diff --git a/_includes/workflow.html b/_includes/workflow.html
index d6023a1b38b7023bab90b94a661de1f21c77accb..cdece70e484bbebfb893d95e639cf76d32fba435 100644
--- a/_includes/workflow.html
+++ b/_includes/workflow.html
@@ -2,7 +2,6 @@
 <link rel="stylesheet" href="/project-pages/css/mermaid.forest.css">
 <script>mermaid.initialize({startOnLoad:true});</script>
 
-
 <!-- Get Content for This Post and Split at Pound Signs to Find Headers -->
 {% for post in site.posts %}
 	{% if post.title == page.title and post.author == page.author and post.date == page.date %}
@@ -70,7 +69,7 @@ graph TB
 
 			node{{ sub }}({{ currentheader }})
 			
-			click node{{ sub }} "{{ currentheader | strip | downcase | replace:' ','-' | prepend:'page.url' }}"
+			click node{{ sub }} "{{ currentheader | strip | downcase | replace:' ','-' | prepend:'#' }}"
 
 		{% else %}
 		
diff --git a/_includes/workflowmatlab.html b/_includes/workflowmatlab.html
new file mode 100644
index 0000000000000000000000000000000000000000..ecc29c6eeb3a58444d01fcab6bc7f3063d9a287d
--- /dev/null
+++ b/_includes/workflowmatlab.html
@@ -0,0 +1,76 @@
+<script src="/project-pages/js/mermaid.min.js"></script>
+<link rel="stylesheet" href="/project-pages/css/mermaid.forest.css">
+<script>mermaid.initialize({startOnLoad:true});</script>
+
+<!-- Get Content for This Post and Split at Pound Signs to Find Headers -->
+{% for post in site.posts %}
+	{% if post.title == page.title and post.author == page.author and post.date == page.date %}
+		{% assign text = post.content | newline_to_br | split:"<h" %}
+	{% endif %}
+{% endfor %}
+{% assign subcount = text | size | minus:1 %}
+
+<!-- Encapsulate in Capture to Handle the Whitespace and Allow Commenting -->
+{% capture MermaidBlock %}
+
+<!-- Initialize Header Counts -->
+{% assign smallheadercount = 0 %}
+
+<!-- Initialize Flowchart -->
+graph TB
+
+<!-- Loop over Potential Headers -->
+{% for sub in (1..subcount) %}
+
+	<!-- Get Length of Potential Header String -->
+	{% assign headerlevel = text[sub] | truncate: 1 %}
+
+		<!-- If I am the First in Sequence Nowhere to Connect -->
+		{% if smallheadercount == 0 %}
+		
+			{% assign currentheader = text[sub] | newline_to_br | split:"<br />" | first | split:">" %}
+			{% assign currentheader = currentheader[1] | split:"<" | first %}
+			{% assign currentsub = sub %}
+			{% assign smallheadercount = smallheadercount | plus:1 %}
+
+			node{{ sub }}({{ currentheader }}) 
+			
+			click node{{ sub }} "{{ sub | prepend:'#' }}"
+
+		{% else %}
+		
+			{% assign prevheader = currentheader %}
+			{% assign prevsub = currentsub %}
+			{% assign currentheader = text[sub] | newline_to_br | split:"<br />" | first | split:">" %}
+			{% assign currentheader = currentheader[1] | split:"<" | first %}	
+			{% assign currentsub = sub %}
+			
+			node{{ prevsub }}({{ prevheader }}) --> node{{ sub }}({{ currentheader }})
+			
+			click node{{ sub }} "{{ sub | prepend:'#' }}"
+
+		{% endif %}
+
+	{% assign subcheck = 2 %}
+
+
+{% endfor %}
+
+<!-- Finalize Flowchart -->
+
+<!-- Finalize Capture -->
+{% endcapture %}
+
+<!-- Make the Graph -->
+<h1> Workflow Overview </h1>
+
+<!-- Strip HTML and Seperate at Line Breaks -->
+{% assign Blocks = MermaidBlock | strip_html | newline_to_br | split:"<br />" %}
+{% assign BlocksLength = Blocks | size %}
+
+<!-- Strip Each Line of Whitespace and Only Keep Lines Longer than 3 -->
+<div class="mermaid" style="margin-left:100px">
+{% for line in (0..BlocksLength) %}{% assign BlockSize = Blocks[line] | size %}{% if BlockSize > 3 %}
+{{ Blocks[line] | strip | strip_newlines }}
+{% endif %}{% endfor %}
+</div>
\ No newline at end of file
diff --git a/_posts/2015-01-01-New-Post2.markdown b/_posts/2015-01-01-New-Post-2.markdown
similarity index 96%
rename from _posts/2015-01-01-New-Post2.markdown
rename to _posts/2015-01-01-New-Post-2.markdown
index 45a89898285b8e39e016af32a96258e55bb4cea1..3419396cdebbb34127902eafaab1e14697c6f89a 100644
--- a/_posts/2015-01-01-New-Post2.markdown
+++ b/_posts/2015-01-01-New-Post-2.markdown
@@ -1,9 +1,9 @@
 ---
 layout:     post
-title:      Post Headline 2
-date:       2016-04-01 12:00:00
+title:      Post Headline
+date:       2015-01-01 12:00:00
 author:     Ahmet Cecen
-tags: 		thoughts
+tags: 		template
 subtitle:  Some short description of post.
 ---
 <!-- Start Writing Below in Markdown -->
diff --git a/_posts/2016-05-02-matlabpost.md b/_posts/2016-05-02-matlabpost.md
new file mode 100644
index 0000000000000000000000000000000000000000..47345b2884e6231558eafe6fc3e3d60298ce57ff
--- /dev/null
+++ b/_posts/2016-05-02-matlabpost.md
@@ -0,0 +1,100 @@
+---
+layout:     post
+title:      New Matlab Script
+date:       2016-05-02 
+author:     Ahmet Cecen
+tags: 		matlab workflows
+subtitle:   Some Short Description of the Script
+visualworkflow: true
+---
+{% if page.visualworkflow == true %}
+   {% include workflowmatlab.html %}
+{% endif %}   
+   
+
+<!--
+This HTML was auto-generated from MATLAB code.
+To make changes, update the MATLAB code and republish this document.
+-->
+
+<br>Obtain the direct to Project-Pages publish function <a href="https://github.com/ahmetcecen/MATLAB-PublishtoProjectPages">here.</a><br>
+
+<h2>Load Variables From Workspace<a name="1"></a></h2>
+<p>Loading the microstructures and the effective property.</p>
+
+{% highlight matlab %}
+
+load GDL200Volumes.mat
+load MPL290Volumes.mat
+load EffectiveProperty290MPL200GDLinThatOrder.mat
+{% endhighlight %}
+<h2>Obtain 2-Point Statistics<a name="2"></a></h2>
+{% highlight matlab %}
+
+GG = zeros(490,49^3);
+
+for i=1:290
+    current = MPL{i};
+    GGcurrent = TwoPointMaster('full','auto',25,current);
+    GG(i,:) = GGcurrent(:)/numel(current);
+    PP(i)=GGcurrent(25,25,25)/numel(current);
+end
+
+for i=1:200
+    current = GDL{i};
+    GGcurrent = TwoPointMaster('full','auto',25,current);
+    GG(i+290,:) = GGcurrent(:)/numel(current);
+    PP(i+290)=GGcurrent(25,25,25)/numel(current);
+end
+{% endhighlight %}
+<h2>PCA<a name="3"></a></h2>
+<p>Via SVD: 
+
+<img src="" />
+
+
+</p>
+
+{% highlight matlab %}
+
+[PC1,Var1,Basis1]=PCAConstruct(GG,10);
+scatter(PC1(:,1),PC1(:,2),30,[ones(290,1);2*ones(200,1)],'filled'); colormap jet;
+{% endhighlight %}
+
+<img src="" />
+<h2>Function Estimation<a name="4"></a></h2>
+<p>Using Multivariate Polynomial Regression</p>
+
+{% highlight matlab %}
+
+reg = MultiPolyRegress(PC1(:,1:2),R,3,'figure')
+{% endhighlight %}
+
+{% highlight matlab %}
+
+reg = 
+
+           FitParameters: '-----------------'
+             PowerMatrix: [10x2 double]
+                  Scores: [490x10 double]
+    PolynomialExpression: [10x2 table]
+            Coefficients: [10x1 double]
+                    yhat: [490x1 double]
+               Residuals: [490x1 double]
+           GoodnessOfFit: '-----------------'
+                 RSquare: 0.9572
+                     MAE: 0.0571
+                  MAESTD: 0.0561
+           Normalization: '1-to-1 (Default)'
+      LOOCVGoodnessOfFit: '-----------------'
+               CVRSquare: 0.9556
+                   CVMAE: 0.0583
+                CVMAESTD: 0.0570
+         CVNormalization: '1-to-1 (Default)'
+
+
+{% endhighlight %}
+    
+<img src="" />
+
+<br><a href="http://www.mathworks.com/products/matlab/" style="font-size: 0.7em">Published with MATLAB&reg; R2014b</a><br>