:667, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9808140 }, +pages = {127--155}, +title = {{Successor of singulars: combinatorics and not collapsing + cardinals $\leq\kappa$ in $(<\kappa)$-support iterations}}, +volume = {134}, +year = {2003}, +}, + +@article{Sh:668, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Scientiae Mathematicae Japonicae}, +note = { arxiv:math.LO/9906025 }, +pages = {203--255}, +title = {{Anti--homogeneous Partitions of a Topological Space}}, +volume = {59, No. 2; (special issue:e9, 449--501)}, +year = {2004}, +}, + +@article{Sh:669, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/0303294 }, +pages = {1--17}, +title = {{Non-Cohen Oracle c.c.c.}}, +volume = {12}, +year = {2006}, +}, + +@article{RoSh:670, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {in preparation}, +title = {{Norms on possibilities III: strange subsets of the real + line}}, +}, + +@article{JeSh:671, +author = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/9801078 }, +pages = {2507--2515}, +title = {{On reflection of stationary sets in ${\cal + P}_\kappa\lambda$}}, +volume = {352}, +year = {2000}, +}, + +@article{RoSh:672, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9909115 }, +pages = {583--663}, +title = {{Sweet {\&} Sour and other flavours of ccc forcing notions}}, +volume = {43}, +year = {2004}, +}, + +@article{KjSh:673, +author = {Kojman, Menachem and Shelah, Saharon}, +trueauthor = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9712289 }, +pages = {213--218}, +title = {{The PCF trichotomy theorem does not hold for short + sequences}}, +volume = {39}, +year = {2000}, +}, + +@article{BDJShS:674, +author = {Balogh, Z.T. and Davis, S.W. and Just, W. and Shelah, S. + and Szeptycki, P.J.}, +trueauthor = {Balogh, Z.T. and Davis, S.W. and Just, W. and Shelah, S. + and Szeptycki, P.J}, +fromwhere = {1,1,1,IL,1}, +journal = {Transactions of the AMS}, +note = { arxiv:math.LO/9803167 }, +pages = {4971--4987}, +title = {{Strongly almost disjoint sets and weakly uniform bases}}, +volume = {352}, +year = {2000}, +}, + +@article{Sh:675, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9801155 }, +pages = {191-209}, +title = {{On Ciesielski's Problems}}, +volume = {3}, +year = {1997}, +}, + +@article{HySh:676, +author = {Hyttinen, Tapani and Shelah, Saharon}, +trueauthor = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {SF, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/9804157 }, +pages = {1286--1302}, +title = {{Main gap for locally saturated elementary submodels of + a homogeneous structure}}, +volume = {66}, +year = {2001, no.3}, +}, + +@article{ShSi:677, +author = {Shelah, Saharon and Spinas, Otmar}, +trueauthor = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL, CH}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9903116 }, +pages = {345--358}, +title = {{On incomparability and related cardinal functions + on ultraproducts of Boolean algebras}}, +volume = {52}, +year = {2000}, +}, + +@incollection{EkSh:678, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +booktitle = {Abelian groups and modules (Dublin, 1998)}, +fromwhere = {1,IL}, +note = { arxiv:math.LO/0010264 }, +pages = {257--268}, +publisher = {Birkh{\"{a}}user, Basel}, +series = {Trends in Mathematics}, +title = {{Absolutely rigid systems and absolutely indecomposable + groups}}, +year = {1999}, +}, + +@article{Sh:679, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Scientiae Mathematicae Japonicae}, +note = { arxiv:math.CO/0003163 }, +pages = {413--438}, +title = {{A partition theorem}}, +volume = {56}, +year = {2002}, +}, + +@article{CiSh:680, +author = {Ciesielski, Krzysztof and Shelah, Saharon}, +trueauthor = {Ciesielski, Krzysztof and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Real Analysis Exchange}, +note = { arxiv:math.LO/9805151 }, +pages = {615--619}, +title = {{Uniformly antisymmetric function with bounded range}}, +volume = {24}, +year = {1998--99}, +}, + +@incollection{GShS:681, +author = {Goebel, Rudiger and Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon and + Str{\"{u}}ngmann, Lutz}, +booktitle = {Proceedings of the Venice Conference on Rings, + modules, algebras, and abelian groups (2002); in the series: Lecture + Notes in Pure and Appl. Math.}, +fromwhere = {D,IL,D}, +note = { arxiv:math.LO/0404271 }, +pages = {291--306}, +title = {{Generalized $E$-Rings}}, +volume = {236}, +year = {2004}, +}, + +@article{GbSh:682, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Colloquium Mathematicum}, +note = {The paper contains an error, see [GbSh:E22]. + arxiv:math.LO/9910161 }, +pages = {193-221}, +title = {{Almost free splitters}}, +volume = {81}, +year = {1999}, +}, + +@incollection{KlSh:683, +author = {Kolman, Oren and Shelah, Saharon}, +trueauthor = {Kolman, Oren and Shelah, Saharon}, +booktitle = {Abelian groups and modules (Dublin, 1998)}, +fromwhere = {UK, IL}, +note = { arxiv:math.LO/0102057 }, +pages = {225--230}, +publisher = {Birkh{\"{a}}user, Basel}, +series = {Trends in Mathematics}, +title = {{Almost disjoint pure subgroups of the Baer-Specker group}}, +year = {1999}, +}, + +@article{MdSh:684, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9901096 }, +pages = {207--261}, +title = {{Changing cardinal characteristics without changing + $\omega$--sequences or cofinalities}}, +volume = {106}, +year = {2000}, +}, + +@article{DjSh:685, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {UK,IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9911228 }, +pages = {53--61}, +title = {{On versions of $\clubsuit$ on cardinals larger than + $\aleph_1$}}, +volume = {51}, +year = {2000}, +}, + +@article{RoSh:686, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/9810179 }, +pages = {279--291}, +title = {{The Yellow Cake}}, +volume = {129}, +year = {2001}, +}, + +@article{LwSh:687, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0303345 }, +pages = {263--283}, +title = {{Karp complexity and classes with the independence property}}, +volume = {120}, +year = {2003}, +}, + +@article{GoSh:688, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT,IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/9810050 }, +pages = {49--57}, +title = {{There are no infinite order polynomially complete + lattices, after all}}, +volume = {42}, +year = {1999}, +}, + +@article{CShS:689, +author = {Cherlin, Gregory and Shelah, Saharon and Shi, Niandong}, +trueauthor = {Cherlin, Gregory and Shelah, Saharon and Shi, Niandon}, +fromwhere = {1, IL, 1}, +journal = {Advances in Applied Mathematics}, +note = { arxiv:math.LO/9809202 }, +pages = {454--491}, +title = {{Universal graphs with forbidden subgraphs and algebraic + closure}}, +volume = {22}, +year = {1999}, +}, + +@article{ENSh:690, +author = {Eisworth, Todd and Nyikos, Peter and Shelah, Saharon}, +trueauthor = {Eisworth, Todd and Nyikos, Peter and Shelah, Saharon}, +fromwhere = {1, 1, IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/9812133 }, +pages = {189--220}, +title = {{Gently Killing S--spaces}}, +volume = {136}, +year = {2003}, +}, + +@article{DjSh:691, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {UK,IL}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/0003118 }, +pages = {1--15}, +title = {{Weak reflection at the successor of a singular cardinal}}, +volume = {67}, +year = {2003}, +}, + +@article{DjSh:692, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {UK, IL}, +note = { arxiv:math.LO/0009087 }, +pages = {119--158}, +title = {{{On $\mathrel{<\!\vrule height 5pt depth + 0pt}^\ast$-maximality}}, *journal = {Annals of Pure and Applied + Logic}}, +volume = {125}, +year = {2004}, +}, + +@article{ShTl:693, +author = {Shelah, Saharon and Trlifaj, Jan}, +trueauthor = {Shelah, Saharon and Trlifaj, Jan}, +fromwhere = {IL,CZ}, +journal = {Journal of Pure and Applied Algebra}, +note = { arxiv:math.LO/0009060 }, +pages = {367--379}, +title = {{Spectra of the $\Gamma$-invariant of uniform modules}}, +volume = {162}, +year = {2001}, +}, + +@article{JeSh:694, +author = {Jech, Thomas and Shelah, Saharon}, +trueauthor = {Jech, Thomas and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0406438 }, +pages = {543--549}, +title = {{Simple Complete Boolean Algebras}}, +volume = {129}, +year = {2001}, +}, + +@article{CiSh:695, +author = {Ciesielski, Krzysztof and Shelah, Saharon}, +trueauthor = {Ciesielski, Krzysztof and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/9905147 }, +pages = {159--172}, +title = {{Category analogue of sup-measurability problem}}, +volume = {6}, +year = {2000}, +}, + +@article{GoSh:696, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT, IL}, +journal = {Order}, +note = { arxiv:math.LO/9902054 }, +pages = {213--222}, +title = {{Antichains in products of linear orders}}, +volume = {19}, +year = {2002}, +}, + +@article{HJSh:697, +author = {Hajnal, Andras and Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Hajnal, Andras and Juh\'asz, Istv\'an and Shelah, + Saharon}, +ams-subject = {(03E05); (03E35); (03E55); (04A20); (04A30)}, +fromwhere = {1, H, IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9812114 }, +pages = {13--23}, +title = {{Strongly almost disjoint families, {I}{I}}}, +volume = {163}, +year = {2000}, +}, + +@article{Sh:698, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9908159 }, +pages = {207--213}, +title = {{On the existence of large subsets of $[\lambda]^{<\kappa}$ + which contain no unbounded non--stationary subsets}}, +volume = {41}, +year = {2002}, +}, + +@article{HlSh:699, +author = {Halbeisen, Lorenz and Shelah, Saharon}, +trueauthor = {Halbeisen, Lorenz and Shelah, Saharon}, +fromwhere = {CH, IL}, +journal = {The Bulletin of Symbolic Logic}, +note = { arxiv:math.LO/0010268 }, +pages = {237-261}, +title = {{Relations between some cardinals in the absence of the + Axiom of Choice}}, +volume = {7}, +year = {2001}, +}, + +@article{Sh:700, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica}, +note = {Also known under the title ``Are $\mathfrak a$ and $\mathfrak d$ + your cup of tea?''. arxiv:math.LO/0012170 }, +pages = {187--223}, +title = {{Two cardinal invariants of the continuum + (${\mathfrak d}<{\mathfrak a}$) and FS linearly ordered iterated + forcing}}, +volume = {192}, +year = {2004}, +}, + +@article{GRSh:701, +author = {Goebel, Ruediger and Rodriguez, Jose and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Rodr\'{\i}guez, Jos\'e and + Shelah, Saharon}, +fromwhere = {D,S,IL}, +journal = {Journal f{\"{u}}r die Reine und Angew. Mathematik + (Crelle Journal)}, +note = { arxiv:math.LO/9912191 }, +pages = {1--24}, +title = {{Large localizations of finite simple groups}}, +volume = {550}, +year = {2002}, +}, + +@article{Sh:702, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/9910158 }, +pages = {329--377}, +title = {{On what I do not understand (and have something to say), model + theory}}, +volume = {51}, +year = {2000}, +}, + +@article{Sh:703, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0012171 }, +pages = {569--581}, +title = {{On ultraproducts of Boolean Algebras and irr}}, +volume = {42}, +year = {2003}, +}, + +@incollection{Sh:704, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Set Theory, The Hajnal Conference}, +fromwhere = {IL}, +note = { arxiv:math.LO/0009075 }, +pages = {107--128}, +publisher = {DIMACS Ser. Discrete Math. Theoret. Comput. Sci.}, +series = {Proceedings from MAMLS Conference in honor of Andras Hajnal at + DIMACS Center, Rutgers, Oct. 15--17, 1999, S. Thomas, Ed.}, +title = {{Superatomic Boolean Algebras: maximal rigidity}}, +volume = {58}, +year = {2002}, +}, + +@inbook{Sh:705, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes}, +fromwhere = {IL}, +note = { arxiv:math.LO/0404272 }, +title = {{Toward classification theory of good $\lambda$ frames and + abstract elementary classes}}, +}, + +@article{Sh:706, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Combinatorica}, +note = { arxiv:math.LO/0102058 }, +pages = {325--362}, +title = {{Universality among graphs omitting a complete bipartite + graph}}, +volume = {32}, +year = {2012}, +}, + +@article{Sh:707, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0112238 }, +title = {{Long iterations for the continuum}}, +volume = {submitted}, +}, + +@article{GiSh:708, +author = {Gitik, Moti and Shelah, Saharon}, +trueauthor = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/9909087 }, +pages = {639--650}, +title = {{On some configurations related to the Shelah weak + hypothesis}}, +volume = {40}, +year = {2001}, +}, + +@article{KlSh:709, +author = {Kolman, Oren and Shelah, Saharon}, +trueauthor = {Kolman, Oren and Shelah, Saharon}, +fromwhere = {UK, IL}, +journal = {Bull. Belg. Math. Soc.}, +note = { arxiv:math.LO/9910162 }, +pages = {623--629}, +title = {{Infinitary Axiomatizability of Slender and Cotorsion-Free + Groups}}, +volume = {7}, +year = {2000}, +}, + +@article{DjSh:710, +author = {Dzamonja, Mirna and Shelah, Saharon}, +trueauthor = {D\v{z}amonja, Mirna and Shelah, Saharon}, +fromwhere = {UK,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0009078 }, +pages = {280--302}, +title = {{On properties of theories which preclude the existence + of universal models}}, +volume = {139}, +year = {2006}, +}, + +@article{Sh:711, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/0303293 }, +pages = {1--17}, +title = {{On nicely definable forcing notions}}, +volume = {11, No.1}, +year = {2005}, +}, + +@article{FGShS:712, +author = {Fuchino, Sakae and Geschke, Stefan and Shelah, Saharon + and Soukup, Lajos}, +trueauthor = {Fuchino, Saka\'e and Geschke, Stefan and Shelah, Saharon + and Soukup, Lajos}, +fromwhere = {J,D,IL,H}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/9911230 }, +pages = {89--105}, +title = {{On the weak Freese-Nation property of complete Boolean + algebras}}, +volume = {110}, +year = {2001}, +}, + +@article{MPSh:713, +author = {Matet, Pierre and Pean, Cedric and Shelah, Saharon}, +trueauthor = {Matet, Pierre and P\'ean, C\'edric and Shelah, Saharon}, +fromwhere = {F,F,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0404318 }, +title = {{Cofinality of normal ideals on $P_\kappa(\lambda)$, I}}, +volume = {appeared online}, +}, + +@article{JShSS:714, +author = {Juhasz, Istvan and Shelah, Saharon and Soukup, Lajos and + Szentmiklossy, Zoltan}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon and Soukup, Lajos + and Szentmikl\'{o}ssy, Zolt\'{a}n}, +fromwhere = {H,IL,H,H}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0104198 }, +pages = {1907--1916}, +title = {{A tall space with a small bottom}}, +volume = {131}, +year = {2003}, +}, + +@article{Sh:715, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Scientiae Mathematicae Japonicae}, +note = { arxiv:math.LO/0009056 }, +pages = {265--316}, +title = {{Classification theory for elementary classes with the + dependence property - a modest beginning}}, +volume = {59, No. 2; (special issue: e9, 503--544)}, +year = {2004}, +}, + +@article{GbSh:716, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Archiv der Mathematik}, +note = { arxiv:math.LO/0003165 }, +pages = {166--181}, +title = {{Decompositions of reflexive modules}}, +volume = {76}, +year = {2001}, +}, + +@article{EkSh:717, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematische Zeitschrift}, +note = { arxiv:math.LO/0303344 }, +pages = {143--157}, +title = {{The structure of ${\rm Ext}(A,{\mathbb Z})$ and GCH: + possible co-Moore spaces}}, +volume = {239}, +year = {2002}, +}, + +@article{ShVs:718, +author = {Shelah, Saharon and Vaisanen, Pauli}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli}, +fromwhere = {IL,SF}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9911232 }, +pages = {97--126}, +title = {{The number of $L_{\infty\kappa}$--equivalent + nonisomorphic models for $\kappa$ weakly compact}}, +volume = {174}, +year = {2002}, +}, + +@article{ShVs:719, +author = {Shelah, Saharon and Vaisanen, Pauli}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli}, +fromwhere = {IL,SF}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/9911231 }, +pages = {1--21}, +title = {{On equivalence relations second order definable over + $H(\kappa)$}}, +volume = {174}, +year = {2002}, +}, + +@article{KjSh:720, +author = {Kojman, Menachem and Shelah, Saharon}, +trueauthor = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0009079 }, +pages = {117--129}, +title = {{Fallen Cardinals}}, +volume = {109}, +year = {2001}, +}, + +@article{GShW:721, +author = {Goebel, Ruediger and Shelah, Saharon and Wallutis, Simone }, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon and + Wallutis, Simone}, +fromwhere = {D,D,IL}, +journal = {Journal of Algebra}, +note = { arxiv:math.LO/0103154 }, +pages = {292--313}, +title = {{On the Lattice of Cotorsion Theories}}, +volume = {238}, +year = {2001}, +}, + +@article{BrSh:722, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.LO/0001051 }, +pages = {243--253}, +title = {{Continuous images of sets of reals}}, +volume = {116}, +year = {2001}, +}, + +@article{Sh:723, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Combinatorica}, +note = { arxiv:math.LO/0003139 }, +pages = {309--319}, +title = {{Consistently there is no non trivial ccc forcing notion with + the Sacks or Laver property }}, +volume = {21}, +year = {2001}, +}, + +@article{Sh:724, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0009064 }, +pages = {31--64}, +title = {{On nice equivalence relations on ${}^\lambda 2$}}, +volume = {43}, +year = {2004}, +}, + +@article{MdSh:725, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0104276 }, +pages = {1--37}, +title = {{On needed reals}}, +volume = {141}, +year = {2004}, +}, + +@article{ShVa:726, +author = {Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0009080 }, +pages = {63--69}, +title = {{A Note on Extensions of Infinitary Logic}}, +volume = {44}, +year = {2005}, +}, + +@incollection{GbSh:727, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Proceedings of the Perth Conference 2000 ``AGRAM''}, +fromwhere = {D,IL}, +note = { arxiv:math.LO/0009062 }, +pages = {145--158}, +series = {Contemporary Mathematics}, +title = {{Reflexive subgroups of the Baer-Specker group and + Martin's axiom}}, +volume = {273}, +year = {2001}, +}, + +@article{KeSh:728, +author = {Kennedy, Juliette and Shelah, Saharon}, +trueauthor = {Kennedy, Juliette and Shelah, Saharon}, +fromwhere = {F, IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0105134 }, +pages = {17--24}, +title = {{On embedding models of arithmetic of cardinality $\aleph_1$ + into reduced powers}}, +volume = {176}, +year = {2003}, +}, + +@article{ShSm:729, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {The Journal of Group Theory}, +note = { arxiv:math.LO/0009045 }, +pages = {417--426}, +title = {{The failure of the uncountable non-commutative + Specker Phenomenon}}, +volume = {4}, +year = {2001}, +}, + +@article{Sh:730, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Periodica Mathematica Hungarica}, +note = { arxiv:math.LO/0009047 }, +pages = {81--84}, +title = {{A space with only Borel subsets}}, +volume = {40}, +year = {2000}, +}, + +@article{MdSh:731, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0009077 }, +pages = {297--314}, +title = {{The relative consistency of ${\frak g}<{\rm + cf}({\rm Sym}(\omega))$}}, +volume = {67}, +year = {2002}, +}, + +@article{BrSh:732, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0102011 }, +pages = {3701--3711}, +title = {{Perfectly meager sets and universally null sets}}, +volume = {130}, +year = {2002}, +}, + +@article{RoSh:733, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:math.LO/0006219 }, +pages = {99--115}, +title = {{Historic forcing for {\rm Depth}}}, +volume = {89}, +year = {2001}, +}, + +@inbook{Sh:734, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Classification Theory for Abstract Elementary Classes}, +fromwhere = {IL}, +note = { arxiv:0808.3023 }, +title = {{Categoricity and solvability of A.E.C., quite highly}}, +}, + +@article{ShSr:735, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 2}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0011166 }, +pages = {2097--2106}, +title = {{Martin's axiom is consistent with the existence of + nowhere trivial automorphisms}}, +volume = {130}, +year = {2002}, +}, + +@article{RoSh:736, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0010070 }, +pages = {61--110}, +title = {{Measured creatures}}, +volume = {151}, +year = {2006}, +}, + +@article{GoSh:737, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT, IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.RA/0005273 }, +pages = {1-20}, +title = {{Clones on regular cardinals}}, +volume = {173}, +year = {2002}, +}, + +@article{GbSh:738, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Math. Proc. Camb. Phil. Soc.}, +note = { arxiv:math.GR/0009091 }, +pages = {23--31}, +title = {{Philip Hall's problem on non-Abelian splitters}}, +volume = {134}, +year = {2003}, +}, + +@article{GbSh:739, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Communication in Algebra}, +note = { arxiv:math.GR/0009089 }, +pages = {809--837}, +title = {{Constructing Simple Groups For Localizations}}, +volume = {30}, +year = {2002}, +}, + +@article{GPSh:740, +author = {Goebel, Ruediger and Paras, Agnes T. and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Paras, Agnes T. and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.GR/0009088 }, +pages = {21--27}, +title = {{Groups isomorphic to all their non--trivial normal + subgroups}}, +volume = {129}, +year = {2002}, +}, + +@article{GbSh:741, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.GR/0010303 }, +pages = {673--674}, +title = {{Radicals and Plotkin's problem concerning geometrically + equivalent groups}}, +volume = {130}, +year = {2002}, +}, + +@article{GShW:742, +author = {Goebel, Ruediger and Shelah, Saharon and Wallutis, Simone}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon and + Wallutis, Simone}, +fromwhere = {D,IL,?}, +journal = {Illinois Journal of Mathematics}, +note = { arxiv:math.LO/0112252 }, +pages = {223--236}, +title = {{On universal and epi-universal locally nilpotent groups}}, +volume = {47}, +year = {2003}, +}, + +@article{DrSh:743, +author = {Droste, Manfred and Shelah, Saharon}, +trueauthor = {Droste, Manfred and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Forum Mathematicum}, +note = { arxiv:math.GR/0010304 }, +pages = {605--621}, +title = {{Outer automorphism groups of ordered permutation groups}}, +volume = {14}, +year = {2002}, +}, + +@article{Sh:744, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:math.LO/0010305 }, +pages = {1--7}, +title = {{A countable structure does not have a free + uncountable automorphism group}}, +volume = {35}, +year = {2003}, +}, + +@article{NeSh:745, +author = {Nesetril, Jaroslav and Shelah, Saharon}, +trueauthor = {Ne\v{s}et\v{r}il, Jaroslav and Shelah, Saharon}, +fromwhere = {Cz,IL}, +journal = {European Journal of Combinatorics}, +note = { arxiv:math.LO/0404319 }, +pages = {649--663}, +title = {{On the order of countable graphs}}, +volume = {24}, +year = {2003}, +}, + +@article{LrSh:746, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/0011187 }, +pages = {193--215}, +title = {{Bounding by canonical functions, with CH}}, +volume = {3, No.2}, +year = {2003}, +}, + +@article{GoSh:747, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT, IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.RA/0208066 }, +pages = {367--374}, +title = {{Large Intervals in the Clone Lattice}}, +volume = {62}, +year = {2010}, +}, + +@article{KkSh:748, +author = {Kikyo, Hirotaka and Shelah, Saharon}, +trueauthor = {Kikyo, Hirotaka and Shelah, Saharon}, +fromwhere = {J,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0010306 }, +pages = {214--216}, +title = {{The strict order property and generic automorphisms}}, +volume = {67}, +year = {2002}, +}, + +@article{EkSh:749, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Illinois Journal of Mathematics}, +note = {A special volume dedicated to Baer. arxiv:math.LO/0011228 }, +pages = {173--188}, +title = {{On the existence of precovers}}, +volume = {47}, +year = {2003}, +}, + +@article{Sh:750, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {CUBO, A Mathematical Journal}, +note = { arxiv:0902.0439 }, +pages = {59--72}, +title = {{On $\lambda$ strony homogeneity existence for cofinality + logic}}, +volume = {13}, +year = {2011}, +}, + +@article{EdSh:751, +author = {Eda, Katsuya and Shelah, Saharon}, +trueauthor = {Eda, Katsuya and Shelah, Saharon}, +fromwhere = {J, IL}, +journal = {Journal of Algebra}, +note = { arxiv:math.LO/0011231 }, +pages = {22--26}, +title = {{The non-commutative Specker phenomenon in the uncountable + case}}, +volume = {252}, +year = {2002}, +}, + +@article{EkSh:752, +author = {Eklof, Paul C. and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Forum Mathematicum}, +note = { arxiv:math.LO/0011230 }, +pages = {477--482}, +title = {{Whitehead modules over large principal ideal domains}}, +volume = {14}, +year = {2002}, +}, + +@article{MdSh:753, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0011188 }, +pages = {167--176}, +title = {{The splitting number can be smaller than the matrix chaos + number}}, +volume = {171}, +year = {2002}, +}, + +@article{ShSm:754, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Forum Mathematicum}, +note = { arxiv:math.LO/0012172 }, +pages = {507--524}, +title = {{It is consistent with ZFC that $B_1$-groups are not + $B_2$-groups}}, +volume = {15}, +year = {2003}, +}, + +@article{Sh:755, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematica Japonica}, +note = { arxiv:math.LO/0107207 }, +pages = {531--538}, +title = {{Weak Diamond}}, +volume = {55}, +year = {2002}, +}, + +@article{HySh:756, +author = {Hyttinen, Tapani and Shelah, Saharon}, +trueauthor = {Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {F, IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0102044 }, +pages = {2837--2843}, +title = {{Forcing a Boolean Algebra with predesigned automorphism + group}}, +volume = {130}, +year = {2002}, +}, + +@article{Sh:757, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0112212 }, +pages = {261--272}, +title = {{Quite Complete Real Closed Fields}}, +volume = {142}, +year = {2004}, +}, + +@article{MsSh:758, +author = {Matsubara, Yo and Shelah, Saharon}, +trueauthor = {Matsubara, Yo and Shelah, Saharon}, +fromwhere = {J,IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/0102045 }, +pages = {81--89}, +title = {{Nowhere precipitousness of the non-stationary ideal + over ${\mathcal P}_{\kappa}\lambda$}}, +volume = {2}, +year = {2002}, +}, + +@article{BlSh:759, +author = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/0105136 }, +pages = {129--142}, +title = {{Model Companions of $T_{\rm Aut}$ for stable $T$}}, +volume = {42}, +year = {2001}, +}, + +@article{BGSh:760, +author = {Blass, Andreas and Gurevich, Yuri and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0102059 }, +pages = {1093--1125}, +title = {{On polynomial time computation over unordered structures}}, +volume = {67}, +year = {2002}, +}, + +@article{Sh:761, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0103155 }, +pages = {2585--2592}, +title = {{A partition relation using strongly compact cardinals}}, +volume = {131}, +year = {2003}, +}, + +@article{BnSh:762, +author = {Brendle, Joerg and Shelah, Saharon}, +trueauthor = {Brendle, J{\"{o}}rg and Shelah, Saharon}, +fromwhere = {J,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0103153 }, +pages = {349--360}, +title = {{Evasion and prediction IV: Strong forms of constant + prediction}}, +volume = {42}, +year = {2003}, +}, + +@article{FGSh:763, +author = {Fuchino, Sakae and Greenberg, Noam and Shelah, Saharon}, +trueauthor = {Fuchino, Saka\'e and Greenberg, Noam and Shelah, Saharon}, +fromwhere = {J,1,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0601087 }, +pages = {380--397}, +title = {{Models of Real-Valued Measurability}}, +volume = {142}, +year = {2006}, +}, + +@article{ShSy:764, +author = {Shelah, Saharon and Shioya, Masahiro}, +trueauthor = {Shelah, Saharon and Shioya, Masahiro}, +fromwhere = {IL,J}, +journal = {Advances in Mathematics}, +note = { arxiv:math.LO/0405013 }, +pages = {185--191}, +title = {{Nonreflecting stationary sets in ${\mathcal + P}_\kappa\lambda$}}, +volume = {199}, +year = {2006}, +}, + +@article{JShSS:765, +author = {Juhasz, Istvan and Shelah, Saharon and Soukup, Lajos and + Szentmiklossy, Zoltan}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon and Soukup, Lajos + and Szentmikl\'{o}ssy, Zolt\'{a}n}, +fromwhere = {H,IL,H,H}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0404322 }, +pages = {75--88}, +title = {{Cardinal sequences and Cohen real extensions}}, +volume = {181}, +year = {2004}, +}, + +@article{FuSh:766, +author = {Fuchs, Laszlo and Shelah, Saharon}, +trueauthor = {Fuchs, Laszlo and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Rend. Sem. Mat. Univ. Padova}, +note = { arxiv:math.LO/0405015 }, +pages = {235--239}, +title = {{On a non-vanishing Ext}}, +volume = {109}, +year = {2003}, +}, + +@article{ShTs:767, +author = {Shelah, Saharon and Tsuboi, Akito}, +trueauthor = {Shelah, Saharon and Tsuboi, Akito}, +fromwhere = {IL,J}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/0104277 }, +pages = {65--73}, +title = {{Definability of initial segments}}, +volume = {43(2002), no.2}, +year = {2003}, +}, + +@article{ShTb:768, +author = {Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {IL,IL}, +journal = {Journal of Applied Analysis}, +note = { arxiv:math.LO/0304019 }, +pages = {149--162}, +title = {{Critical Cardinalities and Additivity Properties + of Combinatorial Notions of Smallness}}, +volume = {9}, +year = {2003}, +}, + +@article{KeSh:769, +author = {Kennedy, Juliette and Shelah, Saharon}, +trueauthor = {Kennedy, Juliette and Shelah, Saharon}, +fromwhere = {F, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0105135 }, +pages = {1169--1177}, +title = {{On regular reduced products}}, +volume = {67}, +year = {2002}, +}, + +@article{HHSh:770, +author = {Hellsten, Alex and Hyttinen, Tapani and Shelah, Saharon}, +trueauthor = {Hellsten, Alex and Hyttinen, Tapani and Shelah, Saharon}, +fromwhere = {F,F,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0112288 }, +pages = {127--142}, +title = {{Potential isomorphism and semi--proper trees}}, +volume = {175}, +year = {2002}, +}, + +@article{Sh:771, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0212250 }, +pages = {477--507}, +title = {{Polish Algebras, shy from freedom}}, +volume = {181}, +year = {2011}, +}, + +@article{ShSm:772, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Journal of the London Mathematical Society}, +note = { arxiv:math.LO/0112253 }, +pages = {626--642}, +title = {{Kulikov's problem on universal torsion-free abelian groups}}, +volume = {67}, +year = {2003}, +}, + +@article{ShSm:773, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Rocky Mountain Journal of Mathematics}, +note = {Proceedings of the Second Honolulu Conf. on Abelian Groups and + Modules (Honolulu, HI, 2001). arxiv:math.LO/0107208 }, +pages = {1617--1626}, +title = {{Cotorsion theories cogenerated by $\aleph_1$ free + Abelian groups}}, +volume = {32}, +year = {2002}, +}, + +@article{BShT:774, +author = {Bartoszynski, Tomek and Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon and Tsaban, + Boaz}, +fromwhere = {1,IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0112262 }, +title = {{Additivity Properties of Topological Diagonalizations}}, +volume = {68}, +year = {2003}, +}, + +@article{Sh:775, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0212249 }, +pages = {527--560}, +title = {{Middle Diamond}}, +volume = {44}, +year = {2005}, +}, + +@article{HShV:776, +author = {Hyttinen, Tapani and Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Hyttinen, Tapani and Shelah, Saharon and + V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {SF,IL,SF}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0212234 }, +pages = {79--96}, +title = {{More on the Ehrenfeucht-Fra{\"\i}ss\'e game of length + $\omega_1$}}, +volume = {175}, +year = {2002}, +}, + +@article{RoSh:777, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0210205 }, +pages = {109--174}, +title = {{Sheva-Sheva-Sheva: Large Creatures}}, +volume = {159}, +year = {2007}, +}, + +@article{MdSh:778, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0112287 }, +pages = {627--647}, +title = {{Specialising Aronszajn trees by countable approximations}}, +volume = {42}, +year = {2003}, +}, + +@article{LrSh:779, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Colloquium Mathematicum}, +pages = {1--13}, +title = {{Consistency of a strong uniformization principle}}, +volume = {146}, +year = {2017}, +}, + +@article{GbSh:780, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:math.LO/0112264 }, +pages = {289--292}, +title = {{Characterizing automorphism groups of ordered abelian + groups}}, +volume = {35}, +year = {2003}, +}, + +@article{KjSh:781, +author = {Kojman, Menachem and Shelah, Saharon}, +trueauthor = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.GN/0112265 }, +pages = {1619--1622}, +title = {{van der Waerden spaces and Hindman spaces are not the same}}, +volume = {131}, +year = {2003}, +}, + +@article{Sh:782, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Advances in Applied Mathematics}, +note = { arxiv:math.LO/0112213 }, +pages = {217--251}, +title = {{On the Arrow property}}, +volume = {34}, +year = {2005}, +}, + +@article{Sh:783, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0406440 }, +pages = {1-60}, +title = {{Dependent first order theories, continued}}, +volume = {173}, +year = {2009}, +}, + +@article{Sh:784, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0112286 }, +pages = {285--295}, +title = {{Forcing axiom failure for any $\lambda > \aleph_1$}}, +volume = {43}, +year = {2004}, +}, + +@article{GShS:785, +author = {Goebel, Ruediger and Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon and + Str{\"{u}}ngmann, Lutz}, +fromwhere = {D,IL,D}, +journal = {Canadian Journal of Mathematics}, +note = { arxiv:math.LO/0112214 }, +pages = {750--765}, +title = {{Almost-Free $E$-Rings of Cardinality $\aleph_1$}}, +volume = {55}, +year = {2003}, +}, + +@article{ShSr:786, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0212233 }, +pages = {197--235}, +title = {{Possible Cardinalities of Maximal Abelian Subgroups of + Quotients of Permutation Groups of the Integers}}, +volume = {196}, +year = {2007}, +}, + +@article{ShVs:787, +author = {Shelah, Saharon and Vaisanen, Pauli}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli}, +fromwhere = {IL,SF}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0212063 }, +pages = {147--173}, +title = {{Almost free groups and Ehrenfeucht-Fra{\"\i}ss\'e games + for successors of singular cardinals}}, +volume = {118}, +year = {2002}, +}, + +@article{KoSh:788, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Journal of Graph Theory.}, +note = { arxiv:math.LO/0212064 }, +pages = {28--38}, +title = {{Finite subgraphs of uncountably chromatic graphs}}, +volume = {49}, +year = {2005}, +}, + +@article{ShUs:789, +author = {Shelah, Saharon and Usvyatsov, Alex}, +trueauthor = {Shelah, Saharon and Usvyatsov, Alex}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0303325 }, +pages = {245--270}, +title = {{Banach spaces and groups - order properties and universal + models}}, +volume = {152}, +year = {2006}, +}, + +@article{ShVa:790, +author = {Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0405016 }, +pages = {151--164}, +title = {{Recursive logic frames}}, +volume = {52}, +year = {2006}, +}, + +@article{ShZa:791, +author = {Shelah, Saharon and Zapletal, Jindrich}, +fromwhere = {IL,1}, +journal = {Mathematical Research Letters}, +note = { arxiv:math.LO/0212041 }, +pages = {585--595}, +title = {{Duality and the PCF theory}}, +volume = {9}, +year = {2002}, +}, + +@article{ShZa:792, +author = {Shelah, Saharon and Zapletal, Jindrich}, +fromwhere = {IL,1}, +journal = {Commentationes Mathematicae Universitatis Carolinae}, +note = { arxiv:math.LO/0212042 }, +pages = {9--21}, +title = {{Games with creatures}}, +volume = {44,1}, +year = {2003}, +}, + +@article{KKSh:793, +author = {Kojman, Menahem and Kubis, Wieslaw and Shelah, Saharon}, +trueauthor = {Kojman, Menahem and Kubi\'s, Wies{\l}aw and Shelah, + Saharon}, +fromwhere = {IL,IL,IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0406441 }, +pages = {3357--3365}, +title = {{On two problems of Erd\H os and Hechler: New methods + in singular Madness}}, +volume = {132}, +year = {2004}, +}, + +@article{Sh:794, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0404323 }, +pages = {95--111}, +title = {{Reflection implies the SCH}}, +volume = {198}, +year = {2008}, +}, + +@article{JuSh:795, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.LO/0212027 }, +pages = {103--108}, +title = {{Generic left-separated spaces and calibers}}, +volume = {132}, +year = {2003}, +}, + +@article{KoSh:796, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komj\'{a}th, P\'eter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Combinatorics Probability and Computing}, +note = {Special issue on Ramsey theory. arxiv:math.LO/0212022 }, +pages = {621--626}, +title = {{A partition theorem for scattered order types}}, +volume = {12}, +year = {2003, no.5-6}, +}, + +@article{Sh:797, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of the American Mathematical Society}, +note = { arxiv:1005.2806 }, +pages = {395--427}, +title = {{Nice infinitary logics}}, +volume = {25}, +year = {2012}, +}, + +@article{ShVa:798, +author = {Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF}, +journal = {Preprint}, +title = {{The $\Delta$--closure of $L(Q_1)$ is not finitely + generated, assuming CH}}, +}, + +@article{MRSh:799, +author = {Matet, Pierre and Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Matet, Pierre and Ros{\l}anowski, Andrzej and Shelah, + Saharon}, +fromwhere = {F,1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.LO/0210087 }, +pages = {4813--4837}, +title = {{Cofinality of the nonstationary ideal}}, +volume = {357}, +year = {2005}, +}, + +@article{Sh:800, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +title = {{On complicated models and compact quantifiers}}, +}, + +@article{DoSh:801, +author = {Doron, Mor and Shelah, Saharon}, +trueauthor = {Doron, Mor and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0405091 }, +pages = {1297--1324}, +title = {{A dichotomy in classifying quantifiers for finite models}}, +volume = {70}, +year = {2005}, +}, + +@article{KbSh:802, +author = {Kubis, Wieslaw and Shelah, Saharon}, +trueauthor = {Kubi\'s, Wies{\l}aw and Shelah, Saharon}, +fromwhere = {PL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0212026 }, +pages = {145--161}, +title = {{Analytic Colorings}}, +volume = {121}, +year = {2003}, +}, + +@article{ShSm:803, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Quarterly Journal of Mathematics}, +pages = {353--365}, +title = {{Large Indecomposable Minimal Groups}}, +volume = {60}, +year = {2009}, +}, + +@article{MtSh:804, +author = {Matet, Pierre and Shelah, Saharon}, +trueauthor = {Matet, Pierre and Shelah, Saharon}, +fromwhere = {F,IL}, +journal = {Preprint}, +note = { arxiv:math.LO/0407440 }, +title = {{Positive partition relations for $P_\kappa(\lambda)$}}, +}, + +@incollection{GSSh:805, +author = {Gitik, Moti and Schindler, Ralf and Shelah, Saharon}, +booktitle = {Proceedings of the Logic Colloquium'2002 (ASL)}, +fromwhere = {IL,AT,IL}, +note = { arxiv:math.LO/0211439 }, +pages = {172--206}, +title = {{Pcf theory and Woodin cardinals}}, +year = {2006}, +}, + +@article{Sh:806, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Real Analysis Exchange}, +note = { arxiv:math.LO/0211438 }, +pages = {477--480}, +title = {{Martin's Axiom and Maximal Orthogonal Families}}, +volume = {28}, +year = {2002/03, no.2}, +}, + +@article{BrSh:807, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0211023 }, +pages = {769--779}, +title = {{Strongly meager sets of size continuum}}, +volume = {42}, +year = {2003}, +}, + +@article{GoSh:808, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT, IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math.RA/0212379 }, +pages = {3525--3551}, +title = {{Clones from Creatures}}, +volume = {357}, +year = {2005}, +}, + +@article{ShSr:809, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {Advances in Mathematics}, +note = { arxiv:math.LO/0405092 }, +pages = {403--426}, +title = {{Comparing the uniformity invariants of null sets for different + measures}}, +volume = {192}, +year = {2005}, +}, + +@article{Sh:810, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0405116 }, +title = {{The height of the automorphism tower of a group}}, +volume = {submitted}, +}, + +@article{GeSh:811, +author = {Geschke, Stefan and Shelah, Saharon}, +trueauthor = {Geschke, Stefan and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.LO/0211399 }, +pages = {241--253}, +title = {{Some notes concerning the homogeneity of Boolean algebras and + Boolean spaces}}, +volume = {133}, +year = {2003}, +}, + +@article{ShVV:812, +author = {Shelah, Saharon and Vaisanen, Pauli and Vaananen, Jouko}, +trueauthor = {Shelah, Saharon and V{\"{a}}is{\"{a}}nen, Pauli and + V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {IL,SF,SF}, +journal = {Fundamenta Mathematicae}, +pages = {193--214}, +title = {{On Ordinals Accessible by Infinitary Languages}}, +volume = {186}, +year = {2005}, +}, + +@article{MPSh:813, +author = {Matet, Pierre and Pean, Cedric and Shelah, Saharon}, +trueauthor = {Matet, Pierre and P\'ean, C\'edric and Shelah, Saharon}, +fromwhere = {F,F,IL}, +journal = {Israel Journal of Mathematics}, +pages = {253--283}, +title = {{Cofinality of normal ideals on $P_\kappa(\lambda)$, II}}, +volume = {150}, +year = {2005}, +}, + +@article{EShT:814, +author = {Eklof, Paul C. and Shelah, Saharon and Trlifaj, Jan}, +trueauthor = {Eklof, Paul C. and Shelah, Saharon and Trlifaj, Jan}, +fromwhere = {1,IL}, +journal = {Journal of Algebra}, +note = { arxiv:math.LO/0405117 }, +pages = {572--578}, +title = {{On the cogeneration of cotorsion pairs}}, +volume = {227}, +year = {2004}, +}, + +@article{BBSh:815, +author = {Baizhanov, Bektur and Baldwin, John and Shelah, Saharon}, +trueauthor = {Baizhanov, Bektur and Baldwin, John and Shelah, Saharon}, +fromwhere = {K,1,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0303324 }, +pages = {142--150}, +title = {{Subsets of superstable structures are weakly benign}}, +volume = {70}, +year = {2005}, +}, + +@article{Sh:816, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Discrete Mathematics}, +note = { arxiv:math.CO/0405119 }, +pages = {2349--2364}, +title = {{What majority decisions are possible}}, +volume = {309}, +year = {2009}, +}, + +@article{Sh:817, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Scientiae Mathematicae Japonicae}, +note = { arxiv:math.LO/0405158 }, +pages = {351--355}, +title = {{Spectra of monadic second order sentences}}, +volume = {59, No. 2; (special issue: e9, 555--559)}, +year = {2004}, +}, + +@article{KShTS:818, +author = {Kramer, Linus and Shelah, Saharon and Tent, Katrin and + Thomas, Simon}, +trueauthor = {Kramer, Linus and Shelah, Saharon and Tent, Katrin and + Thomas, Simon}, +fromwhere = {D,IL,D,1}, +journal = {Advances in Mathematics}, +note = { arxiv:math.GT/0306420 }, +pages = {142--173}, +title = {{Asymptotic cones of finitely presented groups}}, +volume = {193}, +year = {2005}, +}, + +@article{EiSh:819, +author = {Eisworth, Todd and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +pages = {1287--1309}, +title = {{Successors of singular cardinals and coloring theorems. II}}, +volume = {74}, +year = {2009}, +}, + +@article{Sh:820, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/0405159 }, +title = {{Universal Structures}}, +volume = {accepted}, +}, + +@article{HLSh:821, +author = {Hyttinen, Tapani and Lessmann, Olivier and Shelah, Saharon}, +trueauthor = {Hyttinen, Tapani and Lessmann, Olivier and Shelah, + Saharon}, +fromwhere = {F,UK,IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/0406481 }, +pages = {1--47}, +title = {{Interpreting groups and fields in some nonelementary + classes}}, +volume = {5}, +year = {2005}, +}, + +@article{BGSh:822, +author = {Boerner, Ferdinand and Goldstern, Martin and Shelah, + Saharon}, +trueauthor = {B{\"{o}}rner, Ferdinand and Goldstern, Martin and Shelah, + Saharon}, +fromwhere = {D,A,IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/0309165 }, +title = {{Automorphisms and strongly invariant relations}}, +volume = {accepted}, +}, + +@article{BmSh:823, +author = {Bergman, George M. and Shelah, Saharon}, +trueauthor = {Bergman, George M. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Algebra Universalis}, +note = {a special issue in honor of Walter Taylor. + arxiv:math.GR/0401305 }, +pages = {137--173}, +title = {{Closed subgroups of the infinite symmetric group}}, +volume = {55}, +year = {2006}, +}, + +@article{Sh:824, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0404149 }, +pages = {437--447}, +title = {{Two cardinals models with gap one revisited}}, +volume = {51}, +year = {2005}, +}, + +@article{KnSh:825, +author = {Kanovei, Vladimir and Shelah, Saharon}, +trueauthor = {Kanovei, Vladimir and Shelah, Saharon}, +fromwhere = {RU,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0311165 }, +pages = {159--164}, +title = {{A definable nonstandard model of the reals}}, +volume = {69}, +year = {2004}, +}, + +@incollection{BrSh:826, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +booktitle = {Logic Colloquium 2004}, +fromwhere = {1,IL}, +note = {Proceedings of the AMS. arxiv:math.LO/0311064 }, +pages = {18--32}, +publisher = {Association of Symbolic Logic, Chicago}, +series = {Lecture Notes in Logic, 29}, +title = {{On the density of Hausdorff ultrafilters}}, +year = {2008}, +}, + +@article{KjSh:827, +author = {Kojman, Menachem and Shelah, Saharon}, +trueauthor = {Kojman, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0406530 }, +pages = {309--334}, +title = {{Almost Isometric Embeddings of Metric Spaces}}, +volume = {155}, +year = {2006}, +}, + +@article{KrSh:828, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0405081 }, +pages = {914--945}, +title = {{Preserving Preservation}}, +volume = {70, 3}, +year = {2005}, +}, + +@article{Sh:829, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0406482 }, +pages = {133--160}, +title = {{More on the Revised GCH and the Black Box}}, +volume = {140}, +year = {2006}, +}, + +@article{Sh:830, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0407498 }, +pages = {1--23}, +title = {{The combinatorics of reasonable ultrafilters}}, +volume = {192}, +year = {2006}, +}, + +@article{GbSh:831, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Pure and Applied Algebra}, +pages = {230--258}, +title = {{How rigid are reduced products?}}, +volume = {202}, +year = {2005}, +}, + +@article{Sh:832, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +note = { arxiv:math.LO/1306.5399 }, +title = {{Many forcing axioms for all regular uncountable cardinals}}, +}, + +@article{GbSh:833, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Communications in Algebra}, +note = { arxiv:math.LO/0504198 }, +pages = {4211--4218}, +title = {{On Crawley Modules}}, +volume = {53}, +year = {2005}, +}, + +@incollection{GbSh:834, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +booktitle = {Abelian groups, rings, modules, and homological algebra}, +fromwhere = {D,IL}, +pages = {153--158}, +series = {Lect. Notes Pure Appl. Math}, +title = {{Torsionless linearly compact modules}}, +volume = {249}, +year = {2006}, +}, + +@article{Sh:835, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0510229 }, +title = {{PCF without choice}}, +volume = {submitted}, +}, + +@incollection{Sh:836, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Proceedings of Logic Colloquium, Helsinki, August 2003}, +fromwhere = {IL}, +note = { arxiv:math.LO/0404222 }, +pages = {315--325}, +publisher = {ASL}, +title = {{On long EF-equivalence in non-isomorphic models}}, +volume = {Lecture Notes in Logic 24}, +year = {2006}, +}, + +@article{ShUs:837, +author = {Shelah, Saharon and Usvyatsov, Alex}, +trueauthor = {Shelah, Saharon and Usvyatsov, Alex}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0612350 }, +pages = {157--198}, +title = {{Model theoretic stability and categoricity for complete metric + spaces}}, +volume = {182}, +year = {2011}, +}, + +@inbook{Sh:838, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Classification theory for abstract elementary classes II}, +fromwhere = {IL}, +note = {Chapter VII, in series Studies in Logic, volume 20, College + Publications. arxiv:0808.3020 }, +title = {{Non-structure in $\lambda^{++}$ using instances of WGCH}}, +}, + +@article{Sh:839, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +title = {{Stable frames and weights}}, +}, + +@article{Sh:840, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0504196 }, +pages = {361--401}, +title = {{Model theory without choice: Categoricity}}, +volume = {74}, +year = {2009}, +}, + +@article{SaSh:841, +author = {Sagi, Gabor and Shelah, Saharon}, +trueauthor = {S\'agi, G\'abor and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0404148 }, +pages = {254--257}, +title = {{On topological properties of ultraproducts of finite sets}}, +volume = {51}, +year = {2005}, +}, + +@article{Sh:842, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Preprint}, +title = {{Eventual categoricity spectrum and Frames}}, +}, + +@article{MdSh:843, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0404147 }, +pages = {7--13}, +title = {{Increasing the groupwise density number by c.c.c. forcing}}, +volume = {149}, +year = {2007}, +}, + +@article{ShUs:844, +author = {Shelah, Saharon and Usvyatsov, Alex}, +trueauthor = {Shelah, Saharon and Usvyatsov, Alex}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0404178 }, +pages = {16--31}, +title = {{More on ${\rm SOP}_1$ and ${\rm SOP}_2$}}, +volume = {155}, +year = {2008}, +}, + +@article{RoSh:845, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0404146 }, +pages = {179--196}, +title = {{Universal forcing notions and ideals}}, +volume = {46}, +year = {2007}, +}, + +@article{Sh:846, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:math.LO/0612240 }, +pages = {213--220}, +title = {{The spectrum of characters of ultrafilters on $\omega$}}, +volume = {111, No.2}, +year = {2008}, +}, + +@article{MShT:847, +author = {Mildenberger, Heike and Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {A,IL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0407487 }, +pages = {60--71}, +title = {{Covering the Baire space by families which are not + finitely dominating}}, +volume = {140}, +year = {2006}, +}, + +@article{MdSh:848, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Journal of Applied Analysis}, +pages = {47--78}, +title = {{Specializing Aronszajn trees and preserving certain weak + diamonds}}, +volume = {15}, +year = {2009}, +}, + +@article{Sh:849, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +title = {{Beginning of stability theory for Polish Spaces}}, +volume = {accepted}, +}, + +@article{ChSh:850, +author = {Cherlin, Gregory and Shelah, Saharon}, +trueauthor = {Cherlin, Gregory and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Combinatorial Theory. Ser. B}, +note = { arxiv:math.LO/0512218 }, +pages = {293--333}, +title = {{Universal graphs with a forbidden subtree}}, +volume = {97}, +year = {2007}, +}, + +@article{LwSh:851, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +pages = {95--124}, +title = {{Decompositions of saturated models of stable theories}}, +volume = {191}, +year = {2006}, +}, + +@article{KeSh:852, +author = {Kennedy, Juliette and Shelah, Saharon}, +trueauthor = {Kennedy, Juliette and Shelah, Saharon}, +fromwhere = {F,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0504200 }, +pages = {1261--1266}, +title = {{More on regular reduced products}}, +volume = {69}, +year = {2004}, +}, + +@article{Sh:853, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/0406531 }, +pages = {91--96}, +title = {{The depth of ultraproducts of Boolean Algebras}}, +volume = {54}, +year = {2005}, +}, + +@article{BsSh:854, +author = {Blass, Andreas and Shelah, Saharon}, +trueauthor = {Blass, Andreas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Communications in Algebra}, +note = { arxiv:math.LO/0504199 }, +pages = {1997--2007}, +title = {{Ultrafilters and partial products of infinite cyclic groups}}, +volume = {33}, +year = {2005}, +}, + +@article{ShSm:855, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0612241 }, +pages = {935--943}, +title = {{Filtration-equivalent $aleph_1$ separable abelian groups of + cardinality $\aleph_1$}}, +volume = {161}, +year = {2010}, +}, + +@article{RoSh:856, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0406612 }, +pages = {71--86}, +title = {{How much sweetness is there in the universe?}}, +volume = {52}, +year = {2006}, +}, + +@article{KuSh:857, +author = {Kuhlmann, Salma and Shelah, Saharon}, +trueauthor = {Kuhlmann, Salma and Shelah, Saharon}, +fromwhere = {2,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/0512220 }, +pages = {284--296}, +title = {{$\kappa$-bounded Exponential-Logarithmic Power Series + Fields}}, +volume = {136}, +year = {2005}, +}, + +@article{MShT:858, +author = {Mildenberger, Heike and Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {A,IL,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.GN/0409068 }, +pages = {263--276}, +title = {{The combinatorics of $\tau$-covers}}, +volume = {154}, +year = {2007}, +}, + +@article{KrSh:859, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0511330 }, +pages = {1153--1183}, +title = {{Saccharinity}}, +volume = {74}, +year = {2011}, +}, + +@article{RoSh:860, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Quaderni di Matematica}, +note = { arxiv:math.LO/0508272 }, +pages = {195--239}, +series = {Set Theory: Recent Trends and Applications (A. Andretta, + ed.)}, +title = {{Reasonably complete forcing notions}}, +volume = {17}, +year = {2006}, +}, + +@article{Sh:861, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0612243 }, +pages = {226--242}, +title = {{Power set modulo small, the singular of uncountable + cofinality}}, +volume = {72}, +year = {2007}, +}, + +@article{BlSh:862, +author = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +pages = {765--782}, +title = {{Examples of non-locality}}, +volume = {73}, +year = {2008}, +}, + +@article{Sh:863, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/0504197 }, +pages = {1--83}, +title = {{Strongly dependent theories}}, +volume = {204}, +year = {2014}, +}, + +@article{SaSh:864, +author = {Sagi, Gabor and Shelah, Saharon}, +trueauthor = {S\'agi, G\'abor and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0612244 }, +pages = {104--118}, +title = {{On Weak and Strong Interpolation in Algebraic Logics}}, +volume = {71}, +year = {2006}, +}, + +@article{DoSh:865, +author = {Doron, Mor and Shelah, Saharon}, +trueauthor = {Doron, Mor and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0607375 }, +pages = {1283--1298}, +title = {{Relational structures constructible by quantifier + free definable operations}}, +volume = {72}, +year = {2007}, +}, + +@article{HvSh:866, +author = {Havlin, Chanoch and Shelah, Saharon}, +trueauthor = {Havlin, Chanoch and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0612245 }, +pages = {111--127}, +title = {{Existence of EF-equivalent Non-Isomorphic Models}}, +volume = {53}, +year = {2007}, +}, + +@article{GbSh:867, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:0711.3045 }, +pages = {155--181}, +title = {{Generalized $E$-Algebras via $\lambda$-Calculus I}}, +volume = {192}, +year = {2006}, +}, + +@article{Sh:868, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:math.LO/0603651 }, +pages = {187--204}, +title = {{When first order $T$ has limit models}}, +volume = {126}, +year = {2012}, +}, + +@article{MtSh:869, +author = {Matet, Pierre and Shelah, Saharon}, +trueauthor = {Matet, Pierre and Shelah, Saharon}, +fromwhere = {F,IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/0612246 }, +title = {{The nonstationary ideal on $P_\kappa(\lambda)$ for + $\lambda$ singular}}, +volume = {submitted}, +}, + +@article{BsSh:870, +author = {Blass, Andreas and Shelah, Saharon}, +trueauthor = {Blass, Andreas and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Quaderni di Matematica}, +note = { arxiv:math/0509406 }, +pages = {1--24}, +series = {Set Theory: Recent Trends and Applications (A. Andretta, + ed.)}, +title = {{Disjoint Non-Free Subgoups of Abelian Groups}}, +volume = {17}, +year = {2006}, +}, + +@article{LwSh:871, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:0711.3043 }, +pages = {1619--1629}, +title = {{A trichotomy of countable, stable, unsuperstable theories}}, +volume = {363}, +year = {2011}, +}, + +@article{KrSh:872, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0601083 }, +pages = {73--104}, +title = {{Decisive creatures and large continuum}}, +volume = {74}, +year = {2009}, +}, + +@article{ShSm:873, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/0609638 }, +pages = {141--151}, +title = {{A characterization of ${\rm Ext}(G,{\mathbb Z})$ assuming + $(V=L)$}}, +volume = {193}, +year = {2007}, +}, + +@article{ShSm:874, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Algebra and Logic}, +note = { arxiv:math.LO/0609637 }, +pages = {200--215}, +title = {{On the $p$-rank of ${\rm Ext}_{\mathbb Z}(G,{\mathbb Z})$ + in certain models of ZFC}}, +volume = {46}, +year = {2007}, +}, + +@article{JrSh:875, +author = {Jarden, Adi and Shelah, Saharon}, +trueauthor = {Jarden, Adi and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Annals of Pure and Applied Logic}, +pages = {135--191}, +title = {{Non-forking frames in abstract elementary classes}}, +volume = {164}, +year = {2013}, +}, + +@article{Sh:876, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO/0603652 }, +pages = {1087-1091}, +title = {{Minimal bounded index subgroup for dependent theories}}, +volume = {136}, +year = {2008}, +}, + +@article{Sh:877, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Tbilisi Mathematical Journal}, +note = { arxiv:math.LO/0609636 }, +title = {{Dependent $T$ and Existence of limit models}}, +volume = {submitted}, +}, + +@article{GaSh:878, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/0512217 }, +pages = {243--248}, +title = {{On ${\rm DEPTH}$ and ${\rm DEPTH}^+$ of Boolean Algebras}}, +volume = {58}, +year = {2008}, +}, + +@article{EFSh:879, +author = {Eklof, Paul C. and Fuchs, Laszlo and Shelah, Saharon}, +trueauthor = {Eklof, Paul C. and Fuchs, Laszlo and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Rocky Mountain Journal of Mathematics}, +note = { arxiv:math.LO/0702293 }, +pages = {1863--1873}, +title = {{Test Groups for Whitehead Groups}}, +volume = {42}, +year = {2012}, +}, + +@article{GbSh:880, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:0711.3011 }, +pages = {1641--1649}, +title = {{Absolutely Indecomposable Modules}}, +volume = {135}, +year = {2007}, +}, + +@article{Sh:881, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Canadian Mathematical Bulletin}, +note = { arxiv:math.LO/0605385 }, +pages = {127--131}, +title = {{The Erdos-Rado Arrow for singular}}, +volume = {52}, +year = {2009}, +}, + +@article{KpSh:882, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/0606216 }, +pages = {799--815}, +title = {{The automorphism tower of a centerless group without + choice}}, +volume = {48}, +year = {2009}, +}, + +@article{Sh:883, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {CUBO, A Mathematical Journal}, +note = { arxiv:math.LO/0609634 }, +pages = {59--79}, +title = {{$\aleph_n$-free abelain group with no non-zero homomorphism to + $\Bbb Z$}}, +volume = {9}, +year = {2007}, +}, + +@article{GoSh:884, +author = {Goldstern, Martin and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Shelah, Saharon}, +fromwhere = {AT, IL}, +journal = {TAMS}, +pages = {7551--7577}, +title = {{All creatures great and small}}, +volume = {368}, +year = {2016}, +}, + +@article{Sh:885, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Canadian Mathematical Bulletin}, +note = { arxiv:math.LO/0404220 }, +pages = {303--314}, +title = {{A comment on ``${\mathfrak p}<{\mathfrak t}$''}}, +volume = {52}, +year = {2009}, +}, + +@article{Sh:886, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Sarajevo Journal of Mathematics}, +note = { arxiv:math.LO/0703045 }, +title = {{Definable groups for dependent and 2-dependent theories}}, +volume = {accepted}, +}, + +@article{Sh:887, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0612353 }, +pages = {340--344}, +title = {{Groupwise density cannot be much bigger than the + unbounded number}}, +volume = {54}, +year = {2008}, +}, + +@incollection{RoSh:888, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +booktitle = {Set Theory and Its Applications}, +fromwhere = {1,IL}, +note = { arxiv:math.LO/0611131 }, +pages = {287--330}, +publisher = {Amer. Math. Soc.}, +series = {Contemporary Mathematics (CONM)}, +title = {{Lords of the iteration}}, +volume = {533}, +year = {2011}, +}, + +@article{RoSh:889, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0607218 }, +pages = {202--220}, +title = {{Generating ultrafilters in a reasonable way}}, +volume = {54}, +year = {2008}, +}, + +@article{RoSh:890, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/0605067 }, +pages = {113--147}, +title = {{Reasonable ultrafilters, again}}, +volume = {52}, +year = {2011}, +}, + +@article{GaSh:891, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/0612247 }, +pages = {636--641}, +title = {{Two cardinal models for singular $\mu$}}, +volume = {53}, +year = {2007}, +}, + +@article{FGSSh:892, +author = {Dror Farjoun, Emmanuel and Goebel, Ruediger and Segev, Yoav + and Shelah, Saharon}, +trueauthor = {Dror Farjoun, Emmanuel and G{\"{o}}bel, R{\"{u}}diger + and Segev, Yoav and Shelah, Saharon}, +fromwhere = {IL,D,IL,IL}, +journal = {Groups, Geometry, and Dynamics}, +note = { arxiv:math.GR/0702294 }, +pages = {409--419}, +title = {{On kernels of cellular covers}}, +volume = {1}, +year = {2007}, +}, + +@incollection{Sh:893, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +booktitle = {Logic Without Borders}, +fromwhere = {IL}, +note = { arxiv:math.LO/1302.4841 }, +publisher = {Ontos Verlag}, +title = {{A.E.C. with not too many models}}, +}, + +@article{MdSh:894, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenber, Heike and Shelah, Saharon}, +fromwhere = {A, IL}, +journal = {Transactions of the American Mathematical Society}, +pages = {2305--2317}, +title = {{The Near Coherence of Filters Principle does not imply + the Filter Dichotomy Principle}}, +volume = {361}, +year = {2009}, +}, + +@article{Sh:895, +author = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Central European Journal of Mathematics}, +note = { arxiv:0707.1818 }, +pages = {213--234}, +title = {{Large continuum, oracles}}, +volume = {8}, +year = {2010}, +}, + +@article{KPSh:896, +author = {Kellner, Jakob and Pauna, Matti and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Pauna, Matti and Shelah, Saharon}, +fromwhere = {A, F, IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0609655 }, +pages = {1323--1335}, +title = {{Winning the pressing down game but not Banach Mazur}}, +volume = {72}, +year = {2007}, +}, + +@article{Sh:897, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Tbilisi Mathematical Journal}, +note = { arxiv:math.LO/0703477 }, +pages = {133--164}, +title = {{Theories with EF-Equivalent Non-Isomorphic Models}}, +volume = {1}, +year = {2008}, +}, + +@article{Sh:898, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Forum Mathematicum}, +note = { arxiv:0710.0157 }, +pages = {967--1038}, +title = {{PCF and abelian groups}}, +volume = {25}, +year = {2013}, +}, + +@article{JuSh:899, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Studia Scientiarum Mathematicarum Hungarica}, +note = { arxiv:math.LO/0702295 }, +pages = {557--562}, +title = {{Hereditarily Lindel{\"{o}}f spaces of singular density}}, +volume = {45}, +year = {2008}, +}, + +@article{Sh:900, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Communications in Contemporary Mathematics}, +note = { arxiv:math.LO/0702292 }, +pages = {1550004 (64 pps.)}, +title = {{Dependent theories and the generic pair conjecture}}, +volume = {17}, +year = {2015}, +}, + +@article{JShS:901, +author = {Juhasz, Istvan and Shelah, Saharon and Soukup, Lajos}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon and Soukup, Lajos}, +fromwhere = {H,IL,IL}, +journal = {Topology and its Applications}, +note = { arxiv:math.GN/0702296 }, +pages = {1966--1969}, +title = {{Resolvability vs. almost resolvability}}, +volume = {156}, +year = {2009}, +}, + +@article{LrSh:902, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematical Logic Quarterly}, +pages = {187--193}, +title = {{The stationary set splitting game}}, +volume = {54}, +year = {2008}, +}, + +@article{MShT:903, +author = {Machura, Michal and Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Machura, Michal and Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {P,IL,IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:math/0611353 }, +pages = {1751--1764}, +title = {{Squares of Menger-Bounded Groups}}, +volume = {362}, +year = {2010}, +}, + +@article{Sh:904, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/0703493 }, +pages = {351--366}, +title = {{Reflexive abelian groups and measurable cardinals and full MAD + families}}, +volume = {63}, +year = {2010}, +}, + +@article{KrSh:905, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/0703302 }, +pages = {51--76}, +title = {{A Sacks real out of Nowhere}}, +volume = {75}, +year = {2010}, +}, + +@article{Sh:906, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {CRM Proceedings and Lecture Notes}, +note = { arxiv:0705.4131 }, +pages = {277--290}, +title = {{No limit model in inaccessibles}}, +volume = {53}, +year = {2011}, +}, + +@article{Sh:907, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:0705.4126 }, +pages = {4405--4412}, +title = {{EF equivalent not isomorphic pair of models}}, +volume = {136}, +year = {2008}, +}, + +@article{Sh:908, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:0705.4130 }, +pages = {397--399}, +title = {{On long increasing chains modulo flat ideals}}, +volume = {56}, +year = {2010}, +}, + +@incollection{GhSh:909, +author = {Gruenhut, Esther and Shelah, Saharon}, +trueauthor = {Gruenhut, Esther and Shelah, Saharon}, +booktitle = {Set Theory and Its Applications}, +fromwhere = {IL,IL}, +note = { arxiv:0906.3055 }, +pages = {267--280}, +publisher = {Amer. Math. Soc.}, +series = {Contemporary Mathematics (CONM)}, +title = {{Uniforming $n$-place functions on well founded trees}}, +volume = {533}, +year = {2011}, +}, + +@incollection{BsSh:910, +author = {Blass, Andreas and Shelah, Saharon}, +trueauthor = {Blass, Andreas and Shelah, Saharon}, +booktitle = {Models, Modules and Abelian Groups, in Memory of A.L.S. + Corner}, +fromwhere = {1,IL}, +note = { arxiv:0711.3031 }, +nt = {Ruediger Goebel and Bendan Goldsmith, editors}, +pages = {63--73}, +publisher = {Walter de Gruyter, Berlin, NY}, +title = {{Basic Subgroups and Freeness, a counterexample}}, +year = {2008}, +}, + +@article{GaSh:911, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Notre Dame Journal of Formal Logic}, +pages = {307--314}, +title = {{Depth of Boolean Algebras}}, +volume = {52}, +year = {2011}, +}, + +@article{KShV:912, +author = {Kennedy, Juliette and Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Kennedy, Juliette and Shelah, Saharon + and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko}, +fromwhere = {F,IL,SF}, +journal = {Journal of Symbolic Logic}, +pages = {817--823}, +title = {{Regular Ultrafilters and Finite Square Principles}}, +volume = {73}, +year = {2008}, +}, + +@article{KpSh:913, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Contemporary Mathematics}, +pages = {187--203}, +title = {{Automorphism towers and automorphism groups of fields without + choice}}, +volume = {576}, +year = {2012}, +}, + +@article{Sh:914, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Tbilisi Mathematical Journal}, +note = { arxiv:0708.1980 }, +pages = {17--30}, +title = {{The First almost free Whitehead group}}, +volume = {4}, +year = {2011}, +}, + +@article{Sh:915, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Topology and its Applications}, +note = { arxiv:1004.2083 }, +pages = {2535--2555}, +title = {{The character spectrum of $\beta(N)$}}, +volume = {158}, +year = {2011}, +}, + +@article{DwSh:916, +author = {Dow, Alan and Shelah, Saharon}, +trueauthor = {Dow, Alan and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Topology and its Applications}, +note = { arxiv:0711.3037 }, +pages = {1661--1671}, +title = {{Tie-points and fixed-points in $\mathbb N^*$}}, +volume = {155}, +year = {2008}, +}, + +@article{DwSh:917, +author = {Dow, Alan and Shelah, Saharon}, +trueauthor = {Dow, Alan and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematica}, +note = { arxiv:0711.3038 }, +pages = {191--210}, +title = {{More on Tie-points and homeomorphism in $\mathbb N^*$}}, +volume = {203}, +year = {2009}, +}, + +@article{Sh:918, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:0902.0440 }, +pages = {507--543}, +title = {{Many partition relations below density}}, +volume = {192}, +year = {2012}, +}, + +@article{CoSh:919, +author = {Cohen, Moran and Shelah, Saharon}, +trueauthor = {Cohen, Moran and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:0906.3050 }, +pages = {140--154}, +title = {{Stable theories and representation over sets}}, +volume = {62}, +year = {2016}, +}, + +@article{GbSh:920, +author = {Goebel, Ruediger and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Results in Mathematics}, +pages = {53--64}, +title = {{$\aleph_n$-free modules with trivial dual}}, +volume = {54}, +year = {2009}, +}, + +@article{ShTb:921, +author = {Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {IL, IL}, +journal = {Topology Proceedings}, +pages = {385--392}, +title = {{On a problem of Juh\'asz and Van Mill}}, +volume = {36}, +year = {2010}, +}, + +@article{Sh:922, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:0711.3030 }, +pages = {2151--2161}, +title = {{Diamonds}}, +volume = {138}, +year = {2010}, +}, + +@article{AMRShS:923, +author = {Ardal, Hayri and Manuch, Jan and Rosenfeld, Moshe and Shelah, + Saharon and Stacho, Ladislav}, +trueauthor = {Ardal, Hayri and Manuch, Jan and Rosenfeld, Moshe and + Shelah, Saharon and Stacho, Ladislav}, +fromwhere = {3,3,1,IL,3}, +journal = {Discrete and Computational Geometry}, +pages = {132--141}, +title = {{The odd-distance plane graph}}, +volume = {42}, +year = {2009}, +}, + +@article{Sh:924, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:1004.3342 }, +pages = {399--417}, +title = {{Models of PA: when two elements are necessarily order + automorphic}}, +volume = {61}, +year = {2015}, +}, + +@article{LrSh:925, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematical Logic Quarterly}, +pages = {299--306}, +title = {{Splitting stationary sets from weak forms of Choice}}, +volume = {55}, +year = {2009}, +}, + +@article{BrSh:926, +author = {Bartoszynski, Tomek and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +pages = {1293--1310}, +title = {{Dual Borel Conjecture and Cohen reals}}, +volume = {75}, +year = {2010}, +}, + +@article{BKSh:927, +author = {Baldwin, John and Kolesnikov, Alexei and Shelah, Saharon}, +trueauthor = {Baldwin, John and Kolesnikov, Alexei and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic}, +pages = {914--928}, +title = {{The amalgamation spectrum}}, +volume = {74}, +year = {2009}, +}, + +@article{ShUs:928, +author = {Shelah, Saharon and Usvyatsov, Alex }, +trueauthor = {Shelah, Saharon and Usvyatsov, Alex}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Unstable Classes of Metric Structures}}, +}, + +@article{HeSh:929, +author = {Herden, Daniel and Shelah, Saharon}, +trueauthor = {Herden, Daniel and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Forum Mathematicum}, +pages = {627--640}, +title = {{$\kappa$-fold transitive groups}}, +volume = {22}, +year = {2010}, +}, + +@article{HeSh:930, +author = {Herden, Daniel and Shelah, Saharon}, +trueauthor = {Herden, Daniel and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Proceedings of the American Mathematical Society}, +pages = {2843--2847}, +title = {{An upper cardinal bound on absolute E-rings}}, +volume = {137}, +year = {2009}, +}, + +@article{ShSr:931, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {Journal of Applied Analysis}, +pages = {69--89}, +title = {{MASAS in the Calkin algebra without the continuum + hypothesis}}, +volume = {17}, +year = {2011}, +}, + +@article{Sh:932, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {TBA: a volume in honor of Andrzej Mostowski}, +note = { arxiv:0903.3614 }, +title = {{Maximal failures of sequence locality in a.e.c.}}, +volume = {submitted}, +}, + +@article{LwSh:933, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/1206.6028 }, +pages = {47--81}, +title = {{$\bold P$-NDOP and $\bold P$-decompositions of + $\aleph_\epsilon$-saturated models of superstable theories}}, +volume = {229}, +year = {2015}, +}, + +@article{HalSh:934, +author = {Hall, Eric and Shelah, Saharon}, +trueauthor = {Hall, Eric and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:0808.0535 }, +pages = {207--216}, +title = {{Partial choice functions for families of finite sets}}, +volume = {220}, +year = {2013}, +}, + +@article{Sh:935, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Canadian Journal of Mathematics}, +note = { arxiv:0904.0816 }, +pages = {1416--1435}, +title = {{MAD Saturated Families and SANE Player}}, +volume = {63}, +year = {2011}, +}, + +@article{EnSh:936, +author = {Enayat, Ali and Shelah, Saharon}, +trueauthor = {Enayat, Ali and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Topology and its Applications}, +pages = {2495--2502}, +title = {{An improper arithmetically closed Borel subalgebra + of $P(\omega)$ mod FIN}}, +volume = {158}, +year = {2011}, +}, + +@article{Sh:937, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:0808.2960 }, +pages = {341--365}, +title = {{Models of expansions of $\Bbb N$ with no end extensions}}, +volume = {57}, +year = {2011}, +}, + +@article{Sh:938, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:0905.3021 }, +pages = {1--40}, +title = {{PCF arithmetic without and with choice}}, +volume = {191}, +year = {2012}, +}, + +@article{KrSh:939, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Archive Math Logic}, +note = { arxiv:0905.3913 }, +pages = {477-501}, +title = {{More on the pressing down game}}, +volume = {50}, +year = {2011}, +}, + +@article{JaSh:940, +author = {Jarden, Adi and Shelah, Saharon}, +trueauthor = {Jarden Adi and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {Notre Dame Journal of Formal Logic}, +title = {{Non forking good frames minus local character}}, +volume = {submitted}, +}, + +@article{RShS:941, +author = {Roslanowski, Andrzej and Shelah, Saharon and Spinas, Otmar}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon and Spinas, + Otmar}, +fromwhere = {1,IL,CH}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:0905.0526 }, +pages = {299--310}, +title = {{Nonproper Products}}, +volume = {44}, +year = {2012}, +}, + +@article{RoSh:942, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:1105.6049 }, +pages = {603--629}, +title = {{More about $\lambda$--support iterations + of $({<}\lambda)$--complete forcing notions}}, +volume = {52}, +year = {2013}, +}, + +@article{GbHSh:943, +author = {Goebel, Ruediger and Herden, Daniel and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Herden, Daniel and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Journal of the European Mathematical Society}, +pages = {845--901}, +title = {{Skeletons, bodies and generalized $E(R)$-algebras}}, +volume = {11}, +year = {2009}, +}, + +@article{Sh:944, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +note = { arxiv:0901.1499 }, +title = {{Models of PA: Standard Systems without Minimal Ultrafilters}}, +}, + +@article{Sh:945, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:0904.0817 }, +title = {{On CON(${\mathfrak d \/}_\lambda >$ cov$_\lambda$(meagre))}}, +volume = {submitted}, +}, + +@article{KpSh:946, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +pages = {585--619}, +title = {{Examples in dependent theories}}, +volume = {49}, +year = {2014}, +}, + +@article{LrNeSh:947, +author = {Larson, Paul and Neeman, Itay and Shelah, Saharon}, +trueauthor = {Larson, Paul and Neeman, Itay and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Fundamenta Mathematicae}, +pages = {173--192}, +title = {{Universally measurable sets in generic extensions}}, +volume = {208}, +year = {2010}, +}, + +@article{GbHeSh:948, +author = {Goebel, Ruediger and Herden, Daniel and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Herden, Daniel and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Advances in Mathematics}, +pages = {235--253}, +title = {{Absolute $E$-rings}}, +volume = {226}, +year = {2011}, +}, + +@article{GaSh:949, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +pages = {766--776}, +title = {{A strong polarized relation}}, +volume = {77}, +year = {2012}, +}, + +@article{Sh:950, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +note = { arxiv:1202.5795 }, +title = {{Dependent dreams: recounting types}}, +volume = {preprint}, +}, + +@article{MdSh:951, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Fundamenta Mathematicae}, +pages = {1--38}, +title = {{Proper translation}}, +volume = {215}, +year = {2011}, +}, + +@article{ShZa:952, +author = {Shelah, Saharon and Zapletal, Jindrich}, +trueauthor = {Shelah, Saharon and Zapletal, Jind\v{r}ich}, +fromwhere = {IL,1}, +journal = {Combinatorica}, +pages = {225--244}, +title = {{Ramsey theorems for product of finite sets with submeasures}}, +volume = {31}, +year = {2011}, +}, + +@incollection{DoSh:953, +author = {Doron, Mor and Shelah, Saharon}, +trueauthor = {Doron, Mor and Shelah, Saharon}, +booktitle = {Fields of Logic and Computation: Essays dedicated to + Yuri Gurevich on the Occasion his 70th Birthday}, +fromwhere = {IL,IL}, +pages = {581--614}, +publisher = {Springer, A. Blass, N. Dershowitz, W. Reisig (eds.)}, +series = {Lecture Notes in Computer Science}, +title = {{Hereditary Zero-One Laws for Graphs}}, +volume = {6300}, +year = {2010}, +}, + +@article{FaSh:954, +author = {Farah, Ilijas and Shelah, Saharon}, +trueauthor = {Farah, Ilijas and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Journal of Mathematical Logic}, +pages = {45--81}, +title = {{A Dichotomy for the number of ultrapowers}}, +volume = {10}, +year = {2010}, +}, + +@article{Sh:955, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:1107.4625 }, +pages = {185--231}, +title = {{Pseudo PCF}}, +volume = {201}, +year = {2014}, +}, + +@article{GaSh:956, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of the Mathematical Society of Japan}, +pages = {549--559}, +title = {{$(\kappa, \theta)$-weak normality}}, +volume = {64}, +year = {2012}, +}, + +@article{RoSh:957, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Annals of Combinatorics}, +note = { arxiv:1005.2803 }, +pages = {353--378}, +title = {{Partition theorems from creatures and idempotent + ultrafilters}}, +volume = {17}, +year = {2013}, +}, + +@article{BlSh:958, +author = {Baldwin, John and Shelah, Saharon}, +trueauthor = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematica}, +pages = {255-270}, +title = {{A Hanf number for saturation and omission}}, +volume = {213}, +year = {2011}, +}, + +@article{BlSh:959, +author = {Baldwin, John and Shelah, Saharon}, +trueauthor = {Baldwin, John and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Mathematical Logic}, +pages = {19 pps.}, +title = {{The stability spectrum for classes of atomic models}}, +volume = {12}, +year = {2012}, +}, + +@article{Sh:960, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Sarajevo Journal of Mathematics}, +note = { arxiv:1005.2802 }, +title = {{Preserving old $([\omega]^{\aleph_0},\supseteq)$ is proper}}, +volume = {submitted}, +}, + +@article{KrSh:961, +author = {Kellner, Jakob and Shelah, Saharon}, +trueauthor = {Kellner, Jakob and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:1003.3425 }, +pages = {49--70}, +title = {{Creature forcing and large continuum: the joy of halving}}, +volume = {51}, +year = {2012}, +}, + +@article{GaSh:962, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Combinatorics}, +pages = {709--717}, +title = {{Combinatorial aspects of the splitting number}}, +volume = {16}, +year = {2012}, +}, + +@article{CDMMSh:963, +author = {Cummings, James and Dzamonja, Mirna and Magidor, Menachem and + Morgan, Charles and Shelah, Saharon}, +trueauthor = {Cummings, James and D\v{z}amonja, Mirna and Magidor, + Menachem and Morgan, Charles and Shelah, Saharon}, +fromwhere = {1,UK,IL,UK,IL}, +journal = {Transactions of the AMS}, +note = { arxiv:math.LO/1403.6795v1 }, +title = {{A framework for forcing constructions at successors of + singular cardinals}}, +volume = {accepted}, +}, + +@article{GaSh:964, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Combinatorics}, +pages = {271--276}, +title = {{Strong polarized relations for the continuum}}, +volume = {16}, +year = {2012}, +}, + +@article{LrMaSh:965, +author = {Larson, Paul and Matteo, Nick and Shelah, Saharon}, +trueauthor = {Larson, Paul and Matteo, Nicholas and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Discrete Mathematics}, +pages = {1336--1352}, +title = {{Majority decisions when abstention is possible}}, +volume = {312}, +year = {2012}, +}, + +@article{JrSh:966, +author = {Jarden, Adi and Shelah, Saharon}, +trueauthor = {Jarden, Adi and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Existence of uniqueness triples without stability}}, +}, + +@article{MdSh:967, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Symbolic Logic}, +pages = {1322--1340}, +title = {{The minimal cofinality of an ultrapower of $\omega$ and the + cofinality of the symmetric group can be larger than + $\mathfrak{\lowercase{b}}^+$ }}, +volume = {76}, +year = {2011}, +}, + +@article{ShSm:968, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/1401.5317 }, +title = {{On the p-rank of {$\bf Ext(A,B)$} for countable abelian groups + $\bf A$ and $\bf B$}}, +volume = {submitted}, +}, + +@article{GoKrShWo:969, +author = {Goldstern, Martin and Kellner, Jakob and Shelah, Saharon and + Wohofsky, Wolfgang}, +fromwhere = {A, A, IL, A}, +journal = {Transactions of the American Mathematical Society}, +note = { arxiv:1105.0823 }, +pages = {245--307}, +title = {{Borel Conjecture and Dual Borel Conjecture}}, +volume = {366}, +year = {2014}, +}, + +@article{GbHeSh:970, +author = {Goebel, Ruediger and Herden, Daniel and Shelah, Saharon}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Herden, Daniel and Shelah, + Saharon}, +fromwhere = {D,D,IL}, +journal = {Journal of the European Mathematical Society}, +title = {{Prescribing endomorphism rings of $\aleph_n$-free modules}}, +volume = {accepted}, +}, + +@article{KhSh:971, +author = {Khelif, Anatole and Shelah, Saharon}, +trueauthor = {Khelif, Anatole and Shelah, Saharon}, +fromwhere = {F,IL}, +journal = {Comptes Rendus de l\'Academie des Sciences}, +pages = {1241--1244}, +title = {{Equivalence \'el\'ementaire de puissances cart\'esiennes d'un + meme groupe}}, +volume = {348}, +year = {2010}, +}, + +@article{RoSh:972, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Periodica Mathematica Hungarica}, +note = { arxiv:1007.5368 }, +pages = {79--95}, +title = {{Monotone hulls for ${\mathcal N}\cap {\mathcal M}$}}, +volume = {69}, +year = {2014}, +}, + +@article{MdSh:973, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/1309.0196 }, +pages = {573--608}, +title = {{Many countable support iterations of proper forcings preserve + Souslin trees}}, +volume = {165}, +year = {2014}, +}, + +@article{GaSh:974, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{${\rm DEPTH}^+$ and ${\rm LENGTH}^+$ of Boolean Algebras}}, +}, + +@article{KpSh:975, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Israel Journal of Mathematics}, +pages = {45 pps.}, +title = {{A dependent theory with few indiscernibles}}, +volume = {accepted}, +year = {2014}, +}, + +@article{ShSm:976, +author = {Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {Shelah, Saharon and Str{\"{u}}ngmann, Lutz}, +fromwhere = {IL,D}, +journal = {Bulletin of the London Mathematical Society}, +pages = {1198--1204}, +title = {{Kulikov's problem on universal torsion-free abelian + groups revisited }}, +volume = {43}, +year = {2011}, +}, + +@article{Sh:977, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {(Groups and Model theory) Contemporary Mathematics}, +pages = {305--316}, +title = {{Modules and Infinitary Logics}}, +volume = {576}, +year = {2012}, +}, + +@article{MiSh:978, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Transactions of the American Mathematical Society}, +pages = {1551--1585}, +title = {{Regularity lemmas for stable graphs}}, +volume = {366}, +year = {2014}, +}, + +@article{SiSh:979, +author = {Shelah, Saharon and Simon, Pierre}, +trueauthor = {Shelah, Saharon and Simon, Pierre}, +fromwhere = {IL,F}, +journal = {Journal of Symbolic Logic}, +pages = {717--725}, +title = {{Adding linear orders}}, +volume = {77}, +year = {2012}, +}, + +@article{Sh:980, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +title = {{Nice $\aleph_1$ generated non-$P$-points, I}}, +volume = {submitted/under revision}, +}, + +@article{GbShSm:981, +author = {Goebel, Rudiger and Shelah, Saharon and Struengmann, Lutz}, +trueauthor = {G{\"{o}}bel, R{\"{u}}diger and Shelah, Saharon and + Str{\"{u}}ngmann, Lutz}, +fromwhere = {D, IL, D}, +journal = {Glasgow Mathematical Journal}, +pages = {369--380}, +title = {{$\aleph_n$-free Modules over complete discrete + valuation domains with small dual}}, +volume = {55}, +year = {2013}, +}, + +@article{LcSh:982, +author = {Luecke, Philipp and Shelah, Saharon}, +trueauthor = {L{\"{u}}cke, Philipp and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Archive for Mathematical Logic}, +pages = {433--441}, +title = {{External Automorphisms of Ultraproducts of Finite Models }}, +volume = {51}, +year = {2012}, +}, + +@article{PnSh:983, +author = {Pinsker, Michael and Shelah, Saharon}, +trueauthor = {Pinsker, Michael and Shelah, Saharon}, +fromwhere = {A,IL}, +journal = {Proceedings of the AMS}, +pages = {3005--3011}, +title = {{Universality of the lattice of transformation monoids}}, +volume = {141}, +year = {2013}, +}, + +@article{DwSh:984, +author = {Dow, Alan and Shelah, Saharon}, +trueauthor = {Dow, Alan and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Houston Journal of Mathematics}, +pages = {1423--1435}, +title = {{An Efimov space from Martin's axiom}}, +volume = {39}, +year = {2013}, +}, + +@article{DwSh:985, +author = {Dow, Alan and Shelah, Saharon}, +trueauthor = {Dow, Alan and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Rend. Circ. Mat. Palermo}, +pages = {107--115}, +title = {{Martin's axiom and separated MAD families}}, +volume = {(2) 61}, +year = {2012}, +}, + +@article{HbSh:986, +author = {Haber, Simi and Shelah, Saharon}, +trueauthor = {Haber, Simi and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of the American Mathematical Society}, +note = { arxiv:math.LO/1510.06574 }, +title = {{Random graphs and Lindstr\"{o}m quantifiers for natural graph + properties}}, +volume = {preprint}, +}, + +@article{FaSh:987, +author = {Farah, Ilijas and Shelah, Saharon}, +trueauthor = {Farah, Ilijas and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Israel Journal of Mathematics}, +title = {{Trivial automorphisms}}, +volume = {accepted}, +}, + +@article{MdSh:988, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Notre Dame Journal of Formal Logic}, +title = {{Specialising Aronszajn trees with strong axiom A and + halving}}, +volume = {submitted}, +}, + +@article{GoSaSh:989, +author = {Goldstern, Martin and Sagi, Gabor and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and S\'agi, G\'abor and Shelah, + Saharon}, +fromwhere = {IL}, +journal = {Algebra Universalis}, +pages = {387--399}, +title = {{Very many clones above the unary clone}}, +volume = {69}, +year = {2013}, +}, + +@article{ShSr:990, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {European Journal of Mathematics}, +pages = {11 pages}, +title = {{Nontrivial automorphisms of + $\mathcal{P}(\mathbb{N})/ [\mathbb{N}]^{<\aleph_0}$ from variants of + small dominating number}}, +volume = {published online}, +year = {2015}, +}, + +@article{RaSh:991, +author = {Raghavan, Dilip and Shelah, Saharon}, +trueauthor = {Raghavan, Dilip and Shelah, Saharon}, +fromwhere = {3, IL}, +journal = {Fundamenta Mathematicae}, +pages = {73--81}, +title = {{Comparing the closed almost disjointness and dominating + numbers}}, +volume = {217}, +year = {2012}, +}, + +@article{BlSh:992, +author = {Baldwin, John T. and Shelah, Saharon}, +trueauthor = {Baldwin, John T. and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Mathematical Logic Quarterly}, +pages = {437--443}, +title = {{A Hanf number for saturation and omission: the superstable + case }}, +volume = {60}, +year = {2014}, +}, + +@article{KpSh:993, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +pages = {1322--1337}, +title = {{Chain conditions in dependent groups}}, +volume = {164}, +year = {2013}, +}, + +@article{GoPnSh:994, +author = {Goldstern, Martin and Pinsker, Michael and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Pinsker, Michael and Shelah, + Saharon}, +fromwhere = {A,A,IL}, +journal = {International Journal of Algebra and Computation}, +pages = {1115--1125}, +title = {{A closed algebra with a non-Borel clone and an ideal with a + Borel clone}}, +volume = {23}, +year = {2013}, +}, + +@article{GaSh:995, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of the Mathematical Society of Japan (JMSJ)}, +pages = {425--434}, +title = {{Partition calculus and cardinal invariants}}, +volume = {66}, +year = {2014}, +}, + +@article{MiSh:996, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Transactions of the American Mathematical Society}, +pages = {8139--8173}, +title = {{Constructing regular ultrafilters from a model-theoretic point + of view}}, +volume = {367}, +year = {2015}, +}, + +@article{MiSh:997, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of Symbolic Logic}, +pages = {103--134}, +title = {{Model-theoretic properties of ultrafilters built by + independent families of functions}}, +volume = {79}, +year = {2014}, +}, + +@article{MiSh:998, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Journal of the American Mathematical Society}, +note = { arxiv:1208.5424 }, +pages = {237--297}, +title = {{Cofinality spectrum theorems in model theory, set theory and + general topology}}, +volume = {29}, +year = {2016}, +}, + +@article{MiSh:999, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Advances in Mathematics}, +pages = {250--288}, +title = {{A dividing line within simple unstable theories}}, +volume = {249}, +year = {2013}, +}, + +@article{Sh:1000, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{SAVED}}, +}, + +@article{RoSh:1001, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:1406.4217 }, +title = {{The last forcing standing with diamonds}}, +volume = {submitted}, +}, + +@article{GaSh:1002, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Acta Mathematica Hungarica}, +pages = {296--301}, +title = {{The ultrafilter number for singular cardinals}}, +volume = {137}, +year = {2012}, +}, + +@article{BlLrSh:1003, +author = {Baldwin, John T. and Larson, Paul B. and Shelah, Saharon}, +trueauthor = {Baldwin, John T. and Larson, Paul B. and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic }, +title = {{Almost Galois $\omega$-Stable classes}}, +volume = {accepted modulo corrections}, +}, + +@article{Sh:1004, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:1202.5799 }, +title = {{A parallel to the null ideal for inaccessible $\lambda$}}, +volume = {submitted}, +}, + +@article{Sh:1005, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:math.LO/1411.7164 }, +pages = {239--294}, +title = {{ZF + DC + AX$_4$}}, +volume = {55}, +year = {2016}, +}, + +@article{Sh:1006, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +note = { arxiv:math.LO/1205.0064 }, +pages = {363--371}, +title = {{On incompactness for chromatic number of graphs}}, +volume = {139(4)}, +year = {2013}, +}, + +@article{CeKpSh:1007, +author = {Chernikov, Artem and Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Chernikov, Artem and Kaplan, Itay and Shelah, Saharon}, +fromwhere = {R,IL,IL}, +journal = {Journal of the European Mathematical Society}, +note = { arxiv:math.LO/1205.3101 }, +pages = {2821--2848}, +title = {{On non-forking spectra}}, +volume = {18}, +year = {2016}, +}, + +@article{Sh:1008, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +note = { arxiv:1206.2048 }, +pages = {11--35}, +title = {{Non-reflection of the bad set for $\check I_\theta[\lambda]$ + and pcf}}, +volume = {141}, +year = {2013}, +}, + +@incollection{MiSh:1009, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +booktitle = {Logic without borders}, +fromwhere = {1,IL}, +note = { arxiv:math.LO/1208.5585 }, +series = {Roman Kossak is organizing a volume in honor of Jouko + Vaananen's 60th birthday}, +title = {{Saturating the random graph with an independent family of + small range}}, +}, + +@article{ShUb:1010, +author = {Shelah, Saharon and Usuba, Toshimichi}, +trueauthor = {Shelah, Saharon and Usuba, Toshimichi}, +fromwhere = {IL, J}, +journal = {Fundamenta Mathematicae}, +title = {{$\omega_1$-Stationary preserving $\sigma$-Baire posets of + size $\aleph_1$ }}, +volume = {submitted}, +}, + +@article{KeShVa:1011, +author = {Kennedy, Juliette and Shelah, Saharon and Vaananen, Jouko}, +trueauthor = {Kennedy, Juliette and Shelah, Saharon and + V{\"{a}}{\"{a}}n{\"{a}}nen}, +fromwhere = {F,IL,SF}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/1307.6396 }, +pages = {417--428}, +title = {{Regular Ultrapowers at Regular Cardinals}}, +volume = {56}, +year = {2015}, +}, + +@article{GaSh:1012, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Fundamenta Mathematicae}, +pages = {14pps}, +title = {{Open and solved problems concerning polarized partition + relations}}, +volume = {234}, +year = {2016}, +}, + +@article{GiSh:1013, +author = {Gitik, Moti and Shelah, Saharon}, +trueauthor = {Gitik, Moti and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/1307.5977 }, +pages = {855--865}, +title = {{Applications of pcf for mild large cardinals to + elementary embeddings}}, +volume = {164}, +year = {2013}, +}, + +@article{LcSh:1014, +author = {Luecke, Philipp and Shelah, Saharon}, +trueauthor = {L{\"{u}}cke, Philipp and Shelah, Saharon}, +fromwhere = {D, IL}, +journal = {Forum of Mathematics, Sigma}, +note = { arxiv:1211.6891 }, +pages = {18 pps}, +title = {{Free groups and automorphism groups of infinite structures}}, +volume = {2}, +year = {2014}, +}, + +@article{KsSh:1015, +author = {Koszmider, Piotr and Shelah, Saharon}, +trueauthor = {Koszmider, Piotr and Shelah, Saharon}, +fromwhere = {P, IL}, +journal = {Algebra Universalis}, +note = { arxiv:math.LO/1209.0177 }, +pages = {305--312}, +title = {{Independent families in Boolean algebras with some separation + properties}}, +volume = {69}, +year = {2013}, +}, + +@article{LwSh:1016, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/1211.0558 }, +pages = {1--46}, +title = {{Borel completeness of some $aleph_0$-stable theories}}, +volume = {229}, +year = {2015}, +}, + +@article{Sh:1017, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Geombinatorics}, +pages = {108--126}, +title = {{Ordered black boxes: existence}}, +volume = {23}, +year = {2014}, +}, + +@article{Sh:1018, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Compactness of chromatic number II}}, +}, + +@article{Sh:1019, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:new }, +title = {{Model theory for a compact cardinal}}, +}, + +@article{ShUs:1020, +author = {Shelah, Saharon and Usvyatsov, Alex}, +trueauthor = {Shelah, Saharon and Usvyatsov, Alex}, +fromwhere = {IL,IL}, +journal = {preprint}, +note = { arxiv:math.LO/1402.6513 }, +title = {{Minimal types in the stable Banach spaces}}, +year = {2008-09-25}, +}, + +@article{MdSh:1021, +author = {Mildenberger, Heike and Shelah, Saharon}, +trueauthor = {Mildenberger, Heike and Shelah, Saharon}, +fromwhere = {D,IL}, +journal = {Journal of Symbolic Logic}, +title = {{The cofinality of the symmetric group and the cofinality of + ultrapowers}}, +volume = {submitted}, +}, + +@article{RoSh:1022, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Colloquium Mathematicum}, +note = { arxiv:1304.5683 }, +pages = {211--225}, +title = {{Around {\tt cofin}}}, +volume = {134}, +year = {2014}, +}, + +@article{Sh:1023, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +note = { arxiv:math.LO/1308.2394 }, +title = {{Indecomposable explicit abelian group, Withdrawn}}, +}, + +@article{KuKuSh:1024, +author = {Kuhlmann, Katarzyna and Kuhlmann, Franz-Viktor and Shelah, + Saharon}, +trueauthor = {Kuhlmann, Katarzyna and Kuhlmann, Franz-Viktor and Shelah, + Saharon}, +fromwhere = {C,C,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/1308.0780 }, +title = {{Symmetrically complete ordered sets, abelian groups and + fields}}, +volume = {preprint}, +}, + +@article{JuSh:1025, +author = {Juhasz, Istvan and Shelah, Saharon}, +trueauthor = {Juh\'asz, Istv\'an and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Proceedings of the AMS}, +note = { arxiv:math.LO/1307.1989 }, +pages = {2241--2247}, +title = {{Strong colorings yield $\kappa$-bounded spaces with discretely + untouchable points}}, +volume = {143}, +year = {2015}, +}, + +@article{Sh:1026, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +note = { arxiv:new }, +title = {{The spectrum of ultraproducts of finite cardinals for + ultrafilter}}, +volume = {submitted}, +}, + +@article{Sh:1027, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Acta Mathematica Hungarica}, +note = { arxiv:new }, +title = {{The coloring existence theorem revisited}}, +volume = {submitted}, +}, + +@article{Sh:1028, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/1404.2775 }, +title = {{Quite free complicated abelian group, pcf and BB}}, +volume = {accepted}, +}, + +@article{Sh:1029, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Forum Mathematicum}, +note = { arxiv:math.LO/1311.4997 }, +pages = {573--585}, +title = {{No universal group in a cardinal}}, +volume = {28}, +year = {2016}, +}, + +@article{MiSh:1030, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Advances in Mathematics}, +note = { arxiv:math.LO/1404.2919 }, +pages = {614--681}, +title = {{Existence of optimal ultrafilters and the fundamental + complexity of simple theories}}, +volume = {290}, +year = {2016}, +}, + +@article{FRSh:1031, +author = {Filipczak, Tomasz and Roslanowski, Andrzej and Shelah, + Saharon}, +trueauthor = {Filipczak, Tomasz and Ros{\l}anowski, Andrzej and + Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Real Analysis Exchange}, +note = { arxiv:1308.3749 }, +pages = {129-140}, +title = {{On Borel hull operations}}, +volume = {40}, +year = {2015}, +}, + +@article{MaShTs:1032, +author = {Machura, Michal and Shelah, Saharon and Tsaban, Boaz}, +trueauthor = {Machura, Michal and Shelah, Saharon and Tsaban, Boaz}, +fromwhere = {P,IL,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/1404.2239 }, +pages = {15--40}, +title = {{The linear refinement number and selection theory}}, +volume = {234}, +year = {2016}, +}, + +@article{ChSh:1033, +author = {Cherlin, Gregory and Shelah, Saharon}, +trueauthor = {Cherlin, Gregory and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Combinatorica}, +note = { arxiv:math.LO/1404.5757 }, +title = {{Universal graphs with a forbidden subgraph: Block path + solidity}}, +volume = {accepted}, +}, + +@article{ShVaVe:1034, +author = {Shelah, Saharon and Vaananen, Jouko and Velickovic, Boban}, +trueauthor = {Shelah, Saharon and V{\"{a}}{\"{a}}n{\"{a}}nen, Jouko and + Veli\v{c}kovi\'c, Boban}, +fromwhere = {IL,SF,}, +journal = {Journal of Symbolic Logic}, +pages = {285--300}, +title = {{Positional Strategies in long Ehrenfeucht-Fra{\"{i}}ss\'e + games}}, +volume = {80}, +year = {2015}, +}, + +@article{CeSh:1035, +author = {Chernikov, Artem and Shelah, Saharon}, +trueauthor = {Chernikov, Artem and Shelah, Saharon}, +fromwhere = {R,IL}, +journal = {Journal of the Institute of Mathematics of Jussieu}, +note = { arxiv:math.LO/1308.3099 }, +title = {{On the number of Dedekind cuts and two-cardinal models of + dependent theories}}, +volume = {accepted}, +}, + +@article{Sh:1036, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/1310.4042 }, +title = {{Forcing axioms for $ \lambda $-complete $\mu ^+ $-c.c.}}, +volume = {submitted}, +}, + +@article{BaLaSh:1037, +author = {Baldwin, John and Laskowski, Chris and Shelah, Saharon}, +trueauthor = {Baldwin, John and Laskowski, Chris and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {Journal of Symbolic Logic}, +title = {{Constructing many atomic models in $\aleph_1$}}, +volume = {submitted}, +}, + +@article{ShSi:1038, +author = {Shelah, Saharon and Spinas, Otmar}, +trueauthor = {Shelah, Saharon and Spinas, Otmar}, +fromwhere = {IL,CH}, +journal = {Journal of Symbolic Logic}, +note = { arxiv:math.LO/1402.5616 }, +title = {{Mad spectra}}, +volume = {accepted}, +}, + +@article{GnSh:1039, +author = {Greenberg, Noam and Shelah, Saharon}, +trueauthor = {Greenberg, Noam and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Annals of Pure and Applied Logic}, +note = { arxiv:math.LO/1309.3938 }, +pages = {1557--1576}, +title = {{Models of Cohen measurability}}, +volume = {165}, +year = {2014}, +}, + +@article{GaMaSh:1040, +author = {Garti, Shimon and Magidor, Menachem and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Magidor, Menachem and Shelah, Saharon}, +fromwhere = {IL,IL,IL}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/1601.01409 }, +title = {{On the spectrum of characters of ultrafilters}}, +volume = {accepted}, +}, + +@article{BgSh:1041, +author = {Bagaria, Joan and Shelah, Saharon}, +trueauthor = {Bagaria, Joan and Shelah, Saharon}, +fromwhere = {SP,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:math.LO/1404.2776 }, +pages = {181--197}, +title = {{On partial orderings having precalibre-$\aleph_1$ and + fragments of Martin's axiom}}, +volume = {232}, +year = {2016}, +}, + +@article{FaSh:1042, +author = {Farah, Ilijas and Shelah, Saharon}, +trueauthor = {Farah, Ilijas and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Journal of Institute of Mathematics at Jussieu}, +note = { arxiv:math.LO/1401.6689 }, +pages = {1--28}, +title = {{Rigidity of continuous quotients}}, +volume = {15}, +year = {2016}, +}, + +@article{Sh:1043, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Mathematical Logic Quarterly}, +note = { arxiv:math.LO/1412.0421 }, +title = {{Superstable theories and representation}}, +volume = {submitted}, +}, + +@article{FiGoKrSh:1044, +author = {Fischer, Arthur and Goldstern, Martin and Kellner, Jakob and + Shelah, Saharon}, +fromwhere = {CA,AT,AT,IL}, +journal = {Archive for Mathematical Logic}, +note = { arxiv:1402.0367 }, +title = {{Creature forcing and five cardinal characteristics of the + continuum}}, +volume = {accepted; Baumgartner issue}, +}, + +@article{Sh:1045, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Quite free Abelian groups with prescribed endomorphism ring}}, +}, + +@article{KmSh:1046, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN, IL}, +journal = {Journal of Symbolic Logic}, +title = {{RVM, RVC Revisited: Clubs and Lusin sets}}, +volume = {submitted}, +}, + +@article{GaSh:1047, +author = {Garti, Shimon and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Bulletin of the London Mathematical Society}, +note = { arxiv:math.LO/1609.00242 }, +title = {{How you are with $\mathfrak{s}$ and $\mathfrak{r}$}}, +volume = {submitted}, +}, + +@article{Sh:1048, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:new }, +title = {{Hanf number for the strictly stable cases}}, +volume = {submitted}, +}, + +@article{HeSh:1049, +author = {Herden, Daniel and Shelah, Saharon}, +trueauthor = {Herden, Daniel and Shelah, Saharon}, +fromwhere = {G,IL}, +journal = {preprint}, +title = {{On group well represented as automorphic groups of groups}}, +}, + +@article{MiSh:1050, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Israel Journal of Mathematics}, +title = {{Keisler's order has infinitely many classes}}, +volume = {submitted}, +}, + +@article{MiSh:1051, +author = {Maryanthe Malliaris and Shelah, Saharon}, +trueauthor = {Maryanthe Malliaris and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Israel Journal of Mathematics}, +title = {{Model-theoretic applications of cofinality spectrum + problems}}, +volume = {accepted}, +}, + +@article{Sh:1052, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {Proceedings of the American Mathematical Society}, +note = { arxiv:math.LO1503.02423 }, +pages = {5371--5383}, +title = {{Lower bounds on coloring numbers from hardness hypotheses in + PCF theory}}, +volume = {144}, +year = {2016}, +}, + +@article{ShWo:1053, +author = {Shelah, Saharon and Wohofsky, Wolfgang}, +trueauthor = {Shelah, Saharon and Wohofsky, Wolfgang}, +fromwhere = {IL,AT}, +journal = {Mathematical Logic Quarterly}, +pages = {434--438}, +title = {{There are no very meager sets in the model in which both the + Borel Conjecture and the dual Borel Conjecture are true}}, +volume = {62}, +year = {2016}, +}, + +@article{KpSh:1054, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Mathematical Logic Quarterly}, +title = {{Forcing a countable structure to belong to the ground model}}, +volume = {submitted}, +}, + +@article{KpLaSh:1055, +author = {Kaplan, Itay and Lavi, Noa and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Lavi, Noa and Shelah, Saharon}, +fromwhere = {IL,IL,IL}, +journal = {Israel Journal of Mathematics}, +title = {{The generic pair conjecture for dependent finite diagrams}}, +volume = {accepted}, +}, + +@article{BrLrSh:1056, +author = {Bartoszynski, Tomek and Larson, Paul and Shelah, Saharon}, +trueauthor = {Bartoszy\'nski, Tomek and Larson, Paul and Shelah, + Saharon}, +fromwhere = {1,1,IL}, +journal = {Fundamenta Mathematicae}, +title = {{Closed sets which consistently have few translations covering + the line}}, +volume = {submitted}, +}, + +@article{DwSh:1057, +author = {Dow, Alan and Shelah, Saharon}, +trueauthor = {Dow, Alan and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {preprint}, +title = {{To be announced}}, +}, + +@article{RaSh:1058, +author = {Raghavan, Dilip and Shelah, Saharon}, +trueauthor = {Raghavan, Dilip and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Transactions of the American Mathematical Society}, +title = {{On embedding certain partial orders into the P-points under + RK and Tukey reducibility}}, +volume = {accepted}, +}, + +@article{HbSh:1059, +author = {Haber, Simi and Shelah, Saharon}, +trueauthor = {Haber, Simi and Shelah, Saharon}, +fromwhere = {IL, IL}, +note = { arxiv:math.LO/1510.06581 }, +pages = {226--236}, +series = {Lecture Notes in Computer Science}, +title = {{An extension of the Ehrenfeucht-Fra{\"{\i}}sse game for + \mbox{first order} logics augmented with Lindstr\"{o}m quantifiers}}, +volume = {9300}, +year = {2015}, +}, + +@article{RaSh:1060, +author = {Raghavan, Dilip and Shelah, Saharon}, +trueauthor = {Raghavan, Dilip and Shelah, Saharon}, +fromwhere = {3,IL}, +journal = {Fundamenta Mathematicae}, +note = { arxiv:LO/1505.06296 }, +title = {{Two inequalities between cardinal invariants}}, +volume = {accepted}, +}, + +@article{Sh:1061, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +pages = {293--296}, +series = {Lecture Notes in Computer Science}, +title = {{On failure of 0-1 laws}}, +volume = {9300}, +year = {2015}, +}, + +@article{Sh:1062, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Failure of 0-1 law for sparse random graph in strong logics}}, +}, + +@article{KmSh:1063, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN, IL}, +journal = {Mathematical Logic Quarterly}, +title = {{Clubs on quasi measurable cardinals}}, +volume = {submitted}, +}, + +@article{Sh:1064, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +note = { arxiv:math.LO/1601.04824 }, +title = {{Atomic saturation of reduced powers}}, +}, + +@article{Sh:1065, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{On many simple $T$'s for $SP^{(*)}$}}, +}, + +@article{GoMeSh:1066, +author = {Goldstern, Martin and Mejia, Diego and Shelah, Saharon}, +trueauthor = {Goldstern, Martin and Mej\'{\i}a, Diego A. and Shelah, + Saharon}, +fromwhere = {AT,AT,IL}, +journal = {Proceedings of the AMS}, +note = { arxiv:math.LO/1504.04192 }, +pages = {4025--4042}, +title = {{The left side of Cicho\'n's Diagram}}, +volume = {144}, +year = {2016}, +}, + +@article{HwSh:1067, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Saccharinity with ccc}}, +}, + +@article{KmSh:1068, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN,IL}, +journal = {Advances in Mathematics}, +title = {{A transversal of full outer measure}}, +volume = {submitted}, +}, + +@article{MiSh:1069, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {preprint}, +title = {{Open problems on ultrafilters and some connections to the + continuum}}, +}, + +@article{MiSh:1070, +author = {Malliaris, Maryanthe and Shelah, Saharon}, +trueauthor = {Malliaris, Maryanthe and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Topology and Applications}, +title = {{Cofinality spectrum problems: the axiomatic approach}}, +volume = {accepted; special volume in honor of Alan Dow}, +}, + +@article{ShSr:1071, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Stepr\={a}ns, Juris}, +fromwhere = {IL, 3}, +journal = {Fundamenta Mathematicae}, +pages = {167--181}, +title = {{When automorphisms of + $\mathcal{P}(\kappa)/[\kappa]^{<\aleph_0}$ are trivial off a small + set}}, +volume = {235(2)}, +year = {2016}, +}, + +@article{MhSh:1072, +author = {Mohsenipour, Shahram and Shelah, Saharon}, +trueauthor = {Mohsenipour, Shahram and Shelah, Saharon}, +fromwhere = {IR,IL}, +journal = {Notre Dame Journal of Formal Logic}, +note = { arxiv:math.LO/1510.02216 }, +title = {{Set mappings on 4-tuples}}, +volume = {accepted}, +}, + +@article{LrSh:1073, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {preprint}, +title = {{On the absoluteness of orbital $\omega$-stability}}, +}, + +@article{KpShSi:1074, +author = {Kaplan, Itay and Shelah, Saharon and Simon, Pierre}, +trueauthor = {Kaplan, Itay and Shelah, Saharon and Simon, Pierre}, +fromwhere = {IL,IL,F}, +journal = {Journal of Mathematical Logic}, +title = {{Exact saturation in simple and NIP theories}}, +volume = {accepted}, +}, + +@article{GsSh:1075, +author = {Golshani, Mohammad and Shelah, Saharon}, +trueauthor = {Golshani, Mohammad and Shelah, Saharon}, +fromwhere = {IR, IL}, +journal = {Journal of Mathematical Logic}, +note = { arxiv:math.LO/1510.06278 }, +pages = {34 pps}, +title = {{On cuts in ultraproducts of linear orders I}}, +volume = {16}, +year = {2016}, +}, + +@article{LrSh:1076, +author = {Larson, Paul and Shelah, Saharon}, +trueauthor = {Larson, Paul and Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Mathematical Logic Quarterly}, +title = {{Coding with canonical functions}}, +volume = {submitted}, +}, + +@article{Sh:1077, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +note = { arxiv:math.LO/1511.05383 }, +title = {{Random graph: stronger logic but with the zero one law}}, +}, + +@article{KmSh:1078, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN, IL}, +journal = {Fundamenta Mathematicae}, +title = {{Entire functions with small orbits}}, +volume = {accepted}, +}, + +@article{KmSh:1079, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN,IL}, +journal = {Fundamenta Mathematicae}, +title = {{Avoiding equal distances}}, +volume = {accepted}, +}, + +@article{KoSh:1080, +author = {Komjath, Peter and Shelah, Saharon}, +trueauthor = {Komjath, Peter and Shelah, Saharon}, +fromwhere = {H,IL}, +journal = {Israel Journal of Mathematics}, +title = {{Consistently $\mathcal P (\omega_1)$ is the union of less + than $2^{\aleph_1}$ strongly independent families}}, +volume = {submitted}, +}, + +@article{RoSh:1081, +author = {Roslanowski, Andrzej and Shelah, Saharon}, +trueauthor = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {Mathematica Slovaca}, +title = {{Small--large subgroups of the reals}}, +volume = {accepted}, +}, + +@article{KpSh:1082, +author = {Kaplan, Itay and Shelah, Saharon}, +trueauthor = {Kaplan, Itay and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {Journal of Symbolic Logic}, +title = {{Decidability and classification of the theory of integers + with primes}}, +volume = {submitted}, +}, + +@article{GaHaSh:1083, +author = {Garti, Shimon and Hayut, Yair and Shelah, Saharon}, +trueauthor = {Garti, Shimon and Hayut, Yair and Shelah, Saharon}, +fromwhere = {IL,IL,IL}, +journal = {Israel Journal of Mathematics}, +note = { arxiv:math.LO/1601.07745 }, +title = {{On the verge of inconsistency: Magidor Cardinals and Magidor + Filters}}, +volume = {submitted}, +}, + +@article{BarSh:1084, +author = {Barnea, Ilan and Shelah, Saharon}, +trueauthor = {Barnea, Ilan and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{The abelianization functor and cotorsion groups}}, +}, + +@article{CnSh:1085, +author = {Cohen, Shani and Shelah, Saharon}, +trueauthor = {Cohen, Shani and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +note = { arxiv:math.LO/1603.08362 }, +title = {{On a parallel of random real forcing for inaccessible + cardinals}}, +}, + +@article{KoShSw:1086, +author = {Koszmider, Piotr and Shelah, Saharon and Swietek, Michal}, +trueauthor = {Koszmider, Piotr and Shelah, Saharon and + \'Swi\c{e}tek, Micha{\l}}, +fromwhere = {P,IL,P}, +journal = {Advances in Mathematics}, +title = {{There is no bound on sizes of indecomposable Banach Spaces}}, +volume = {submitted}, +}, + +@article{GsSh:1087, +author = {Golshani, Mohammad and Shelah, Saharon}, +trueauthor = {Golshani, Mohammad and Shelah, Saharon}, +fromwhere = {IR,IL}, +journal = {preprint}, +note = { arxiv:math.LO/1604.06044 }, +title = {{On cuts in ultraproducts on linear orders II}}, +}, + +@article{ShSr:1088, +author = {Shelah, Saharon and Steprans, Juris}, +trueauthor = {Shelah, Saharon and Step\r={a}ns, Juris}, +fromwhere = {IL,3}, +journal = {Annals of Pure and Applied Logic}, +title = {{Universal graphs and functions on $\omega_1$}}, +volume = {submitted}, +}, + +@article{HwSh:1089, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{A Borel maximal eventually different family}}, +}, + +@article{HwSh:1090, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Can you take Tornquist's inaccessible away?}}, +}, + +@article{DgHeSh:1091, +author = {Dugas, Manfred and Herden, Daniel and Shelah, Saharon}, +trueauthor = {Dugas, Manfred and Herden, Daniel and Shelah, Saharon}, +fromwhere = {1,1,IL}, +journal = {''Groups and Model Theory''}, +title = {{An extension of M.C.R. Butler's theorem on endomorphism + rings}}, +}, + +@article{BlSh:1092, +author = {Baldwin, John T. and Shelah, Saharon}, +trueauthor = {Baldwin, John T. Shelah, Saharon}, +fromwhere = {1, IL}, +journal = {Archive for Mathematical Logic}, +title = {{Hanf numbers for extendibility and related phenomena}}, +volume = {submitted}, +}, + +@article{HwSh:1093, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Maximal independent sets in Borel graphs and large + cardinals}}, +}, + +@article{HwSh:1094, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Solovay's inaccessible over a weak set theory without + choice}}, +}, + +@article{HwSh:1095, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL, IL}, +journal = {preprint}, +title = {{A Borel maximal cofinitary group}}, +}, + +@article{Sh:1096, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Strong failure of 0-1 law for LFP and the path logics}}, +}, + +@article{HwSh:1097, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{On the classification of definable ccc forcing notions}}, +}, + +@article{Sh:1098, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Excl LF groups with few automorphisms}}, +}, + +@article{LwSh:1099, +author = {Laskowski, Michael C. and Shelah, Saharon}, +trueauthor = {Laskowski, Michael C. and Shelah, Saharon}, +fromwhere = {1,IL}, +journal = {preprint}, +title = {{A strong failure of $\aleph_0$ stability for atomic classes}}, +}, + +@article{Sh:1100, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Creature iteration for inaccesibles}}, +}, + +@article{Sh:1101, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +journal = {preprint}, +title = {{Isomorphic limit ultrapowers for infinitary logic}}, +}, + +@article{KmSh:1102, +author = {Kumar, Ashutosh and Shelah, Saharon}, +trueauthor = {Kumar, Ashutosh and Shelah, Saharon}, +fromwhere = {IN,IL}, +journal = {Journal of Mathematical Logic}, +title = {{On possible restrictions of the null ideal}}, +volume = {preprint}, +}, + +@article{HwSh:1103, +author = {Horowitz, Haim and Shelah, Saharon}, +trueauthor = {Horowitz, Haim and Shelah, Saharon}, +fromwhere = {IL,IL}, +journal = {preprint}, +title = {{Mad families and non-meager filters}}, +}, + +@article{Sh:1104, +author = {Shelah, Saharon}, +trueauthor = {Shelah, Saharon}, +fromwhere = {IL}, +title = {{}}, +}, diff --git a/syncleus-white-example.pdf b/syncleus-white-example.pdf new file mode 100644 index 0000000000000000000000000000000000000000..87c1aa79a1ae0740e7073aba10334677ed8545e2 Binary files /dev/null and b/syncleus-white-example.pdf differ